diff --git a/src/test/cuckoocache_tests.cpp b/src/test/cuckoocache_tests.cpp index 1721ef217..d65bcff49 100644 --- a/src/test/cuckoocache_tests.cpp +++ b/src/test/cuckoocache_tests.cpp @@ -1,526 +1,528 @@ // Copyright (c) 2012-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <cuckoocache.h> #include <random.h> #include <script/sigcache.h> +#include <deque> + #include <test/util/setup_common.h> #include <boost/test/unit_test.hpp> #include <boost/thread/shared_mutex.hpp> /** * Test Suite for CuckooCache * * 1. All tests should have a deterministic result (using insecure rand * with deterministic seeds) * 2. Some test methods are templated to allow for easier testing * against new versions / comparing * 3. Results should be treated as a regression test, i.e., did the behavior * change significantly from what was expected. This can be OK, depending on * the nature of the change, but requires updating the tests to reflect the new * expected behavior. For example improving the hit rate may cause some tests * using BOOST_CHECK_CLOSE to fail. */ BOOST_AUTO_TEST_SUITE(cuckoocache_tests) /** * Example key/value element. The key is 28 bytes long and the value 4, for a * total of 32 bytes. */ struct TestMapElement { struct KeyType { std::array<uint8_t, 28> data; KeyType() = default; KeyType(const KeyType &rhs) = default; KeyType(const uint256 &k) { std::copy(k.begin() + 4, k.end(), data.begin()); } bool operator==(const KeyType &rhs) const { return rhs.data == data; } }; private: KeyType key; uint32_t value; public: TestMapElement() = default; TestMapElement(const TestMapElement &rhs) = default; TestMapElement(const uint256 &data) : TestMapElement(data, data.GetUint64(0)) {} TestMapElement(const KeyType &keyIn, uint32_t valueIn) : key(keyIn), value(valueIn) {} const KeyType &getKey() const { return key; } uint32_t getValue() const { return value; } class CacheHasher { public: template <uint8_t hash_select> uint32_t operator()(const KeyType &k) const { static_assert(hash_select < 8, "only has 8 hashes available."); const auto &d = k.data; uint32_t u; if (hash_select < 7) { std::memcpy(&u, d.begin() + 4 * hash_select, 4); } else { // We are required to produce 8 subhashes but all key bytes have // been used once already. So, we grab a mix of bits from each // of the other blobs. We try to ensure more entropy on the // higher bits, as these are what primarily get used to // determine the index. u = (uint32_t(d[0] & 0x07) << 29) + (uint32_t(d[4] & 0x07) << 26) + (uint32_t(d[8] & 0x0f) << 22) + (uint32_t(d[16] & 0x3f) << 16) + (uint32_t(d[20] & 0xff) << 8) + (uint32_t(d[24] & 0xff) << 0); } return u; } }; friend class CuckooCache::cache<TestMapElement, CacheHasher>; }; static_assert(sizeof(TestMapElement) == 32, "TestMapElement must be 32 bytes"); // For convenience. using CuckooCacheSet = CuckooCache::cache<CuckooCache::KeyOnly<uint256>, SignatureCacheHasher>; using CuckooCacheMap = CuckooCache::cache<TestMapElement, TestMapElement::CacheHasher>; using TestMapKey = TestMapElement::KeyType; /** * Test that no values not inserted into the cache are read out of it. * * There are no repeats in the first 400000 insecure_GetRandHash calls */ BOOST_AUTO_TEST_CASE(test_cuckoocache_no_fakes) { SeedInsecureRand(SeedRand::ZEROS); CuckooCacheSet cc{}; size_t megabytes = 4; cc.setup_bytes(megabytes << 20); for (int x = 0; x < 100000; ++x) { cc.insert(InsecureRand256()); } for (int x = 0; x < 100000; ++x) { BOOST_CHECK(!cc.contains(InsecureRand256(), false)); } CuckooCacheMap cm{}; cm.setup_bytes(megabytes << 20); for (int x = 0; x < 100000; ++x) { cm.insert(TestMapElement(InsecureRand256())); } for (int x = 0; x < 100000; ++x) { BOOST_CHECK(!cm.contains(TestMapKey(InsecureRand256()), false)); } }; /** * This helper returns the hit rate when megabytes*load worth of entries are * inserted into a megabytes sized cache */ template <typename Cache> static double test_cache(size_t megabytes, double load) { SeedInsecureRand(SeedRand::ZEROS); std::vector<uint256> hashes; Cache set{}; size_t bytes = megabytes * (1 << 20); set.setup_bytes(bytes); uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); hashes.reserve(n_insert); for (uint32_t i = 0; i < n_insert; ++i) { hashes.emplace_back(InsecureRand256()); } /** * We make a copy of the hashes because future optimizations of the * cuckoocache may overwrite the inserted element, so the test is "future * proofed". */ std::vector<uint256> hashes_insert_copy = hashes; /** Do the insert */ for (const uint256 &h : hashes_insert_copy) { set.insert(h); } /** Count the hits */ uint32_t count = 0; for (const uint256 &h : hashes) { count += set.contains(h, false); } double hit_rate = double(count) / double(n_insert); return hit_rate; } /** * The normalized hit rate for a given load. * * The semantics are a little confusing, so please see the below * explanation. * * Examples: * * 1. at load 0.5, we expect a perfect hit rate, so we multiply by * 1.0 * 2. at load 2.0, we expect to see half the entries, so a perfect hit rate * would be 0.5. Therefore, if we see a hit rate of 0.4, 0.4*2.0 = 0.8 is the * normalized hit rate. * * This is basically the right semantics, but has a bit of a glitch depending on * how you measure around load 1.0 as after load 1.0 your normalized hit rate * becomes effectively perfect, ignoring freshness. */ static double normalize_hit_rate(double hits, double load) { return hits * std::max(load, 1.0); } /** Check the hit rate on loads ranging from 0.1 to 1.6 */ BOOST_AUTO_TEST_CASE(cuckoocache_hit_rate_ok) { /** * Arbitrarily selected Hit Rate threshold that happens to work for this * test as a lower bound on performance. */ double HitRateThresh = 0.98; size_t megabytes = 4; for (double load = 0.1; load < 2; load *= 2) { double hits = test_cache<CuckooCacheSet>(megabytes, load); BOOST_CHECK(normalize_hit_rate(hits, load) > HitRateThresh); } for (double load = 0.1; load < 2; load *= 2) { double hits = test_cache<CuckooCacheMap>(megabytes, load); BOOST_CHECK(normalize_hit_rate(hits, load) > HitRateThresh); } } /** * This helper checks that erased elements are preferentially inserted onto and * that the hit rate of "fresher" keys is reasonable. */ template <typename Cache> static void test_cache_erase(size_t megabytes) { double load = 1; SeedInsecureRand(SeedRand::ZEROS); std::vector<uint256> hashes; Cache set{}; size_t bytes = megabytes * (1 << 20); set.setup_bytes(bytes); uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); hashes.resize(n_insert); for (uint32_t i = 0; i < n_insert; ++i) { hashes[i] = InsecureRand256(); } /** * We make a copy of the hashes because future optimizations of the * cuckoocache may overwrite the inserted element, so the test is * "future proofed". */ std::vector<uint256> hashes_insert_copy = hashes; /** Insert the first half */ for (uint32_t i = 0; i < (n_insert / 2); ++i) { set.insert(hashes_insert_copy[i]); } /** Erase the first quarter */ for (uint32_t i = 0; i < (n_insert / 4); ++i) { BOOST_CHECK(set.contains(hashes[i], true)); } /** Insert the second half */ for (uint32_t i = (n_insert / 2); i < n_insert; ++i) { set.insert(hashes_insert_copy[i]); } /** elements that we marked as erased but are still there */ size_t count_erased_but_contained = 0; /** elements that we did not erase but are older */ size_t count_stale = 0; /** elements that were most recently inserted */ size_t count_fresh = 0; for (uint32_t i = 0; i < (n_insert / 4); ++i) { count_erased_but_contained += set.contains(hashes[i], false); } for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) { count_stale += set.contains(hashes[i], false); } for (uint32_t i = (n_insert / 2); i < n_insert; ++i) { count_fresh += set.contains(hashes[i], false); } double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); // Check that our hit_rate_fresh is perfect BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); // Check that we have a more than 2x better hit rate on stale elements than // erased elements. BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); } BOOST_AUTO_TEST_CASE(cuckoocache_erase_ok) { size_t megabytes = 4; test_cache_erase<CuckooCacheSet>(megabytes); test_cache_erase<CuckooCacheMap>(megabytes); } template <typename Cache> static void test_cache_erase_parallel(size_t megabytes) { double load = 1; SeedInsecureRand(SeedRand::ZEROS); std::vector<uint256> hashes; Cache set{}; size_t bytes = megabytes * (1 << 20); set.setup_bytes(bytes); uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); hashes.resize(n_insert); for (uint32_t i = 0; i < n_insert; ++i) { hashes[i] = InsecureRand256(); } /** * We make a copy of the hashes because future optimizations of the * cuckoocache may overwrite the inserted element, so the test is * "future proofed". */ std::vector<uint256> hashes_insert_copy = hashes; boost::shared_mutex mtx; { /** Grab lock to make sure we release inserts */ boost::unique_lock<boost::shared_mutex> l(mtx); /** Insert the first half */ for (uint32_t i = 0; i < (n_insert / 2); ++i) { set.insert(hashes_insert_copy[i]); } } /** * Spin up 3 threads to run contains with erase. */ std::vector<std::thread> threads; /** Erase the first quarter */ for (uint32_t x = 0; x < 3; ++x) { /** Each thread is emplaced with x copy-by-value */ threads.emplace_back([&, x] { boost::shared_lock<boost::shared_mutex> l(mtx); size_t ntodo = (n_insert / 4) / 3; size_t start = ntodo * x; size_t end = ntodo * (x + 1); for (uint32_t i = start; i < end; ++i) { bool contains = set.contains(hashes[i], true); assert(contains); } }); } /** Wait for all threads to finish */ for (std::thread &t : threads) { t.join(); } /** Grab lock to make sure we observe erases */ boost::unique_lock<boost::shared_mutex> l(mtx); /** Insert the second half */ for (uint32_t i = (n_insert / 2); i < n_insert; ++i) { set.insert(hashes_insert_copy[i]); } /** elements that we marked erased but that are still there */ size_t count_erased_but_contained = 0; /** elements that we did not erase but are older */ size_t count_stale = 0; /** elements that were most recently inserted */ size_t count_fresh = 0; for (uint32_t i = 0; i < (n_insert / 4); ++i) { count_erased_but_contained += set.contains(hashes[i], false); } for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) { count_stale += set.contains(hashes[i], false); } for (uint32_t i = (n_insert / 2); i < n_insert; ++i) { count_fresh += set.contains(hashes[i], false); } double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); // Check that our hit_rate_fresh is perfect BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); // Check that we have a more than 2x better hit rate on stale elements than // erased elements. BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); } BOOST_AUTO_TEST_CASE(cuckoocache_erase_parallel_ok) { size_t megabytes = 4; test_cache_erase_parallel<CuckooCacheSet>(megabytes); test_cache_erase_parallel<CuckooCacheMap>(megabytes); } template <typename Cache> static void test_cache_generations() { // This test checks that for a simulation of network activity, the fresh hit // rate is never below 99%, and the number of times that it is worse than // 99.9% are less than 1% of the time. double min_hit_rate = 0.99; double tight_hit_rate = 0.999; double max_rate_less_than_tight_hit_rate = 0.01; // A cache that meets this specification is therefore shown to have a hit // rate of at least tight_hit_rate * (1 - max_rate_less_than_tight_hit_rate) // + // min_hit_rate*max_rate_less_than_tight_hit_rate = 0.999*99%+0.99*1% == // 99.89% // hit rate with low variance. // We use deterministic values, but this test has also passed on many // iterations with non-deterministic values, so it isn't "overfit" to the // specific entropy in FastRandomContext(true) and implementation of the // cache. SeedInsecureRand(SeedRand::ZEROS); // block_activity models a chunk of network activity. n_insert elements are // added to the cache. The first and last n/4 are stored for removal later // and the middle n/2 are not stored. This models a network which uses half // the signatures of recently (since the last block) added transactions // immediately and never uses the other half. struct block_activity { std::vector<uint256> reads; block_activity(uint32_t n_insert, Cache &c) : reads() { std::vector<uint256> inserts; inserts.resize(n_insert); reads.reserve(n_insert / 2); for (uint32_t i = 0; i < n_insert; ++i) { inserts[i] = InsecureRand256(); } for (uint32_t i = 0; i < n_insert / 4; ++i) { reads.push_back(inserts[i]); } for (uint32_t i = n_insert - (n_insert / 4); i < n_insert; ++i) { reads.push_back(inserts[i]); } for (const auto &h : inserts) { c.insert(h); } } }; const uint32_t BLOCK_SIZE = 1000; // We expect window size 60 to perform reasonably given that each epoch // stores 45% of the cache size (~472k). const uint32_t WINDOW_SIZE = 60; const uint32_t POP_AMOUNT = (BLOCK_SIZE / WINDOW_SIZE) / 2; const double load = 10; const size_t megabytes = 4; const size_t bytes = megabytes * (1 << 20); const uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); std::vector<block_activity> hashes; Cache set{}; set.setup_bytes(bytes); hashes.reserve(n_insert / BLOCK_SIZE); std::deque<block_activity> last_few; uint32_t out_of_tight_tolerance = 0; uint32_t total = n_insert / BLOCK_SIZE; // we use the deque last_few to model a sliding window of blocks. at each // step, each of the last WINDOW_SIZE block_activities checks the cache for // POP_AMOUNT of the hashes that they inserted, and marks these erased. for (uint32_t i = 0; i < total; ++i) { if (last_few.size() == WINDOW_SIZE) { last_few.pop_front(); } last_few.emplace_back(BLOCK_SIZE, set); uint32_t count = 0; for (auto &act : last_few) { for (uint32_t k = 0; k < POP_AMOUNT; ++k) { count += set.contains(act.reads.back(), true); act.reads.pop_back(); } } // We use last_few.size() rather than WINDOW_SIZE for the correct // behavior on the first WINDOW_SIZE iterations where the deque is not // full yet. double hit = double(count) / (last_few.size() * POP_AMOUNT); // Loose Check that hit rate is above min_hit_rate BOOST_CHECK(hit > min_hit_rate); // Tighter check, count number of times we are less than tight_hit_rate // (and implicitly, greater than min_hit_rate) out_of_tight_tolerance += hit < tight_hit_rate; } // Check that being out of tolerance happens less than // max_rate_less_than_tight_hit_rate of the time BOOST_CHECK(double(out_of_tight_tolerance) / double(total) < max_rate_less_than_tight_hit_rate); } BOOST_AUTO_TEST_CASE(cuckoocache_generations) { test_cache_generations<CuckooCacheSet>(); test_cache_generations<CuckooCacheMap>(); } BOOST_AUTO_TEST_CASE(cuckoocache_map_element) { // Check the hash is parsed properly. uint256 hash = uint256S( "baadf00dcafebeef00000000bada550ff1ce00000000000000000000deadc0de"); uint256 key = uint256S( "baadf00dcafebeef00000000bada550ff1ce00000000000000000000abadba5e"); const TestMapElement e(hash); BOOST_CHECK_EQUAL(e.getValue(), 0xdeadc0de); BOOST_CHECK(e.getKey() == TestMapElement(key).getKey()); } BOOST_AUTO_TEST_CASE(cuckoocache_map) { SeedInsecureRand(SeedRand::ZEROS); // 4k cache. CuckooCacheMap cm{}; cm.setup_bytes(4 * 1024); for (int x = 0; x < 100000; ++x) { const TestMapElement e1(InsecureRand256()); const TestMapElement e2(e1.getKey(), e1.getValue() ^ 0xbabe); BOOST_CHECK(e1.getKey() == e2.getKey()); BOOST_CHECK(e1.getValue() != e2.getValue()); // Insert a KV pair in the map and checks that it is effectively // inserted. BOOST_CHECK(!cm.contains(e1.getKey(), false)); cm.insert(e1); BOOST_CHECK(cm.contains(e1.getKey(), false)); // Check that we recover the proper value from the map. TestMapElement e(e1.getKey(), 0); BOOST_CHECK(cm.get(e, false)); BOOST_CHECK(e.getKey() == e1.getKey()); BOOST_CHECK(e.getValue() == e1.getValue()); // Insert without replace will not change the value. e = e2; cm.insert(e2); BOOST_CHECK(cm.get(e, false)); BOOST_CHECK(e.getKey() == e1.getKey()); BOOST_CHECK(e.getValue() == e1.getValue()); // Insert and replace. cm.insert(e2, true); BOOST_CHECK(cm.get(e, false)); BOOST_CHECK(e.getKey() == e2.getKey()); BOOST_CHECK(e.getValue() == e2.getValue()); } } BOOST_AUTO_TEST_SUITE_END();