diff --git a/test/functional/maxuploadtarget.py b/test/functional/maxuploadtarget.py index 4be31888e..455f0d69b 100755 --- a/test/functional/maxuploadtarget.py +++ b/test/functional/maxuploadtarget.py @@ -1,190 +1,187 @@ #!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Test behavior of -maxuploadtarget. * Verify that getdata requests for old blocks (>1week) are dropped if uploadtarget has been reached. * Verify that getdata requests for recent blocks are respecteved even if uploadtarget has been reached. * Verify that the upload counters are reset after 24 hours. ''' from collections import defaultdict import time from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.cdefs import LEGACY_MAX_BLOCK_SIZE from test_framework.blocktools import mine_big_block class TestNode(NodeConnCB): def __init__(self): super().__init__() self.block_receive_map = defaultdict(int) def on_inv(self, conn, message): pass def on_block(self, conn, message): message.block.calc_sha256() self.block_receive_map[message.block.sha256] += 1 class MaxUploadTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 # Start a node with maxuploadtarget of 200 MB (/24h) self.extra_args = [["-maxuploadtarget=200"]] # Cache for utxos, as the listunspent may take a long time later in the # test self.utxo_cache = [] def run_test(self): # Before we connect anything, we first set the time on the node # to be in the past, otherwise things break because the CNode # time counters can't be reset backward after initialization old_time = int(time.time() - 2 * 60 * 60 * 24 * 7) self.nodes[0].setmocktime(old_time) # Generate some old blocks self.nodes[0].generate(130) - # test_nodes[0] will only request old blocks - # test_nodes[1] will only request new blocks - # test_nodes[2] will test resetting the counters - test_nodes = [] - connections = [] + # p2p_conns[0] will only request old blocks + # p2p_conns[1] will only request new blocks + # p2p_conns[2] will test resetting the counters + p2p_conns = [] for i in range(3): - test_nodes.append(TestNode()) - connections.append( - NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_nodes[i])) - test_nodes[i].add_connection(connections[i]) + p2p_conns.append(self.nodes[0].add_p2p_connection(TestNode())) # Start up network handling in another thread NetworkThread().start() - [x.wait_for_verack() for x in test_nodes] + for p2pc in p2p_conns: + p2pc.wait_for_verack() # Test logic begins here # Now mine a big block mine_big_block(self.nodes[0], self.utxo_cache) # Store the hash; we'll request this later big_old_block = self.nodes[0].getbestblockhash() old_block_size = self.nodes[0].getblock(big_old_block, True)['size'] big_old_block = int(big_old_block, 16) # Advance to two days ago self.nodes[0].setmocktime(int(time.time()) - 2 * 60 * 60 * 24) # Mine one more block, so that the prior block looks old mine_big_block(self.nodes[0], self.utxo_cache) # We'll be requesting this new block too big_new_block = self.nodes[0].getbestblockhash() big_new_block = int(big_new_block, 16) - # test_nodes[0] will test what happens if we just keep requesting the + # p2p_conns[0] will test what happens if we just keep requesting the # the same big old block too many times (expect: disconnect) getdata_request = msg_getdata() getdata_request.inv.append(CInv(2, big_old_block)) max_bytes_per_day = 200 * 1024 * 1024 daily_buffer = 144 * LEGACY_MAX_BLOCK_SIZE max_bytes_available = max_bytes_per_day - daily_buffer success_count = max_bytes_available // old_block_size # 144MB will be reserved for relaying new blocks, so expect this to # succeed for ~70 tries. for i in range(success_count): - test_nodes[0].send_message(getdata_request) - test_nodes[0].sync_with_ping() - assert_equal(test_nodes[0].block_receive_map[big_old_block], i + 1) + p2p_conns[0].send_message(getdata_request) + p2p_conns[0].sync_with_ping() + assert_equal(p2p_conns[0].block_receive_map[big_old_block], i + 1) assert_equal(len(self.nodes[0].getpeerinfo()), 3) # At most a couple more tries should succeed (depending on how long # the test has been running so far). for i in range(3): - test_nodes[0].send_message(getdata_request) - test_nodes[0].wait_for_disconnect() + p2p_conns[0].send_message(getdata_request) + p2p_conns[0].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 2) self.log.info( "Peer 0 disconnected after downloading old block too many times") - # Requesting the current block on test_nodes[1] should succeed indefinitely, + # Requesting the current block on p2p_conns[1] should succeed indefinitely, # even when over the max upload target. # We'll try 200 times getdata_request.inv = [CInv(2, big_new_block)] for i in range(200): - test_nodes[1].send_message(getdata_request) - test_nodes[1].sync_with_ping() - assert_equal(test_nodes[1].block_receive_map[big_new_block], i + 1) + p2p_conns[1].send_message(getdata_request) + p2p_conns[1].sync_with_ping() + assert_equal(p2p_conns[1].block_receive_map[big_new_block], i + 1) self.log.info("Peer 1 able to repeatedly download new block") - # But if test_nodes[1] tries for an old block, it gets disconnected + # But if p2p_conns[1] tries for an old block, it gets disconnected # too. getdata_request.inv = [CInv(2, big_old_block)] - test_nodes[1].send_message(getdata_request) - test_nodes[1].wait_for_disconnect() + p2p_conns[1].send_message(getdata_request) + p2p_conns[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 1) self.log.info("Peer 1 disconnected after trying to download old block") self.log.info("Advancing system time on node to clear counters...") # If we advance the time by 24 hours, then the counters should reset, - # and test_nodes[2] should be able to retrieve the old block. + # and p2p_conns[2] should be able to retrieve the old block. self.nodes[0].setmocktime(int(time.time())) - test_nodes[2].sync_with_ping() - test_nodes[2].send_message(getdata_request) - test_nodes[2].sync_with_ping() - assert_equal(test_nodes[2].block_receive_map[big_old_block], 1) + p2p_conns[2].sync_with_ping() + p2p_conns[2].send_message(getdata_request) + p2p_conns[2].sync_with_ping() + assert_equal(p2p_conns[2].block_receive_map[big_old_block], 1) self.log.info("Peer 2 able to download old block") - [c.disconnect_node() for c in connections] + for i in range(3): + self.nodes[0].disconnect_p2p() # stop and start node 0 with 1MB maxuploadtarget, whitelist 127.0.0.1 self.log.info("Restarting nodes with -whitelist=127.0.0.1") self.stop_node(0) self.start_node(0, ["-whitelist=127.0.0.1", "-maxuploadtarget=1", "-blockmaxsize=999000"]) - # recreate/reconnect a test node - test_nodes = [TestNode()] - connections = [NodeConn('127.0.0.1', p2p_port( - 0), self.nodes[0], test_nodes[0])] - test_nodes[0].add_connection(connections[0]) + # Reconnect to self.nodes[0] + self.nodes[0].add_p2p_connection(TestNode()) - NetworkThread().start() # Start up network handling in another thread - test_nodes[0].wait_for_verack() + # Start up network handling in another thread + NetworkThread().start() + self.nodes[0].p2p.wait_for_verack() # retrieve 20 blocks which should be enough to break the 1MB limit getdata_request.inv = [CInv(2, big_new_block)] for i in range(20): - test_nodes[0].send_message(getdata_request) - test_nodes[0].sync_with_ping() - assert_equal(test_nodes[0].block_receive_map[big_new_block], i + 1) + self.nodes[0].p2p.send_message(getdata_request) + self.nodes[0].p2p.sync_with_ping() + assert_equal( + self.nodes[0].p2p.block_receive_map[big_new_block], i + 1) getdata_request.inv = [CInv(2, big_old_block)] - test_nodes[0].send_and_ping(getdata_request) + self.nodes[0].p2p.send_and_ping(getdata_request) # node is still connected because of the whitelist assert_equal(len(self.nodes[0].getpeerinfo()), 1) self.log.info( "Peer still connected after trying to download old block (whitelisted)") if __name__ == '__main__': MaxUploadTest().main() diff --git a/test/functional/p2p-acceptblock.py b/test/functional/p2p-acceptblock.py index b6aaa50ad..6f9ff5614 100755 --- a/test/functional/p2p-acceptblock.py +++ b/test/functional/p2p-acceptblock.py @@ -1,363 +1,349 @@ #!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time from test_framework.blocktools import create_block, create_coinbase, create_transaction ''' AcceptBlockTest -- test processing of unrequested blocks. Setup: two nodes, node0+node1, not connected to each other. Node1 will have nMinimumChainWork set to 0x10, so it won't process low-work unrequested blocks. We have one NodeConn connection to node0 called test_node, and one to node1 called min_work_node. The test: 1. Generate one block on each node, to leave IBD. 2. Mine a new block on each tip, and deliver to each node from node's peer. The tip should advance for node0, but node1 should skip processing due to nMinimumChainWork. Node1 is unused in tests 3-7: 3. Mine a block that forks from the genesis block, and deliver to test_node. Node0 should not process this block (just accept the header), because it is unrequested and doesn't have more or equal work to the tip. 4a,b. Send another two blocks that build on the forking block. Node0 should process the second block but be stuck on the shorter chain, because it's missing an intermediate block. 4c.Send 288 more blocks on the longer chain (the number of blocks ahead we currently store). Node0 should process all but the last block (too far ahead in height). 5. Send a duplicate of the block in #3 to Node0. Node0 should not process the block because it is unrequested, and stay on the shorter chain. 6. Send Node0 an inv for the height 3 block produced in #4 above. Node0 should figure out that Node0 has the missing height 2 block and send a getdata. 7. Send Node0 the missing block again. Node0 should process and the tip should advance. 8. Create a fork which is invalid at a height longer than the current chain (ie to which the node will try to reorg) but which has headers built on top of the invalid block. Check that we get disconnected if we send more headers on the chain the node now knows to be invalid. 9. Test Node1 is able to sync when connected to node0 (which should have sufficient work on its chain). ''' class AcceptBlockTest(BitcoinTestFramework): def add_options(self, parser): parser.add_argument("--testbinary", dest="testbinary", default=os.getenv("BITCOIND", "bitcoind"), help="bitcoind binary to test") def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [["-noparkdeepreorg"], ["-minimumchainwork=0x10"]] def setup_network(self): # Node0 will be used to test behavior of processing unrequested blocks # from peers which are not whitelisted, while Node1 will be used for # the whitelisted case. # Node2 will be used for non-whitelisted peers to test the interaction # with nMinimumChainWork. self.setup_nodes() def run_test(self): # Setup the p2p connections and start up the network thread. - test_node = NodeConnCB() # connects to node0 - min_work_node = NodeConnCB() # connects to node1 + # test_node connects to node0 (not whitelisted) + test_node = self.nodes[0].add_p2p_connection(NodeConnCB()) + # min_work_node connects to node1 + min_work_node = self.nodes[1].add_p2p_connection(NodeConnCB()) - connections = [] - connections.append( - NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node)) - connections.append(NodeConn('127.0.0.1', p2p_port(1), - self.nodes[1], min_work_node)) - test_node.add_connection(connections[0]) - min_work_node.add_connection(connections[1]) - - NetworkThread().start() # Start up network handling in another thread + # Start up network handling in another thread + NetworkThread().start() # Test logic begins here test_node.wait_for_verack() min_work_node.wait_for_verack() # 1. Have nodes mine a block (leave IBD) [n.generate(1) for n in self.nodes] tips = [int("0x" + n.getbestblockhash(), 0) for n in self.nodes] # 2. Send one block that builds on each tip. # This should be accepted by node0 blocks_h2 = [] # the height 2 blocks on each node's chain block_time = int(time.time()) + 1 for i in range(2): blocks_h2.append(create_block( tips[i], create_coinbase(2), block_time)) blocks_h2[i].solve() block_time += 1 test_node.send_message(msg_block(blocks_h2[0])) min_work_node.send_message(msg_block(blocks_h2[1])) for x in [test_node, min_work_node]: x.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) assert_equal(self.nodes[1].getblockcount(), 1) self.log.info( "First height 2 block accepted by node0; correctly rejected by node1") # 3. Send another block that builds on genesis. block_h1f = create_block( int("0x" + self.nodes[0].getblockhash(0), 0), create_coinbase(1), block_time) block_time += 1 block_h1f.solve() test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h1f.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, block_h1f.hash) # 4. Send another two block that build on the fork. block_h2f = create_block( block_h1f.sha256, create_coinbase(2), block_time) block_time += 1 block_h2f.solve() test_node.send_message(msg_block(block_h2f)) test_node.sync_with_ping() # Since the earlier block was not processed by node, the new block # can't be fully validated. tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h2f.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) # But this block should be accepted by node since it has equal work. self.nodes[0].getblock(block_h2f.hash) self.log.info("Second height 2 block accepted, but not reorg'ed to") # 4b. Now send another block that builds on the forking chain. block_h3 = create_block( block_h2f.sha256, create_coinbase(3), block_h2f.nTime+1) block_h3.solve() test_node.send_message(msg_block(block_h3)) test_node.sync_with_ping() # Since the earlier block was not processed by node, the new block # can't be fully validated. tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h3.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) self.nodes[0].getblock(block_h3.hash) # But this block should be accepted by node since it has more work. self.nodes[0].getblock(block_h3.hash) self.log.info("Unrequested more-work block accepted") # 4c. Now mine 288 more blocks and deliver; all should be processed but # the last (height-too-high) on node (as long as its not missing any headers) tip = block_h3 all_blocks = [] for i in range(288): next_block = create_block( tip.sha256, create_coinbase(i + 4), tip.nTime+1) next_block.solve() all_blocks.append(next_block) tip = next_block # Now send the block at height 5 and check that it wasn't accepted (missing header) test_node.send_message(msg_block(all_blocks[1])) test_node.sync_with_ping() assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, all_blocks[1].hash) assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblockheader, all_blocks[1].hash) # The block at height 5 should be accepted if we provide the missing header, though headers_message = msg_headers() headers_message.headers.append(CBlockHeader(all_blocks[0])) test_node.send_message(headers_message) test_node.send_message(msg_block(all_blocks[1])) test_node.sync_with_ping() self.nodes[0].getblock(all_blocks[1].hash) # Now send the blocks in all_blocks for i in range(288): test_node.send_message(msg_block(all_blocks[i])) test_node.sync_with_ping() # Blocks 1-287 should be accepted, block 288 should be ignored because it's too far ahead for x in all_blocks[:-1]: self.nodes[0].getblock(x.hash) assert_raises_rpc_error( -1, "Block not found on disk", self.nodes[0].getblock, all_blocks[-1].hash) # 5. Test handling of unrequested block on the node that didn't process # Should still not be processed (even though it has a child that has more # work). # The node should have requested the blocks at some point, so # disconnect/reconnect first - connections[0].disconnect_node() - test_node.wait_for_disconnect() - - test_node = NodeConnCB() # connects to node (not whitelisted) - connections[0] = NodeConn( - '127.0.0.1', p2p_port(0), self.nodes[0], test_node) - test_node.add_connection(connections[0]) + self.nodes[0].disconnect_p2p() + test_node = self.nodes[0].add_p2p_connection(NodeConnCB()) test_node.wait_for_verack() test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) self.log.info( "Unrequested block that would complete more-work chain was ignored") # 6. Try to get node to request the missing block. # Poke the node with an inv for block at height 3 and see if that # triggers a getdata on block 2 (it should if block 2 is missing). with mininode_lock: # Clear state so we can check the getdata request test_node.last_message.pop("getdata", None) test_node.send_message(msg_inv([CInv(2, block_h3.sha256)])) test_node.sync_with_ping() with mininode_lock: getdata = test_node.last_message["getdata"] # Check that the getdata includes the right block assert_equal(getdata.inv[0].hash, block_h1f.sha256) self.log.info("Inv at tip triggered getdata for unprocessed block") # 7. Send the missing block for the third time (now it is requested) test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 290) self.nodes[0].getblock(all_blocks[286].hash) assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, all_blocks[287].hash) self.log.info( "Successfully reorged to longer chain from non-whitelisted peer") # 8. Create a chain which is invalid at a height longer than the # current chain, but which has more blocks on top of that block_289f = create_block( all_blocks[284].sha256, create_coinbase(289), all_blocks[284].nTime+1) block_289f.solve() block_290f = create_block( block_289f.sha256, create_coinbase(290), block_289f.nTime+1) block_290f.solve() block_291 = create_block( block_290f.sha256, create_coinbase(291), block_290f.nTime+1) # block_291 spends a coinbase below maturity! block_291.vtx.append(create_transaction( block_290f.vtx[0], 0, b"42", 1)) block_291.hashMerkleRoot = block_291.calc_merkle_root() block_291.solve() block_292 = create_block( block_291.sha256, create_coinbase(292), block_291.nTime+1) block_292.solve() # Now send all the headers on the chain and enough blocks to trigger reorg headers_message = msg_headers() headers_message.headers.append(CBlockHeader(block_289f)) headers_message.headers.append(CBlockHeader(block_290f)) headers_message.headers.append(CBlockHeader(block_291)) headers_message.headers.append(CBlockHeader(block_292)) test_node.send_message(headers_message) test_node.sync_with_ping() tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_292.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, block_292.hash) test_node.send_message(msg_block(block_289f)) test_node.send_message(msg_block(block_290f)) test_node.sync_with_ping() self.nodes[0].getblock(block_289f.hash) self.nodes[0].getblock(block_290f.hash) test_node.send_message(msg_block(block_291)) # At this point we've sent an obviously-bogus block, wait for full processing # without assuming whether we will be disconnected or not try: # Only wait a short while so the test doesn't take forever if we do get # disconnected test_node.sync_with_ping(timeout=1) except AssertionError: test_node.wait_for_disconnect() - test_node = NodeConnCB() # connects to node (not whitelisted) - connections[0] = NodeConn( - '127.0.0.1', p2p_port(0), self.nodes[0], test_node) - test_node.add_connection(connections[0]) + self.nodes[0].disconnect_p2p() + test_node = self.nodes[0].add_p2p_connection(NodeConnCB()) NetworkThread().start() # Start up network handling in another thread test_node.wait_for_verack() # We should have failed reorg and switched back to 290 (but have block 291) assert_equal(self.nodes[0].getblockcount(), 290) assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash) assert_equal(self.nodes[0].getblock( block_291.hash)["confirmations"], -1) # Now send a new header on the invalid chain, indicating we're forked off, and expect to get disconnected block_293 = create_block( block_292.sha256, create_coinbase(293), block_292.nTime+1) block_293.solve() headers_message = msg_headers() headers_message.headers.append(CBlockHeader(block_293)) test_node.send_message(headers_message) # FIXME: Uncomment this line once Core backport 015a525 is completed. # Current behavior does not ban peers that give us headers on invalid chains. # test_node.wait_for_disconnect() # 9. Connect node1 to node0 and ensure it is able to sync connect_nodes(self.nodes[0], self.nodes[1]) sync_blocks([self.nodes[0], self.nodes[1]]) self.log.info("Successfully synced nodes 1 and 0") - [c.disconnect_node() for c in connections] - if __name__ == '__main__': AcceptBlockTest().main() diff --git a/test/functional/p2p-compactblocks.py b/test/functional/p2p-compactblocks.py index 3c02bab25..6993c5e67 100755 --- a/test/functional/p2p-compactblocks.py +++ b/test/functional/p2p-compactblocks.py @@ -1,908 +1,899 @@ #!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Copyright (c) 2017 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.blocktools import create_block, create_coinbase from test_framework.script import CScript, OP_TRUE from test_framework.txtools import pad_tx ''' CompactBlocksTest -- test compact blocks (BIP 152) Only testing Version 1 compact blocks (txids) ''' # TestNode: A peer we use to send messages to bitcoind, and store responses. class TestNode(NodeConnCB): def __init__(self): super().__init__() self.last_sendcmpct = [] self.block_announced = False # Store the hashes of blocks we've seen announced. # This is for synchronizing the p2p message traffic, # so we can eg wait until a particular block is announced. self.announced_blockhashes = set() def on_sendcmpct(self, conn, message): self.last_sendcmpct.append(message) def on_cmpctblock(self, conn, message): self.block_announced = True self.last_message["cmpctblock"].header_and_shortids.header.calc_sha256() self.announced_blockhashes.add( self.last_message["cmpctblock"].header_and_shortids.header.sha256) def on_headers(self, conn, message): self.block_announced = True for x in self.last_message["headers"].headers: x.calc_sha256() self.announced_blockhashes.add(x.sha256) def on_inv(self, conn, message): for x in self.last_message["inv"].inv: if x.type == 2: self.block_announced = True self.announced_blockhashes.add(x.hash) # Requires caller to hold mininode_lock def received_block_announcement(self): return self.block_announced def clear_block_announcement(self): with mininode_lock: self.block_announced = False self.last_message.pop("inv", None) self.last_message.pop("headers", None) self.last_message.pop("cmpctblock", None) def get_headers(self, locator, hashstop): msg = msg_getheaders() msg.locator.vHave = locator msg.hashstop = hashstop self.connection.send_message(msg) def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [CBlockHeader(b) for b in new_blocks] self.send_message(headers_message) def request_headers_and_sync(self, locator, hashstop=0): self.clear_block_announcement() self.get_headers(locator, hashstop) wait_until(self.received_block_announcement, timeout=30, lock=mininode_lock) self.clear_block_announcement() # Block until a block announcement for a particular block hash is # received. def wait_for_block_announcement(self, block_hash, timeout=30): def received_hash(): return (block_hash in self.announced_blockhashes) wait_until(received_hash, timeout=timeout, lock=mininode_lock) def send_await_disconnect(self, message, timeout=30): """Sends a message to the node and wait for disconnect. This is used when we want to send a message into the node that we expect will get us disconnected, eg an invalid block.""" self.send_message(message) wait_until(lambda: not self.connected, timeout=timeout, lock=mininode_lock) class CompactBlocksTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [[], ["-txindex"]] self.utxos = [] def build_block_on_tip(self, node): height = node.getblockcount() tip = node.getbestblockhash() mtp = node.getblockheader(tip)['mediantime'] block = create_block( int(tip, 16), create_coinbase(height + 1), mtp + 1) block.nVersion = 4 block.solve() return block # Create 10 more anyone-can-spend utxo's for testing. def make_utxos(self): # Doesn't matter which node we use, just use node0. block = self.build_block_on_tip(self.nodes[0]) self.test_node.send_and_ping(msg_block(block)) assert(int(self.nodes[0].getbestblockhash(), 16) == block.sha256) self.nodes[0].generate(100) total_value = block.vtx[0].vout[0].nValue out_value = total_value // 10 tx = CTransaction() tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b'')) for i in range(10): tx.vout.append(CTxOut(out_value, CScript([OP_TRUE]))) tx.rehash() block2 = self.build_block_on_tip(self.nodes[0]) block2.vtx.append(tx) block2.hashMerkleRoot = block2.calc_merkle_root() block2.solve() self.test_node.send_and_ping(msg_block(block2)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256) self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)]) return # Test "sendcmpct" (between peers preferring the same version): # - No compact block announcements unless sendcmpct is sent. # - If sendcmpct is sent with version > preferred_version, the message is ignored. # - If sendcmpct is sent with boolean 0, then block announcements are not # made with compact blocks. # - If sendcmpct is then sent with boolean 1, then new block announcements # are made with compact blocks. # If old_node is passed in, request compact blocks with version=preferred-1 # and verify that it receives block announcements via compact block. def test_sendcmpct(self, node, test_node, preferred_version, old_node=None): # Make sure we get a SENDCMPCT message from our peer def received_sendcmpct(): return (len(test_node.last_sendcmpct) > 0) wait_until(received_sendcmpct, timeout=30, lock=mininode_lock) with mininode_lock: # Check that the first version received is the preferred one assert_equal( test_node.last_sendcmpct[0].version, preferred_version) # And that we receive versions down to 1. assert_equal(test_node.last_sendcmpct[-1].version, 1) test_node.last_sendcmpct = [] tip = int(node.getbestblockhash(), 16) def check_announcement_of_new_block(node, peer, predicate): peer.clear_block_announcement() block_hash = int(node.generate(1)[0], 16) peer.wait_for_block_announcement(block_hash, timeout=30) assert(peer.block_announced) with mininode_lock: assert predicate(peer), ( "block_hash={!r}, cmpctblock={!r}, inv={!r}".format( block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None))) # We shouldn't get any block announcements via cmpctblock yet. check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message) # Try one more time, this time after requesting headers. test_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message) # Test a few ways of using sendcmpct that should NOT # result in compact block announcements. # Before each test, sync the headers chain. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with too-high version sendcmpct = msg_sendcmpct() sendcmpct.version = 999 # was: preferred_version+1 sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with valid version, but announce=False sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Finally, try a SENDCMPCT message with announce=True sendcmpct.version = preferred_version sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time (no headers sync should be needed!) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time, after turning on sendheaders test_node.send_and_ping(msg_sendheaders()) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time, after sending a version-1, announce=false message. sendcmpct.version = preferred_version - 1 sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Now turn off announcements sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message) if old_node is not None: # Verify that a peer using an older protocol version can receive # announcements from this node. sendcmpct.version = 1 # preferred_version-1 sendcmpct.announce = True old_node.send_and_ping(sendcmpct) # Header sync old_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block( node, old_node, lambda p: "cmpctblock" in p.last_message) # This test actually causes bitcoind to (reasonably!) disconnect us, so do # this last. def test_invalid_cmpctblock_message(self): self.nodes[0].generate(101) block = self.build_block_on_tip(self.nodes[0]) cmpct_block = P2PHeaderAndShortIDs() cmpct_block.header = CBlockHeader(block) cmpct_block.prefilled_txn_length = 1 # This index will be too high prefilled_txn = PrefilledTransaction(1, block.vtx[0]) cmpct_block.prefilled_txn = [prefilled_txn] self.test_node.send_await_disconnect(msg_cmpctblock(cmpct_block)) assert_equal( int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock) # Compare the generated shortids to what we expect based on BIP 152, given # bitcoind's choice of nonce. def test_compactblock_construction(self, node, test_node): # Generate a bunch of transactions. node.generate(101) num_transactions = 25 address = node.getnewaddress() for i in range(num_transactions): txid = node.sendtoaddress(address, 0.1) hex_tx = node.gettransaction(txid)["hex"] tx = FromHex(CTransaction(), hex_tx) # Wait until we've seen the block announcement for the resulting tip tip = int(node.getbestblockhash(), 16) test_node.wait_for_block_announcement(tip) # Make sure we will receive a fast-announce compact block self.request_cb_announcements(test_node, node) # Now mine a block, and look at the resulting compact block. test_node.clear_block_announcement() block_hash = int(node.generate(1)[0], 16) # Store the raw block in our internal format. block = FromHex(CBlock(), node.getblock("%02x" % block_hash, False)) for tx in block.vtx: tx.calc_sha256() block.rehash() # Wait until the block was announced (via compact blocks) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) # Now fetch and check the compact block header_and_shortids = None with mininode_lock: assert("cmpctblock" in test_node.last_message) # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs( test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block( header_and_shortids, block_hash, block) # Now fetch the compact block using a normal non-announce getdata with mininode_lock: test_node.clear_block_announcement() inv = CInv(4, block_hash) # 4 == "CompactBlock" test_node.send_message(msg_getdata([inv])) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) # Now fetch and check the compact block header_and_shortids = None with mininode_lock: assert("cmpctblock" in test_node.last_message) # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs( test_node.last_message["cmpctblock"].header_and_shortids) self.check_compactblock_construction_from_block( header_and_shortids, block_hash, block) def check_compactblock_construction_from_block(self, header_and_shortids, block_hash, block): # Check that we got the right block! header_and_shortids.header.calc_sha256() assert_equal(header_and_shortids.header.sha256, block_hash) # Make sure the prefilled_txn appears to have included the coinbase assert(len(header_and_shortids.prefilled_txn) >= 1) assert_equal(header_and_shortids.prefilled_txn[0].index, 0) # Check that all prefilled_txn entries match what's in the block. for entry in header_and_shortids.prefilled_txn: entry.tx.calc_sha256() # This checks the tx agree assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256) # Check that the cmpctblock message announced all the transactions. assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx)) # And now check that all the shortids are as expected as well. # Determine the siphash keys to use. [k0, k1] = header_and_shortids.get_siphash_keys() index = 0 while index < len(block.vtx): if (len(header_and_shortids.prefilled_txn) > 0 and header_and_shortids.prefilled_txn[0].index == index): # Already checked prefilled transactions above header_and_shortids.prefilled_txn.pop(0) else: tx_hash = block.vtx[index].sha256 shortid = calculate_shortid(k0, k1, tx_hash) assert_equal(shortid, header_and_shortids.shortids[0]) header_and_shortids.shortids.pop(0) index += 1 # Test that bitcoind requests compact blocks when we announce new blocks # via header or inv, and that responding to getblocktxn causes the block # to be successfully reconstructed. def test_compactblock_requests(self, node, test_node, version): # Try announcing a block with an inv or header, expect a compactblock # request for announce in ["inv", "header"]: block = self.build_block_on_tip(node) with mininode_lock: test_node.last_message.pop("getdata", None) if announce == "inv": test_node.send_message(msg_inv([CInv(2, block.sha256)])) wait_until(lambda: "getheaders" in test_node.last_message, timeout=30, lock=mininode_lock) test_node.send_header_for_blocks([block]) else: test_node.send_header_for_blocks([block]) wait_until(lambda: "getdata" in test_node.last_message, timeout=30, lock=mininode_lock) assert_equal(len(test_node.last_message["getdata"].inv), 1) assert_equal(test_node.last_message["getdata"].inv[0].type, 4) assert_equal( test_node.last_message["getdata"].inv[0].hash, block.sha256) # Send back a compactblock message that omits the coinbase comp_block = HeaderAndShortIDs() comp_block.header = CBlockHeader(block) comp_block.nonce = 0 [k0, k1] = comp_block.get_siphash_keys() coinbase_hash = block.vtx[0].sha256 comp_block.shortids = [ calculate_shortid(k0, k1, coinbase_hash)] test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # Expect a getblocktxn message. with mininode_lock: assert("getblocktxn" in test_node.last_message) absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute( ) assert_equal(absolute_indexes, [0]) # should be a coinbase request # Send the coinbase, and verify that the tip advances. msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = [block.vtx[0]] test_node.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) # Create a chain of transactions from given utxo, and add to a new block. # Note that num_transactions is number of transactions not including the # coinbase. def build_block_with_transactions(self, node, utxo, num_transactions): block = self.build_block_on_tip(node) for i in range(num_transactions): tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b'')) tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE]))) pad_tx(tx) tx.rehash() utxo = [tx.sha256, 0, tx.vout[0].nValue] block.vtx.append(tx) ordered_txs = block.vtx block.vtx = [block.vtx[0]] + \ sorted(block.vtx[1:], key=lambda tx: tx.get_id()) block.hashMerkleRoot = block.calc_merkle_root() block.solve() return block, ordered_txs # Test that we only receive getblocktxn requests for transactions that the # node needs, and that responding to them causes the block to be # reconstructed. def test_getblocktxn_requests(self, node, test_node, version): def test_getblocktxn_response(compact_block, peer, expected_result): msg = msg_cmpctblock(compact_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert("getblocktxn" in peer.last_message) absolute_indexes = peer.last_message["getblocktxn"].block_txn_request.to_absolute( ) assert_equal(absolute_indexes, expected_result) def test_tip_after_message(node, peer, msg, tip): peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), tip) # First try announcing compactblocks that won't reconstruct, and verify # that we receive getblocktxn messages back. utxo = self.utxos.pop(0) block, ordered_txs = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [ordered_txs[-1].sha256, 0, ordered_txs[-1].vout[0].nValue]) comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5]) msg_bt = msg_blocktxn() msg_bt.block_transactions = BlockTransactions( block.sha256, block.vtx[1:]) test_tip_after_message(node, test_node, msg_bt, block.sha256) utxo = self.utxos.pop(0) block, ordered_txs = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [ordered_txs[-1].sha256, 0, ordered_txs[-1].vout[0].nValue]) # Now try interspersing the prefilled transactions comp_block.initialize_from_block( block, prefill_list=[0, 1, 5]) test_getblocktxn_response(comp_block, test_node, [2, 3, 4]) msg_bt.block_transactions = BlockTransactions( block.sha256, block.vtx[2:5]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now try giving one transaction ahead of time. utxo = self.utxos.pop(0) block, ordered_txs = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [ordered_txs[-1].sha256, 0, ordered_txs[-1].vout[0].nValue]) test_node.send_and_ping(msg_tx(ordered_txs[1])) assert(ordered_txs[1].hash in node.getrawmempool()) test_node.send_and_ping(msg_tx(ordered_txs[1])) # Prefill 4 out of the 6 transactions, and verify that only the one # that was not in the mempool is requested. prefill_list = [0, 1, 2, 3, 4, 5] prefill_list.remove(block.vtx.index(ordered_txs[1])) expected_index = block.vtx.index(ordered_txs[-1]) prefill_list.remove(expected_index) comp_block.initialize_from_block(block, prefill_list=prefill_list) test_getblocktxn_response(comp_block, test_node, [expected_index]) msg_bt.block_transactions = BlockTransactions( block.sha256, [ordered_txs[5]]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now provide all transactions to the node before the block is # announced and verify reconstruction happens immediately. utxo = self.utxos.pop(0) block, ordered_txs = self.build_block_with_transactions(node, utxo, 10) self.utxos.append( [ordered_txs[-1].sha256, 0, ordered_txs[-1].vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert(tx.hash in mempool) # Clear out last request. with mininode_lock: test_node.last_message.pop("getblocktxn", None) # Send compact block comp_block.initialize_from_block(block, prefill_list=[0]) test_tip_after_message( node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with mininode_lock: # Shouldn't have gotten a request for any transaction assert("getblocktxn" not in test_node.last_message) # Incorrectly responding to a getblocktxn shouldn't cause the block to be # permanently failed. def test_incorrect_blocktxn_response(self, node, test_node, version): if (len(self.utxos) == 0): self.make_utxos() utxo = self.utxos.pop(0) block, ordered_txs = self.build_block_with_transactions(node, utxo, 10) self.utxos.append( [ordered_txs[-1].sha256, 0, ordered_txs[-1].vout[0].nValue]) # Relay the first 5 transactions from the block in advance for tx in ordered_txs[1:6]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in ordered_txs[1:6]: assert(tx.hash in mempool) # Send compact block comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0]) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) absolute_indices = [] with mininode_lock: assert("getblocktxn" in test_node.last_message) absolute_indices = test_node.last_message["getblocktxn"].block_txn_request.to_absolute( ) expected_indices = [] for i in [6, 7, 8, 9, 10]: expected_indices.append(block.vtx.index(ordered_txs[i])) assert_equal(absolute_indices, sorted(expected_indices)) # Now give an incorrect response. # Note that it's possible for bitcoind to be smart enough to know we're # lying, since it could check to see if the shortid matches what we're # sending, and eg disconnect us for misbehavior. If that behavior # change were made, we could just modify this test by having a # different peer provide the block further down, so that we're still # verifying that the block isn't marked bad permanently. This is good # enough for now. msg = msg_blocktxn() msg.block_transactions = BlockTransactions( block.sha256, [ordered_txs[5]] + ordered_txs[7:]) test_node.send_and_ping(msg) # Tip should not have updated assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # We should receive a getdata request wait_until(lambda: "getdata" in test_node.last_message, timeout=10, lock=mininode_lock) assert_equal(len(test_node.last_message["getdata"].inv), 1) assert(test_node.last_message["getdata"].inv[0].type == 2) assert_equal( test_node.last_message["getdata"].inv[0].hash, block.sha256) # Deliver the block test_node.send_and_ping(msg_block(block)) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def test_getblocktxn_handler(self, node, test_node, version): # bitcoind will not send blocktxn responses for blocks whose height is # more than 10 blocks deep. MAX_GETBLOCKTXN_DEPTH = 10 chain_height = node.getblockcount() current_height = chain_height while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH): block_hash = node.getblockhash(current_height) block = FromHex(CBlock(), node.getblock(block_hash, False)) msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest( int(block_hash, 16), []) num_to_request = random.randint(1, len(block.vtx)) msg.block_txn_request.from_absolute( sorted(random.sample(range(len(block.vtx)), num_to_request))) test_node.send_message(msg) wait_until(lambda: "blocktxn" in test_node.last_message, timeout=10, lock=mininode_lock) [tx.calc_sha256() for tx in block.vtx] with mininode_lock: assert_equal(test_node.last_message["blocktxn"].block_transactions.blockhash, int( block_hash, 16)) all_indices = msg.block_txn_request.to_absolute() for index in all_indices: tx = test_node.last_message["blocktxn"].block_transactions.transactions.pop( 0) tx.calc_sha256() assert_equal(tx.sha256, block.vtx[index].sha256) test_node.last_message.pop("blocktxn", None) current_height -= 1 # Next request should send a full block response, as we're past the # allowed depth for a blocktxn response. block_hash = node.getblockhash(current_height) msg.block_txn_request = BlockTransactionsRequest( int(block_hash, 16), [0]) with mininode_lock: test_node.last_message.pop("block", None) test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with mininode_lock: test_node.last_message["block"].block.calc_sha256() assert_equal( test_node.last_message["block"].block.sha256, int(block_hash, 16)) assert "blocktxn" not in test_node.last_message def test_compactblocks_not_at_tip(self, node, test_node): # Test that requesting old compactblocks doesn't work. MAX_CMPCTBLOCK_DEPTH = 5 new_blocks = [] for i in range(MAX_CMPCTBLOCK_DEPTH + 1): test_node.clear_block_announcement() new_blocks.append(node.generate(1)[0]) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() node.generate(1) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() with mininode_lock: test_node.last_message.pop("block", None) test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "block" in test_node.last_message, timeout=30, lock=mininode_lock) with mininode_lock: test_node.last_message["block"].block.calc_sha256() assert_equal( test_node.last_message["block"].block.sha256, int(new_blocks[0], 16)) # Generate an old compactblock, and verify that it's not accepted. cur_height = node.getblockcount() hashPrevBlock = int(node.getblockhash(cur_height - 5), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: assert_equal(x["status"], "headers-only") found = True break assert(found) # Requesting this block via getblocktxn should silently fail # (to avoid fingerprinting attacks). msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0]) with mininode_lock: test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with mininode_lock: assert "blocktxn" not in test_node.last_message def test_end_to_end_block_relay(self, node, listeners): utxo = self.utxos.pop(0) block, _ = self.build_block_with_transactions(node, utxo, 10) [l.clear_block_announcement() for l in listeners] node.submitblock(ToHex(block)) for l in listeners: wait_until(lambda: l.received_block_announcement(), timeout=30, lock=mininode_lock) with mininode_lock: for l in listeners: assert "cmpctblock" in l.last_message l.last_message["cmpctblock"].header_and_shortids.header.calc_sha256( ) assert_equal( l.last_message["cmpctblock"].header_and_shortids.header.sha256, block.sha256) # Test that we don't get disconnected if we relay a compact block with valid header, # but invalid transactions. def test_invalid_tx_in_compactblock(self, node, test_node): assert(len(self.utxos)) utxo = self.utxos[0] block, ordered_txs = self.build_block_with_transactions(node, utxo, 5) block.vtx.remove(ordered_txs[3]) block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Now send the compact block with all transactions prefilled, and # verify that we don't get disconnected. comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0, 1, 2, 3, 4]) msg = msg_cmpctblock(comp_block.to_p2p()) test_node.send_and_ping(msg) # Check that the tip didn't advance assert(int(node.getbestblockhash(), 16) is not block.sha256) test_node.sync_with_ping() # Helper for enabling cb announcements # Send the sendcmpct request and sync headers def request_cb_announcements(self, peer, node, version=1): tip = node.getbestblockhash() peer.get_headers(locator=[int(tip, 16)], hashstop=0) msg = msg_sendcmpct() msg.version = version msg.announce = True peer.send_and_ping(msg) def test_compactblock_reconstruction_multiple_peers(self, node, stalling_peer, delivery_peer): assert(len(self.utxos)) def announce_cmpct_block(node, peer): utxo = self.utxos.pop(0) block, _ = self.build_block_with_transactions(node, utxo, 5) cmpct_block = HeaderAndShortIDs() cmpct_block.initialize_from_block(block) msg = msg_cmpctblock(cmpct_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert "getblocktxn" in peer.last_message return block, cmpct_block block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() mempool = node.getrawmempool() for tx in block.vtx[1:]: assert(tx.hash in mempool) delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.sha256) self.utxos.append( [block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now test that delivering an invalid compact block won't break relay block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() # TODO: modify txhash in a way that doesn't impact txid. delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) # Because txhash isn't modified, we end up reconstructing the same block # assert(int(node.getbestblockhash(), 16) != block.sha256) msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = block.vtx[1:] stalling_peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def run_test(self): # Setup the p2p connections and start up the network thread. - self.test_node = TestNode() - self.ex_softfork_node = TestNode() - self.old_node = TestNode() # version 1 peer - - connections = [] - connections.append( - NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node)) - connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], - self.ex_softfork_node, services=NODE_NETWORK)) - connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], - self.old_node, services=NODE_NETWORK)) - self.test_node.add_connection(connections[0]) - self.ex_softfork_node.add_connection(connections[1]) - self.old_node.add_connection(connections[2]) - - NetworkThread().start() # Start up network handling in another thread - - # Test logic begins here + self.test_node = self.nodes[0].add_p2p_connection(TestNode()) + self.ex_softfork_node = self.nodes[1].add_p2p_connection( + TestNode(), services=NODE_NETWORK) + self.old_node = self.nodes[1].add_p2p_connection( + TestNode(), services=NODE_NETWORK) + + # Start up network handling in another thread + NetworkThread().start() + self.test_node.wait_for_verack() # We will need UTXOs to construct transactions in later tests. self.make_utxos() self.log.info("Running tests:") self.log.info("\tTesting SENDCMPCT p2p message... ") self.test_sendcmpct(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_sendcmpct( self.nodes[1], self.ex_softfork_node, 1, old_node=self.old_node) sync_blocks(self.nodes) self.log.info("\tTesting compactblock construction...") self.test_compactblock_construction(self.nodes[0], self.test_node) sync_blocks(self.nodes) self.test_compactblock_construction( self.nodes[1], self.ex_softfork_node) sync_blocks(self.nodes) self.log.info("\tTesting compactblock requests... ") self.test_compactblock_requests(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_compactblock_requests( self.nodes[1], self.ex_softfork_node, 2) sync_blocks(self.nodes) self.log.info("\tTesting getblocktxn requests...") self.test_getblocktxn_requests(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_getblocktxn_requests(self.nodes[1], self.ex_softfork_node, 2) sync_blocks(self.nodes) self.log.info("\tTesting getblocktxn handler...") self.test_getblocktxn_handler(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_getblocktxn_handler(self.nodes[1], self.ex_softfork_node, 2) self.test_getblocktxn_handler(self.nodes[1], self.old_node, 1) sync_blocks(self.nodes) self.log.info( "\tTesting compactblock requests/announcements not at chain tip...") self.test_compactblocks_not_at_tip(self.nodes[0], self.test_node) sync_blocks(self.nodes) self.test_compactblocks_not_at_tip( self.nodes[1], self.ex_softfork_node) self.test_compactblocks_not_at_tip(self.nodes[1], self.old_node) sync_blocks(self.nodes) self.log.info("\tTesting handling of incorrect blocktxn responses...") self.test_incorrect_blocktxn_response(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_incorrect_blocktxn_response( self.nodes[1], self.ex_softfork_node, 2) sync_blocks(self.nodes) # End-to-end block relay tests self.log.info("\tTesting end-to-end block relay...") self.request_cb_announcements(self.test_node, self.nodes[0]) self.request_cb_announcements(self.old_node, self.nodes[1]) self.request_cb_announcements( self.ex_softfork_node, self.nodes[1], version=2) self.test_end_to_end_block_relay( self.nodes[0], [self.ex_softfork_node, self.test_node, self.old_node]) self.test_end_to_end_block_relay( self.nodes[1], [self.ex_softfork_node, self.test_node, self.old_node]) self.log.info("\tTesting handling of invalid compact blocks...") self.test_invalid_tx_in_compactblock(self.nodes[0], self.test_node) self.test_invalid_tx_in_compactblock( self.nodes[1], self.ex_softfork_node) self.test_invalid_tx_in_compactblock(self.nodes[1], self.old_node) self.log.info( "\tTesting reconstructing compact blocks from all peers...") self.test_compactblock_reconstruction_multiple_peers( self.nodes[1], self.ex_softfork_node, self.old_node) sync_blocks(self.nodes) self.log.info("\tTesting invalid index in cmpctblock message...") self.test_invalid_cmpctblock_message() if __name__ == '__main__': CompactBlocksTest().main()