diff --git a/src/avalanche/test/processor_tests.cpp b/src/avalanche/test/processor_tests.cpp
index 0a73bd9c2..ffaddcf9a 100644
--- a/src/avalanche/test/processor_tests.cpp
+++ b/src/avalanche/test/processor_tests.cpp
@@ -1,2535 +1,2532 @@
 // Copyright (c) 2018-2020 The Bitcoin developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #include <avalanche/processor.h>
 
 #include <arith_uint256.h>
 #include <avalanche/avalanche.h>
 #include <avalanche/delegationbuilder.h>
 #include <avalanche/peermanager.h>
 #include <avalanche/proofbuilder.h>
 #include <avalanche/voterecord.h>
 #include <chain.h>
 #include <config.h>
 #include <core_io.h>
 #include <key_io.h>
 #include <net_processing.h> // For ::PeerManager
 #include <reverse_iterator.h>
 #include <scheduler.h>
 #include <util/time.h>
 #include <util/translation.h> // For bilingual_str
-// D6970 moved LookupBlockIndex from chain.h to validation.h TODO: remove this
-// when LookupBlockIndex is refactored out of validation
-#include <validation.h>
 
 #include <avalanche/test/util.h>
 #include <test/util/setup_common.h>
 
 #include <boost/mpl/list.hpp>
 #include <boost/test/unit_test.hpp>
 
 #include <functional>
 #include <limits>
 #include <type_traits>
 #include <vector>
 
 using namespace avalanche;
 
 namespace avalanche {
 namespace {
     struct AvalancheTest {
         static void runEventLoop(avalanche::Processor &p) { p.runEventLoop(); }
 
         static std::vector<CInv> getInvsForNextPoll(Processor &p) {
             return p.getInvsForNextPoll(false);
         }
 
         static NodeId getSuitableNodeToQuery(Processor &p) {
             return WITH_LOCK(p.cs_peerManager,
                              return p.peerManager->selectNode());
         }
 
         static uint64_t getRound(const Processor &p) { return p.round; }
 
         static uint32_t getMinQuorumScore(const Processor &p) {
             return p.minQuorumScore;
         }
 
         static double getMinQuorumConnectedScoreRatio(const Processor &p) {
             return p.minQuorumConnectedScoreRatio;
         }
 
         static void clearavaproofsNodeCounter(Processor &p) {
             p.avaproofsNodeCounter = 0;
         }
 
         static void addVoteRecord(Processor &p, AnyVoteItem &item,
                                   VoteRecord &voteRecord) {
             p.voteRecords.getWriteView()->insert(
                 std::make_pair(item, voteRecord));
         }
 
         static void setFinalizationTip(Processor &p,
                                        const CBlockIndex *pindex) {
             LOCK(p.cs_finalizationTip);
             p.finalizationTip = pindex;
         }
 
         static void setLocalProofShareable(Processor &p, bool shareable) {
             p.m_canShareLocalProof = shareable;
         }
 
         static void updatedBlockTip(Processor &p) { p.updatedBlockTip(); }
 
         static void addProofToRecentfinalized(Processor &p,
                                               const ProofId &proofid) {
             WITH_LOCK(p.cs_finalizedItems,
                       return p.finalizedItems.insert(proofid));
         }
     };
 } // namespace
 
 struct TestVoteRecord : public VoteRecord {
     explicit TestVoteRecord(uint16_t conf) : VoteRecord(true) {
         confidence |= conf << 1;
     }
 };
 } // namespace avalanche
 
 namespace {
 struct CConnmanTest : public CConnman {
     using CConnman::CConnman;
     void AddNode(CNode &node) {
         LOCK(m_nodes_mutex);
         m_nodes.push_back(&node);
     }
     void ClearNodes() {
         LOCK(m_nodes_mutex);
         for (CNode *node : m_nodes) {
             delete node;
         }
         m_nodes.clear();
     }
 };
 
 CService ip(uint32_t i) {
     struct in_addr s;
     s.s_addr = i;
     return CService(CNetAddr(s), Params().GetDefaultPort());
 }
 
 struct AvalancheTestingSetup : public TestChain100Setup {
     const ::Config &config;
     CConnmanTest *m_connman;
 
     std::unique_ptr<Processor> m_processor;
 
     // The master private key we delegate to.
     CKey masterpriv;
 
     std::unordered_set<std::string> m_overridden_args;
 
     AvalancheTestingSetup()
         : TestChain100Setup(), config(GetConfig()),
           masterpriv(CKey::MakeCompressedKey()) {
         // Deterministic randomness for tests.
         auto connman = std::make_unique<CConnmanTest>(config, 0x1337, 0x1337,
                                                       *m_node.addrman);
         m_connman = connman.get();
         m_node.connman = std::move(connman);
 
         // Get the processor ready.
         setArg("-avaminquorumstake", "0");
         setArg("-avaminquorumconnectedstakeratio", "0");
         setArg("-avaminavaproofsnodecount", "0");
         setArg("-avaproofstakeutxoconfirmations", "1");
         bilingual_str error;
         m_processor = Processor::MakeProcessor(
             *m_node.args, *m_node.chain, m_node.connman.get(),
             *Assert(m_node.chainman), m_node.mempool.get(), *m_node.scheduler,
             error);
         BOOST_CHECK(m_processor);
 
         m_node.peerman = ::PeerManager::make(
             *m_connman, *m_node.addrman, m_node.banman.get(), *m_node.chainman,
             *m_node.mempool, m_processor.get(), false);
         m_node.chain = interfaces::MakeChain(m_node, config.GetChainParams());
     }
 
     ~AvalancheTestingSetup() {
         m_connman->ClearNodes();
         SyncWithValidationInterfaceQueue();
 
         ArgsManager &argsman = *Assert(m_node.args);
         for (const std::string &key : m_overridden_args) {
             argsman.ClearForcedArg(key);
         }
         m_overridden_args.clear();
     }
 
     CNode *ConnectNode(ServiceFlags nServices) {
         static NodeId id = 0;
 
         CAddress addr(ip(GetRand<uint32_t>()), NODE_NONE);
         auto node =
             new CNode(id++, INVALID_SOCKET, addr,
                       /* nKeyedNetGroupIn */ 0,
                       /* nLocalHostNonceIn */ 0,
                       /* nLocalExtraEntropyIn */ 0, CAddress(),
                       /* pszDest */ "", ConnectionType::OUTBOUND_FULL_RELAY,
                       /* inbound_onion */ false);
         node->SetCommonVersion(PROTOCOL_VERSION);
         node->m_has_all_wanted_services =
             HasAllDesirableServiceFlags(nServices);
         m_node.peerman->InitializeNode(config, *node, NODE_NETWORK);
         node->nVersion = 1;
         node->fSuccessfullyConnected = true;
 
         m_connman->AddNode(*node);
         return node;
     }
 
     ProofRef GetProof(CScript payoutScript = UNSPENDABLE_ECREG_PAYOUT_SCRIPT) {
         const CKey key = CKey::MakeCompressedKey();
         const COutPoint outpoint{TxId(GetRandHash()), 0};
         CScript script = GetScriptForDestination(PKHash(key.GetPubKey()));
         const Amount amount = PROOF_DUST_THRESHOLD;
         const uint32_t height = 100;
 
         LOCK(cs_main);
         CCoinsViewCache &coins =
             Assert(m_node.chainman)->ActiveChainstate().CoinsTip();
         coins.AddCoin(outpoint, Coin(CTxOut(amount, script), height, false),
                       false);
 
         ProofBuilder pb(0, 0, masterpriv, payoutScript);
         BOOST_CHECK(pb.addUTXO(outpoint, amount, height, false, key));
         return pb.build();
     }
 
     bool addNode(NodeId nodeid, const ProofId &proofid) {
         return m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
             return pm.addNode(nodeid, proofid);
         });
     }
 
     bool addNode(NodeId nodeid) {
         auto proof = GetProof();
         return m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
             return pm.registerProof(proof) &&
                    pm.addNode(nodeid, proof->getId());
         });
     }
 
     std::array<CNode *, 8> ConnectNodes() {
         auto proof = GetProof();
         BOOST_CHECK(
             m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
                 return pm.registerProof(proof);
             }));
         const ProofId &proofid = proof->getId();
 
         std::array<CNode *, 8> nodes;
         for (CNode *&n : nodes) {
             n = ConnectNode(NODE_AVALANCHE);
             BOOST_CHECK(addNode(n->GetId(), proofid));
         }
 
         return nodes;
     }
 
     void runEventLoop() { AvalancheTest::runEventLoop(*m_processor); }
 
     NodeId getSuitableNodeToQuery() {
         return AvalancheTest::getSuitableNodeToQuery(*m_processor);
     }
 
     std::vector<CInv> getInvsForNextPoll() {
         return AvalancheTest::getInvsForNextPoll(*m_processor);
     }
 
     uint64_t getRound() const { return AvalancheTest::getRound(*m_processor); }
 
     bool registerVotes(NodeId nodeid, const avalanche::Response &response,
                        std::vector<avalanche::VoteItemUpdate> &updates,
                        std::string &error) {
         int banscore;
         return m_processor->registerVotes(nodeid, response, updates, banscore,
                                           error);
     }
 
     bool registerVotes(NodeId nodeid, const avalanche::Response &response,
                        std::vector<avalanche::VoteItemUpdate> &updates) {
         int banscore;
         std::string error;
         return m_processor->registerVotes(nodeid, response, updates, banscore,
                                           error);
     }
 
     void setArg(std::string key, const std::string &value) {
         ArgsManager &argsman = *Assert(m_node.args);
         argsman.ForceSetArg(key, value);
         m_overridden_args.emplace(std::move(key));
     }
 
     bool addToReconcile(const AnyVoteItem &item) {
         return m_processor->addToReconcile(item);
     }
 };
 
 struct BlockProvider {
     AvalancheTestingSetup *fixture;
     uint32_t invType;
 
     BlockProvider(AvalancheTestingSetup *_fixture)
         : fixture(_fixture), invType(MSG_BLOCK) {}
 
     CBlockIndex *buildVoteItem() const {
         CBlock block = fixture->CreateAndProcessBlock({}, CScript());
         const BlockHash blockHash = block.GetHash();
 
         LOCK(cs_main);
         return Assert(fixture->m_node.chainman)
             ->m_blockman.LookupBlockIndex(blockHash);
     }
 
     uint256 getVoteItemId(const CBlockIndex *pindex) const {
         return pindex->GetBlockHash();
     }
 
     std::vector<Vote> buildVotesForItems(uint32_t error,
                                          std::vector<CBlockIndex *> &&items) {
         size_t numItems = items.size();
 
         std::vector<Vote> votes;
         votes.reserve(numItems);
 
         // Votes are sorted by most work first
         std::sort(items.begin(), items.end(), CBlockIndexWorkComparator());
         for (auto &item : reverse_iterate(items)) {
             votes.emplace_back(error, item->GetBlockHash());
         }
 
         return votes;
     }
 
     void invalidateItem(CBlockIndex *pindex) {
         LOCK(::cs_main);
         pindex->nStatus = pindex->nStatus.withFailed();
     }
 
     const CBlockIndex *fromAnyVoteItem(const AnyVoteItem &item) {
         return std::get<const CBlockIndex *>(item);
     }
 };
 
 struct ProofProvider {
     AvalancheTestingSetup *fixture;
     uint32_t invType;
 
     ProofProvider(AvalancheTestingSetup *_fixture)
         : fixture(_fixture), invType(MSG_AVA_PROOF) {}
 
     ProofRef buildVoteItem() const {
         const ProofRef proof = fixture->GetProof();
         fixture->m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
             BOOST_CHECK(pm.registerProof(proof));
         });
         return proof;
     }
 
     uint256 getVoteItemId(const ProofRef &proof) const {
         return proof->getId();
     }
 
     std::vector<Vote> buildVotesForItems(uint32_t error,
                                          std::vector<ProofRef> &&items) {
         size_t numItems = items.size();
 
         std::vector<Vote> votes;
         votes.reserve(numItems);
 
         // Votes are sorted by high score first
         std::sort(items.begin(), items.end(), ProofComparatorByScore());
         for (auto &item : items) {
             votes.emplace_back(error, item->getId());
         }
 
         return votes;
     }
 
     void invalidateItem(const ProofRef &proof) {
         fixture->m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
             pm.rejectProof(proof->getId(),
                            avalanche::PeerManager::RejectionMode::INVALIDATE);
         });
     }
 
     const ProofRef fromAnyVoteItem(const AnyVoteItem &item) {
         return std::get<const ProofRef>(item);
     }
 };
 
 struct TxProvider {
     AvalancheTestingSetup *fixture;
 
     std::vector<avalanche::VoteItemUpdate> updates;
     uint32_t invType;
 
     TxProvider(AvalancheTestingSetup *_fixture)
         : fixture(_fixture), invType(MSG_TX) {}
 
     CTransactionRef buildVoteItem() const {
         auto rng = FastRandomContext();
         CMutableTransaction mtx;
         mtx.nVersion = 2;
         mtx.vin.emplace_back(COutPoint{TxId(rng.rand256()), 0});
         mtx.vout.emplace_back(10 * COIN, CScript() << OP_TRUE);
 
         CTransactionRef tx = MakeTransactionRef(std::move(mtx));
 
         TestMemPoolEntryHelper mempoolEntryHelper;
         auto entry = mempoolEntryHelper.Fee(int64_t(rng.randrange(10)) * COIN)
                          .FromTx(tx);
 
         CTxMemPool *mempool = Assert(fixture->m_node.mempool.get());
         {
             LOCK2(cs_main, mempool->cs);
             mempool->addUnchecked(entry);
             BOOST_CHECK(mempool->exists(tx->GetId()));
         }
 
         return tx;
     }
 
     uint256 getVoteItemId(const CTransactionRef &tx) const {
         return tx->GetId();
     }
 
     std::vector<Vote> buildVotesForItems(uint32_t error,
                                          std::vector<CTransactionRef> &&items) {
         size_t numItems = items.size();
 
         std::vector<Vote> votes;
         votes.reserve(numItems);
 
         CTxMemPool *mempool = Assert(fixture->m_node.mempool.get());
 
         {
             LOCK(mempool->cs);
 
             // Transactions are sorted by modified fee rate as long as they are
             // in the mempool. Let's keep it simple here and assume it's the
             // case.
             std::sort(items.begin(), items.end(),
                       [mempool](const CTransactionRef &lhs,
                                 const CTransactionRef &rhs)
                           EXCLUSIVE_LOCKS_REQUIRED(mempool->cs) {
                               auto lhsIter = mempool->GetIter(lhs->GetId());
                               auto rhsIter = mempool->GetIter(rhs->GetId());
                               BOOST_CHECK(lhsIter);
                               BOOST_CHECK(rhsIter);
 
                               return CompareTxMemPoolEntryByModifiedFeeRate{}(
                                   **lhsIter, **rhsIter);
                           });
         }
 
         for (auto &item : items) {
             votes.emplace_back(error, item->GetId());
         }
 
         return votes;
     }
 
     void invalidateItem(const CTransactionRef &tx) {
         BOOST_CHECK(tx != nullptr);
         CTxMemPool *mempool = Assert(fixture->m_node.mempool.get());
 
         LOCK(mempool->cs);
         mempool->removeRecursive(*tx, MemPoolRemovalReason::CONFLICT);
         BOOST_CHECK(!mempool->exists(tx->GetId()));
     }
 
     const CTransactionRef fromAnyVoteItem(const AnyVoteItem &item) {
         return std::get<const CTransactionRef>(item);
     }
 };
 
 } // namespace
 
 BOOST_FIXTURE_TEST_SUITE(processor_tests, AvalancheTestingSetup)
 
 // FIXME A std::tuple can be used instead of boost::mpl::list after boost 1.67
 using VoteItemProviders =
     boost::mpl::list<BlockProvider, ProofProvider, TxProvider>;
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(voteitemupdate, P, VoteItemProviders) {
     P provider(this);
 
     std::set<VoteStatus> status{
         VoteStatus::Invalid,   VoteStatus::Rejected, VoteStatus::Accepted,
         VoteStatus::Finalized, VoteStatus::Stale,
     };
 
     auto item = provider.buildVoteItem();
 
     for (auto s : status) {
         VoteItemUpdate itemUpdate(item, s);
         // The use of BOOST_CHECK instead of BOOST_CHECK_EQUAL prevents from
         // having to define operator<<() for each argument type.
         BOOST_CHECK(provider.fromAnyVoteItem(itemUpdate.getVoteItem()) == item);
         BOOST_CHECK(itemUpdate.getStatus() == s);
     }
 }
 
 namespace {
 Response next(Response &r) {
     auto copy = r;
     r = {r.getRound() + 1, r.getCooldown(), r.GetVotes()};
     return copy;
 }
 } // namespace
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(item_reconcile_twice, P, VoteItemProviders) {
     P provider(this);
     ChainstateManager &chainman = *Assert(m_node.chainman);
     const CBlockIndex *chaintip =
         WITH_LOCK(chainman.GetMutex(), return chainman.ActiveTip());
 
     auto item = provider.buildVoteItem();
     auto itemid = provider.getVoteItemId(item);
 
     // Adding the item twice does nothing.
     BOOST_CHECK(addToReconcile(item));
     BOOST_CHECK(!addToReconcile(item));
     BOOST_CHECK(m_processor->isAccepted(item));
 
     // Create nodes that supports avalanche so we can finalize the item.
     auto avanodes = ConnectNodes();
 
     int nextNodeIndex = 0;
     std::vector<avalanche::VoteItemUpdate> updates;
     auto registerNewVote = [&](const Response &resp) {
         runEventLoop();
         auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId();
         BOOST_CHECK(registerVotes(nodeid, resp, updates));
     };
 
     // Finalize the item.
     auto finalize = [&](const auto finalizeItemId) {
         Response resp = {getRound(), 0, {Vote(0, finalizeItemId)}};
         for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE + 6; i++) {
             registerNewVote(next(resp));
             if (updates.size() > 0) {
                 break;
             }
         }
         BOOST_CHECK_EQUAL(updates.size(), 1);
         BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized);
         updates.clear();
     };
     finalize(itemid);
 
     // The finalized item cannot be reconciled for a while.
     BOOST_CHECK(!addToReconcile(item));
 
     auto finalizeNewItem = [&]() {
         auto anotherItem = provider.buildVoteItem();
         AnyVoteItem anotherVoteItem = AnyVoteItem(anotherItem);
         auto anotherItemId = provider.getVoteItemId(anotherItem);
 
         TestVoteRecord voteRecord(AVALANCHE_FINALIZATION_SCORE - 1);
         AvalancheTest::addVoteRecord(*m_processor, anotherVoteItem, voteRecord);
         finalize(anotherItemId);
     };
 
     // The filter can have new items added up to its size and the item will
     // still not reconcile.
     for (uint32_t i = 0; i < AVALANCHE_FINALIZED_ITEMS_FILTER_NUM_ELEMENTS;
          i++) {
         finalizeNewItem();
         BOOST_CHECK(!addToReconcile(item));
     }
 
     // But if we keep going it will eventually roll out of the filter and can
     // be reconciled again.
     for (uint32_t i = 0; i < AVALANCHE_FINALIZED_ITEMS_FILTER_NUM_ELEMENTS;
          i++) {
         finalizeNewItem();
     }
 
     // Roll back the finalization point so that reconciling the old block does
     // not fail the finalization check. This is a no-op for other types.
     AvalancheTest::setFinalizationTip(*m_processor, chaintip);
 
     BOOST_CHECK(addToReconcile(item));
 }
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(item_null, P, VoteItemProviders) {
     P provider(this);
 
     // Check that null case is handled on the public interface
     BOOST_CHECK(!m_processor->isAccepted(nullptr));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1);
 
     auto item = decltype(provider.buildVoteItem())();
     BOOST_CHECK(item == nullptr);
     BOOST_CHECK(!addToReconcile(item));
 
     // Check that adding item to vote on doesn't change the outcome. A
     // comparator is used under the hood, and this is skipped if there are no
     // vote records.
     item = provider.buildVoteItem();
     BOOST_CHECK(addToReconcile(item));
 
     BOOST_CHECK(!m_processor->isAccepted(nullptr));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1);
 }
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(vote_item_register, P, VoteItemProviders) {
     P provider(this);
     const uint32_t invType = provider.invType;
 
     auto item = provider.buildVoteItem();
     auto itemid = provider.getVoteItemId(item);
 
     // Create nodes that supports avalanche.
     auto avanodes = ConnectNodes();
 
     // Querying for random item returns false.
     BOOST_CHECK(!m_processor->isAccepted(item));
 
     // Add a new item. Check it is added to the polls.
     BOOST_CHECK(addToReconcile(item));
     auto invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemid);
 
     BOOST_CHECK(m_processor->isAccepted(item));
 
     int nextNodeIndex = 0;
     std::vector<avalanche::VoteItemUpdate> updates;
     auto registerNewVote = [&](const Response &resp) {
         runEventLoop();
         auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId();
         BOOST_CHECK(registerVotes(nodeid, resp, updates));
     };
 
     // Let's vote for this item a few times.
     Response resp{0, 0, {Vote(0, itemid)}};
     for (int i = 0; i < 6; i++) {
         registerNewVote(next(resp));
         BOOST_CHECK(m_processor->isAccepted(item));
         BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 0);
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // A single neutral vote do not change anything.
     resp = {getRound(), 0, {Vote(-1, itemid)}};
     registerNewVote(next(resp));
     BOOST_CHECK(m_processor->isAccepted(item));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 0);
     BOOST_CHECK_EQUAL(updates.size(), 0);
 
     resp = {getRound(), 0, {Vote(0, itemid)}};
     for (int i = 1; i < 7; i++) {
         registerNewVote(next(resp));
         BOOST_CHECK(m_processor->isAccepted(item));
         BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i);
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // Two neutral votes will stall progress.
     resp = {getRound(), 0, {Vote(-1, itemid)}};
     registerNewVote(next(resp));
     BOOST_CHECK(m_processor->isAccepted(item));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6);
     BOOST_CHECK_EQUAL(updates.size(), 0);
     registerNewVote(next(resp));
     BOOST_CHECK(m_processor->isAccepted(item));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6);
     BOOST_CHECK_EQUAL(updates.size(), 0);
 
     resp = {getRound(), 0, {Vote(0, itemid)}};
     for (int i = 2; i < 8; i++) {
         registerNewVote(next(resp));
         BOOST_CHECK(m_processor->isAccepted(item));
         BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6);
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // We vote for it numerous times to finalize it.
     for (int i = 7; i < AVALANCHE_FINALIZATION_SCORE; i++) {
         registerNewVote(next(resp));
         BOOST_CHECK(m_processor->isAccepted(item));
         BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i);
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // As long as it is not finalized, we poll.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemid);
 
     // Now finalize the decision.
     registerNewVote(next(resp));
     BOOST_CHECK_EQUAL(updates.size(), 1);
     BOOST_CHECK(provider.fromAnyVoteItem(updates[0].getVoteItem()) == item);
     BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized);
     updates.clear();
 
     // Once the decision is finalized, there is no poll for it.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 0);
 
     // Get a new item to vote on
     item = provider.buildVoteItem();
     itemid = provider.getVoteItemId(item);
     BOOST_CHECK(addToReconcile(item));
 
     // Now let's finalize rejection.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemid);
 
     resp = {getRound(), 0, {Vote(1, itemid)}};
     for (int i = 0; i < 6; i++) {
         registerNewVote(next(resp));
         BOOST_CHECK(m_processor->isAccepted(item));
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // Now the state will flip.
     registerNewVote(next(resp));
     BOOST_CHECK(!m_processor->isAccepted(item));
     BOOST_CHECK_EQUAL(updates.size(), 1);
     BOOST_CHECK(provider.fromAnyVoteItem(updates[0].getVoteItem()) == item);
     BOOST_CHECK(updates[0].getStatus() == VoteStatus::Rejected);
     updates.clear();
 
     // Now it is rejected, but we can vote for it numerous times.
     for (int i = 1; i < AVALANCHE_FINALIZATION_SCORE; i++) {
         registerNewVote(next(resp));
         BOOST_CHECK(!m_processor->isAccepted(item));
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // As long as it is not finalized, we poll.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemid);
 
     // Now finalize the decision.
     registerNewVote(next(resp));
     BOOST_CHECK(!m_processor->isAccepted(item));
     BOOST_CHECK_EQUAL(updates.size(), 1);
     BOOST_CHECK(provider.fromAnyVoteItem(updates[0].getVoteItem()) == item);
     BOOST_CHECK(updates[0].getStatus() == VoteStatus::Invalid);
     updates.clear();
 
     // Once the decision is finalized, there is no poll for it.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 0);
 }
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(multi_item_register, P, VoteItemProviders) {
     P provider(this);
     const uint32_t invType = provider.invType;
 
     auto itemA = provider.buildVoteItem();
     auto itemidA = provider.getVoteItemId(itemA);
 
     auto itemB = provider.buildVoteItem();
     auto itemidB = provider.getVoteItemId(itemB);
 
     // Create several nodes that support avalanche.
     auto avanodes = ConnectNodes();
 
     // Querying for random item returns false.
     BOOST_CHECK(!m_processor->isAccepted(itemA));
     BOOST_CHECK(!m_processor->isAccepted(itemB));
 
     // Start voting on item A.
     BOOST_CHECK(addToReconcile(itemA));
     auto invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemidA);
 
     uint64_t round = getRound();
     runEventLoop();
     std::vector<avalanche::VoteItemUpdate> updates;
     BOOST_CHECK(registerVotes(avanodes[0]->GetId(),
                               {round, 0, {Vote(0, itemidA)}}, updates));
     BOOST_CHECK_EQUAL(updates.size(), 0);
 
     // Start voting on item B after one vote.
     std::vector<Vote> votes = provider.buildVotesForItems(0, {itemA, itemB});
     Response resp{round + 1, 0, votes};
     BOOST_CHECK(addToReconcile(itemB));
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 2);
 
     // Ensure the inv ordering is as expected
     for (size_t i = 0; i < invs.size(); i++) {
         BOOST_CHECK_EQUAL(invs[i].type, invType);
         BOOST_CHECK(invs[i].hash == votes[i].GetHash());
     }
 
     // Let's vote for these items a few times.
     for (int i = 0; i < 4; i++) {
         NodeId nodeid = getSuitableNodeToQuery();
         runEventLoop();
         BOOST_CHECK(registerVotes(nodeid, next(resp), updates));
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // Now it is accepted, but we can vote for it numerous times.
     for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) {
         NodeId nodeid = getSuitableNodeToQuery();
         runEventLoop();
         BOOST_CHECK(registerVotes(nodeid, next(resp), updates));
         BOOST_CHECK_EQUAL(updates.size(), 0);
     }
 
     // Running two iterration of the event loop so that vote gets triggered on A
     // and B.
     NodeId firstNodeid = getSuitableNodeToQuery();
     runEventLoop();
     NodeId secondNodeid = getSuitableNodeToQuery();
     runEventLoop();
 
     BOOST_CHECK(firstNodeid != secondNodeid);
 
     // Next vote will finalize item A.
     BOOST_CHECK(registerVotes(firstNodeid, next(resp), updates));
     BOOST_CHECK_EQUAL(updates.size(), 1);
     BOOST_CHECK(provider.fromAnyVoteItem(updates[0].getVoteItem()) == itemA);
     BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized);
     updates.clear();
 
     // We do not vote on A anymore.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemidB);
 
     // Next vote will finalize item B.
     BOOST_CHECK(registerVotes(secondNodeid, resp, updates));
     BOOST_CHECK_EQUAL(updates.size(), 1);
     BOOST_CHECK(provider.fromAnyVoteItem(updates[0].getVoteItem()) == itemB);
     BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized);
     updates.clear();
 
     // There is nothing left to vote on.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 0);
 }
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(poll_and_response, P, VoteItemProviders) {
     P provider(this);
     const uint32_t invType = provider.invType;
 
     auto item = provider.buildVoteItem();
     auto itemid = provider.getVoteItemId(item);
 
     // There is no node to query.
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE);
 
     // Add enough nodes to have a valid quorum, and the same amount with no
     // avalanche support
     std::set<NodeId> avanodeIds;
     auto avanodes = ConnectNodes();
     for (auto avanode : avanodes) {
         ConnectNode(NODE_NONE);
         avanodeIds.insert(avanode->GetId());
     }
 
     auto getSelectedAvanodeId = [&]() {
         NodeId avanodeid = getSuitableNodeToQuery();
         BOOST_CHECK(avanodeIds.find(avanodeid) != avanodeIds.end());
         return avanodeid;
     };
 
     // It returns one of the avalanche peer.
     NodeId avanodeid = getSelectedAvanodeId();
 
     // Register an item and check it is added to the list of elements to poll.
     BOOST_CHECK(addToReconcile(item));
     auto invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemid);
 
     std::set<NodeId> unselectedNodeids = avanodeIds;
     unselectedNodeids.erase(avanodeid);
     const size_t remainingNodeIds = unselectedNodeids.size();
 
     uint64_t round = getRound();
     for (size_t i = 0; i < remainingNodeIds; i++) {
         // Trigger a poll on avanode.
         runEventLoop();
 
         // Another node is selected
         NodeId nodeid = getSuitableNodeToQuery();
         BOOST_CHECK(unselectedNodeids.find(nodeid) != avanodeIds.end());
         unselectedNodeids.erase(nodeid);
     }
 
     // There is no more suitable peer available, so return nothing.
     BOOST_CHECK(unselectedNodeids.empty());
     runEventLoop();
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE);
 
     // Respond to the request.
     Response resp = {round, 0, {Vote(0, itemid)}};
     std::vector<avalanche::VoteItemUpdate> updates;
     BOOST_CHECK(registerVotes(avanodeid, resp, updates));
     BOOST_CHECK_EQUAL(updates.size(), 0);
 
     // Now that avanode fullfilled his request, it is added back to the list of
     // queriable nodes.
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
 
     auto checkRegisterVotesError = [&](NodeId nodeid,
                                        const avalanche::Response &response,
                                        const std::string &expectedError) {
         std::string error;
         BOOST_CHECK(!registerVotes(nodeid, response, updates, error));
         BOOST_CHECK_EQUAL(error, expectedError);
         BOOST_CHECK_EQUAL(updates.size(), 0);
     };
 
     // Sending a response when not polled fails.
     checkRegisterVotesError(avanodeid, next(resp), "unexpected-ava-response");
 
     // Trigger a poll on avanode.
     round = getRound();
     runEventLoop();
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE);
 
     // Sending responses that do not match the request also fails.
     // 1. Too many results.
     resp = {round, 0, {Vote(0, itemid), Vote(0, itemid)}};
     runEventLoop();
     checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-size");
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
 
     // 2. Not enough results.
     resp = {getRound(), 0, {}};
     runEventLoop();
     checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-size");
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
 
     // 3. Do not match the poll.
     resp = {getRound(), 0, {Vote()}};
     runEventLoop();
     checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-content");
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
 
     // At this stage we have reached the max inflight requests for our inv, so
     // it won't be requested anymore until the requests are fullfilled. Let's
     // vote on another item with no inflight request so the remaining tests
     // makes sense.
     invs = getInvsForNextPoll();
     BOOST_CHECK(invs.empty());
 
     item = provider.buildVoteItem();
     itemid = provider.getVoteItemId(item);
     BOOST_CHECK(addToReconcile(item));
 
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
 
     // 4. Invalid round count. Request is not discarded.
     uint64_t queryRound = getRound();
     runEventLoop();
 
     resp = {queryRound + 1, 0, {Vote()}};
     checkRegisterVotesError(avanodeid, resp, "unexpected-ava-response");
 
     resp = {queryRound - 1, 0, {Vote()}};
     checkRegisterVotesError(avanodeid, resp, "unexpected-ava-response");
 
     // 5. Making request for invalid nodes do not work. Request is not
     // discarded.
     resp = {queryRound, 0, {Vote(0, itemid)}};
     checkRegisterVotesError(avanodeid + 1234, resp, "unexpected-ava-response");
 
     // Proper response gets processed and avanode is available again.
     resp = {queryRound, 0, {Vote(0, itemid)}};
     BOOST_CHECK(registerVotes(avanodeid, resp, updates));
     BOOST_CHECK_EQUAL(updates.size(), 0);
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
 
     // Out of order response are rejected.
     const auto item2 = provider.buildVoteItem();
     BOOST_CHECK(addToReconcile(item2));
 
     std::vector<Vote> votes = provider.buildVotesForItems(0, {item, item2});
     resp = {getRound(), 0, {votes[1], votes[0]}};
     runEventLoop();
     checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-content");
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
 
     // But they are accepted in order.
     resp = {getRound(), 0, votes};
     runEventLoop();
     BOOST_CHECK(registerVotes(avanodeid, resp, updates));
     BOOST_CHECK_EQUAL(updates.size(), 0);
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
 }
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(dont_poll_invalid_item, P, VoteItemProviders) {
     P provider(this);
     const uint32_t invType = provider.invType;
 
     auto itemA = provider.buildVoteItem();
     auto itemB = provider.buildVoteItem();
 
     auto avanodes = ConnectNodes();
 
     // Build votes to get proper ordering
     std::vector<Vote> votes = provider.buildVotesForItems(0, {itemA, itemB});
 
     // Register the items and check they are added to the list of elements to
     // poll.
     BOOST_CHECK(addToReconcile(itemA));
     BOOST_CHECK(addToReconcile(itemB));
     auto invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 2);
     for (size_t i = 0; i < invs.size(); i++) {
         BOOST_CHECK_EQUAL(invs[i].type, invType);
         BOOST_CHECK(invs[i].hash == votes[i].GetHash());
     }
 
     // When an item is marked invalid, stop polling.
     provider.invalidateItem(itemB);
 
     Response goodResp{getRound(), 0, {Vote(0, provider.getVoteItemId(itemA))}};
     std::vector<avalanche::VoteItemUpdate> updates;
     runEventLoop();
     BOOST_CHECK(registerVotes(avanodes[0]->GetId(), goodResp, updates));
     BOOST_CHECK_EQUAL(updates.size(), 0);
 
     // Votes including itemB are rejected
     Response badResp{getRound(), 0, votes};
     runEventLoop();
     std::string error;
     BOOST_CHECK(!registerVotes(avanodes[1]->GetId(), badResp, updates, error));
     BOOST_CHECK_EQUAL(error, "invalid-ava-response-size");
 }
 
 BOOST_TEST_DECORATOR(*boost::unit_test::timeout(60))
 BOOST_AUTO_TEST_CASE_TEMPLATE(poll_inflight_timeout, P, VoteItemProviders) {
     P provider(this);
     ChainstateManager &chainman = *Assert(m_node.chainman);
 
     auto queryTimeDuration = std::chrono::milliseconds(10);
     setArg("-avatimeout", ToString(queryTimeDuration.count()));
 
     bilingual_str error;
     m_processor = Processor::MakeProcessor(
         *m_node.args, *m_node.chain, m_node.connman.get(), chainman,
         m_node.mempool.get(), *m_node.scheduler, error);
 
     const auto item = provider.buildVoteItem();
     const auto itemid = provider.getVoteItemId(item);
 
     // Add the item
     BOOST_CHECK(addToReconcile(item));
 
     // Create a quorum of nodes that support avalanche.
     ConnectNodes();
     NodeId avanodeid = NO_NODE;
 
     // Expire requests after some time.
     for (int i = 0; i < 10; i++) {
         Response resp = {getRound(), 0, {Vote(0, itemid)}};
         avanodeid = getSuitableNodeToQuery();
 
         auto start = Now<SteadyMilliseconds>();
         runEventLoop();
         // We cannot guarantee that we'll wait for just 1ms, so we have to bail
         // if we aren't within the proper time range.
         std::this_thread::sleep_for(std::chrono::milliseconds(1));
         runEventLoop();
 
         std::vector<avalanche::VoteItemUpdate> updates;
         bool ret = registerVotes(avanodeid, next(resp), updates);
         if (Now<SteadyMilliseconds>() > start + queryTimeDuration) {
             // We waited for too long, bail. Because we can't know for sure when
             // previous steps ran, ret is not deterministic and we do not check
             // it.
             i--;
             continue;
         }
 
         // We are within time bounds, so the vote should have worked.
         BOOST_CHECK(ret);
 
         avanodeid = getSuitableNodeToQuery();
 
         // Now try again but wait for expiration.
         runEventLoop();
         std::this_thread::sleep_for(queryTimeDuration);
         runEventLoop();
         BOOST_CHECK(!registerVotes(avanodeid, next(resp), updates));
     }
 }
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(poll_inflight_count, P, VoteItemProviders) {
     P provider(this);
     const uint32_t invType = provider.invType;
 
     // Create enough nodes so that we run into the inflight request limit.
     auto proof = GetProof();
     BOOST_CHECK(m_processor->withPeerManager(
         [&](avalanche::PeerManager &pm) { return pm.registerProof(proof); }));
 
     std::array<CNode *, AVALANCHE_MAX_INFLIGHT_POLL + 1> nodes;
     for (auto &n : nodes) {
         n = ConnectNode(NODE_AVALANCHE);
         BOOST_CHECK(addNode(n->GetId(), proof->getId()));
     }
 
     // Add an item to poll
     const auto item = provider.buildVoteItem();
     const auto itemid = provider.getVoteItemId(item);
     BOOST_CHECK(addToReconcile(item));
 
     // Ensure there are enough requests in flight.
     std::map<NodeId, uint64_t> node_round_map;
     for (int i = 0; i < AVALANCHE_MAX_INFLIGHT_POLL; i++) {
         NodeId nodeid = getSuitableNodeToQuery();
         BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end());
         node_round_map.insert(std::pair<NodeId, uint64_t>(nodeid, getRound()));
         auto invs = getInvsForNextPoll();
         BOOST_CHECK_EQUAL(invs.size(), 1);
         BOOST_CHECK_EQUAL(invs[0].type, invType);
         BOOST_CHECK(invs[0].hash == itemid);
         runEventLoop();
     }
 
     // Now that we have enough in flight requests, we shouldn't poll.
     auto suitablenodeid = getSuitableNodeToQuery();
     BOOST_CHECK(suitablenodeid != NO_NODE);
     auto invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 0);
     runEventLoop();
     BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), suitablenodeid);
 
     // Send one response, now we can poll again.
     auto it = node_round_map.begin();
     Response resp = {it->second, 0, {Vote(0, itemid)}};
     std::vector<avalanche::VoteItemUpdate> updates;
     BOOST_CHECK(registerVotes(it->first, resp, updates));
     node_round_map.erase(it);
 
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, invType);
     BOOST_CHECK(invs[0].hash == itemid);
 }
 
 BOOST_AUTO_TEST_CASE(quorum_diversity) {
     std::vector<VoteItemUpdate> updates;
 
     CBlock block = CreateAndProcessBlock({}, CScript());
     const BlockHash blockHash = block.GetHash();
     const CBlockIndex *pindex;
     {
         LOCK(cs_main);
         pindex =
             Assert(m_node.chainman)->m_blockman.LookupBlockIndex(blockHash);
     }
 
     // Create nodes that supports avalanche.
     auto avanodes = ConnectNodes();
 
     // Querying for random block returns false.
     BOOST_CHECK(!m_processor->isAccepted(pindex));
 
     // Add a new block. Check it is added to the polls.
     BOOST_CHECK(m_processor->addToReconcile(pindex));
 
     // Do one valid round of voting.
     uint64_t round = getRound();
     Response resp{round, 0, {Vote(0, blockHash)}};
 
     // Check that all nodes can vote.
     for (size_t i = 0; i < avanodes.size(); i++) {
         runEventLoop();
         BOOST_CHECK(registerVotes(avanodes[i]->GetId(), next(resp), updates));
     }
 
     // Generate a query for every single node.
     const NodeId firstNodeId = getSuitableNodeToQuery();
     std::map<NodeId, uint64_t> node_round_map;
     round = getRound();
     for (size_t i = 0; i < avanodes.size(); i++) {
         NodeId nodeid = getSuitableNodeToQuery();
         BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end());
         node_round_map[nodeid] = getRound();
         runEventLoop();
     }
 
     // Now only the first node can vote. All others would be duplicate in the
     // quorum.
     auto confidence = m_processor->getConfidence(pindex);
     BOOST_REQUIRE(confidence > 0);
 
     for (auto &[nodeid, r] : node_round_map) {
         if (nodeid == firstNodeId) {
             // Node 0 is the only one which can vote at this stage.
             round = r;
             continue;
         }
 
         BOOST_CHECK(
             registerVotes(nodeid, {r, 0, {Vote(0, blockHash)}}, updates));
         BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence);
     }
 
     BOOST_CHECK(
         registerVotes(firstNodeId, {round, 0, {Vote(0, blockHash)}}, updates));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence + 1);
 }
 
 BOOST_AUTO_TEST_CASE(event_loop) {
     CScheduler s;
 
     CBlock block = CreateAndProcessBlock({}, CScript());
     const BlockHash blockHash = block.GetHash();
     const CBlockIndex *pindex;
     {
         LOCK(cs_main);
         pindex =
             Assert(m_node.chainman)->m_blockman.LookupBlockIndex(blockHash);
     }
 
     // Starting the event loop.
     BOOST_CHECK(m_processor->startEventLoop(s));
 
     // There is one task planned in the next hour (our event loop).
     std::chrono::steady_clock::time_point start, stop;
     BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1);
 
     // Starting twice doesn't start it twice.
     BOOST_CHECK(!m_processor->startEventLoop(s));
 
     // Start the scheduler thread.
     std::thread schedulerThread(std::bind(&CScheduler::serviceQueue, &s));
 
     // Create a quorum of nodes that support avalanche.
     auto avanodes = ConnectNodes();
 
     // There is no query in flight at the moment.
     NodeId nodeid = getSuitableNodeToQuery();
     BOOST_CHECK_NE(nodeid, NO_NODE);
 
     // Add a new block. Check it is added to the polls.
     uint64_t queryRound = getRound();
     BOOST_CHECK(m_processor->addToReconcile(pindex));
 
     // Wait until all nodes got a poll
     for (int i = 0; i < 60 * 1000; i++) {
         // Technically, this is a race condition, but this should do just fine
         // as we wait up to 1 minute for an event that should take 80ms.
         UninterruptibleSleep(std::chrono::milliseconds(1));
         if (getRound() == queryRound + avanodes.size()) {
             break;
         }
     }
 
     // Check that we effectively got a request and not timed out.
     BOOST_CHECK(getRound() > queryRound);
 
     // Respond and check the cooldown time is respected.
     uint64_t responseRound = getRound();
     auto queryTime = Now<SteadyMilliseconds>() + std::chrono::milliseconds(100);
 
     std::vector<VoteItemUpdate> updates;
     // Only the first node answers, so it's the only one that gets polled again
     BOOST_CHECK(registerVotes(nodeid, {queryRound, 100, {Vote(0, blockHash)}},
                               updates));
 
     for (int i = 0; i < 10000; i++) {
         // We make sure that we do not get a request before queryTime.
         UninterruptibleSleep(std::chrono::milliseconds(1));
         if (getRound() != responseRound) {
             BOOST_CHECK(Now<SteadyMilliseconds>() >= queryTime);
             break;
         }
     }
 
     // But we eventually get one.
     BOOST_CHECK(getRound() > responseRound);
 
     // Stop event loop.
     BOOST_CHECK(m_processor->stopEventLoop());
 
     // We don't have any task scheduled anymore.
     BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0);
 
     // Can't stop the event loop twice.
     BOOST_CHECK(!m_processor->stopEventLoop());
 
     // Wait for the scheduler to stop.
     s.StopWhenDrained();
     schedulerThread.join();
 }
 
 BOOST_AUTO_TEST_CASE(destructor) {
     CScheduler s;
     std::chrono::steady_clock::time_point start, stop;
 
     std::thread schedulerThread;
     BOOST_CHECK(m_processor->startEventLoop(s));
     BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1);
 
     // Start the service thread after the queue size check to prevent a race
     // condition where the thread may be processing the event loop task during
     // the check.
     schedulerThread = std::thread(std::bind(&CScheduler::serviceQueue, &s));
 
     // Destroy the processor.
     m_processor.reset();
 
     // Now that avalanche is destroyed, there is no more scheduled tasks.
     BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0);
 
     // Wait for the scheduler to stop.
     s.StopWhenDrained();
     schedulerThread.join();
 }
 
 BOOST_AUTO_TEST_CASE(add_proof_to_reconcile) {
     uint32_t score = MIN_VALID_PROOF_SCORE;
     Chainstate &active_chainstate = Assert(m_node.chainman)->ActiveChainstate();
 
     auto addProofToReconcile = [&](uint32_t proofScore) {
         auto proof = buildRandomProof(active_chainstate, proofScore);
         m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
             BOOST_CHECK(pm.registerProof(proof));
         });
         BOOST_CHECK(m_processor->addToReconcile(proof));
         return proof;
     };
 
     for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL; i++) {
         auto proof = addProofToReconcile(++score);
 
         auto invs = AvalancheTest::getInvsForNextPoll(*m_processor);
         BOOST_CHECK_EQUAL(invs.size(), i + 1);
         BOOST_CHECK(invs.front().IsMsgProof());
         BOOST_CHECK_EQUAL(invs.front().hash, proof->getId());
     }
 
     // From here a new proof is only polled if its score is in the top
     // AVALANCHE_MAX_ELEMENT_POLL
     ProofId lastProofId;
     for (size_t i = 0; i < 10; i++) {
         auto proof = addProofToReconcile(++score);
 
         auto invs = AvalancheTest::getInvsForNextPoll(*m_processor);
         BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL);
         BOOST_CHECK(invs.front().IsMsgProof());
         BOOST_CHECK_EQUAL(invs.front().hash, proof->getId());
 
         lastProofId = proof->getId();
     }
 
     for (size_t i = 0; i < 10; i++) {
         auto proof = addProofToReconcile(--score);
 
         auto invs = AvalancheTest::getInvsForNextPoll(*m_processor);
         BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL);
         BOOST_CHECK(invs.front().IsMsgProof());
         BOOST_CHECK_EQUAL(invs.front().hash, lastProofId);
     }
 
     {
         // The score is not high enough to get polled
         auto proof = addProofToReconcile(--score);
         auto invs = AvalancheTest::getInvsForNextPoll(*m_processor);
         for (auto &inv : invs) {
             BOOST_CHECK_NE(inv.hash, proof->getId());
         }
     }
 }
 
 BOOST_AUTO_TEST_CASE(proof_record) {
     setArg("-avaproofstakeutxoconfirmations", "2");
     setArg("-avalancheconflictingproofcooldown", "0");
 
     BOOST_CHECK(!m_processor->isAccepted(nullptr));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1);
 
     const CKey key = CKey::MakeCompressedKey();
 
     const COutPoint conflictingOutpoint{TxId(GetRandHash()), 0};
     const COutPoint immatureOutpoint{TxId(GetRandHash()), 0};
     {
         CScript script = GetScriptForDestination(PKHash(key.GetPubKey()));
 
         LOCK(cs_main);
         CCoinsViewCache &coins =
             Assert(m_node.chainman)->ActiveChainstate().CoinsTip();
         coins.AddCoin(conflictingOutpoint,
                       Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 10, false),
                       false);
         coins.AddCoin(immatureOutpoint,
                       Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 100, false),
                       false);
     }
 
     auto buildProof = [&](const COutPoint &outpoint, uint64_t sequence,
                           uint32_t height = 10) {
         ProofBuilder pb(sequence, 0, key, UNSPENDABLE_ECREG_PAYOUT_SCRIPT);
         BOOST_CHECK(
             pb.addUTXO(outpoint, PROOF_DUST_THRESHOLD, height, false, key));
         return pb.build();
     };
 
     auto conflictingProof = buildProof(conflictingOutpoint, 1);
     auto validProof = buildProof(conflictingOutpoint, 2);
     auto immatureProof = buildProof(immatureOutpoint, 3, 100);
 
     BOOST_CHECK(!m_processor->isAccepted(conflictingProof));
     BOOST_CHECK(!m_processor->isAccepted(validProof));
     BOOST_CHECK(!m_processor->isAccepted(immatureProof));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), -1);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), -1);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1);
 
     // Reconciling proofs that don't exist will fail
     BOOST_CHECK(!m_processor->addToReconcile(conflictingProof));
     BOOST_CHECK(!m_processor->addToReconcile(validProof));
     BOOST_CHECK(!m_processor->addToReconcile(immatureProof));
 
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK(pm.registerProof(conflictingProof));
         BOOST_CHECK(pm.registerProof(validProof));
         BOOST_CHECK(!pm.registerProof(immatureProof));
 
         BOOST_CHECK(pm.isBoundToPeer(validProof->getId()));
         BOOST_CHECK(pm.isInConflictingPool(conflictingProof->getId()));
         BOOST_CHECK(pm.isImmature(immatureProof->getId()));
     });
 
     BOOST_CHECK(m_processor->addToReconcile(conflictingProof));
     BOOST_CHECK(!m_processor->isAccepted(conflictingProof));
     BOOST_CHECK(!m_processor->isAccepted(validProof));
     BOOST_CHECK(!m_processor->isAccepted(immatureProof));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), -1);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1);
 
     BOOST_CHECK(m_processor->addToReconcile(validProof));
     BOOST_CHECK(!m_processor->isAccepted(conflictingProof));
     BOOST_CHECK(m_processor->isAccepted(validProof));
     BOOST_CHECK(!m_processor->isAccepted(immatureProof));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), 0);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1);
 
     BOOST_CHECK(!m_processor->addToReconcile(immatureProof));
     BOOST_CHECK(!m_processor->isAccepted(conflictingProof));
     BOOST_CHECK(m_processor->isAccepted(validProof));
     BOOST_CHECK(!m_processor->isAccepted(immatureProof));
     BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), 0);
     BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1);
 }
 
 BOOST_AUTO_TEST_CASE(quorum_detection) {
     // Set min quorum parameters for our test
     int minStake = 400'000'000;
     setArg("-avaminquorumstake", ToString(minStake));
     setArg("-avaminquorumconnectedstakeratio", "0.5");
 
     // Create a new processor with our given quorum parameters
     const auto currency = Currency::get();
     uint32_t minScore = Proof::amountToScore(minStake * currency.baseunit);
 
     Chainstate &active_chainstate = Assert(m_node.chainman)->ActiveChainstate();
 
     const CKey key = CKey::MakeCompressedKey();
     auto localProof =
         buildRandomProof(active_chainstate, minScore / 4, 100, key);
     setArg("-avamasterkey", EncodeSecret(key));
     setArg("-avaproof", localProof->ToHex());
 
     bilingual_str error;
     ChainstateManager &chainman = *Assert(m_node.chainman);
     m_processor = Processor::MakeProcessor(
         *m_node.args, *m_node.chain, m_node.connman.get(), chainman,
         m_node.mempool.get(), *m_node.scheduler, error);
 
     BOOST_CHECK(m_processor != nullptr);
     BOOST_CHECK(m_processor->getLocalProof() != nullptr);
     BOOST_CHECK_EQUAL(m_processor->getLocalProof()->getId(),
                       localProof->getId());
     BOOST_CHECK_EQUAL(AvalancheTest::getMinQuorumScore(*m_processor), minScore);
     BOOST_CHECK_EQUAL(
         AvalancheTest::getMinQuorumConnectedScoreRatio(*m_processor), 0.5);
 
     // The local proof has not been validated yet
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 0);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0);
     });
     BOOST_CHECK(!m_processor->isQuorumEstablished());
 
     // Register the local proof. This is normally done when the chain tip is
     // updated. The local proof should be accounted for in the min quorum
     // computation but the peer manager doesn't know about that.
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK(pm.registerProof(m_processor->getLocalProof()));
         BOOST_CHECK(pm.isBoundToPeer(m_processor->getLocalProof()->getId()));
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0);
     });
     BOOST_CHECK(!m_processor->isQuorumEstablished());
 
     // Add enough nodes to get a conclusive vote
     for (NodeId id = 0; id < 8; id++) {
         m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
             pm.addNode(id, m_processor->getLocalProof()->getId());
             BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4);
             BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4);
         });
     }
 
     // Add part of the required stake and make sure we still report no quorum
     auto proof1 = buildRandomProof(active_chainstate, minScore / 2);
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK(pm.registerProof(proof1));
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 3 * minScore / 4);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4);
     });
     BOOST_CHECK(!m_processor->isQuorumEstablished());
 
     // Add the rest of the stake, but we are still lacking connected stake
     const int64_t tipTime =
         WITH_LOCK(chainman.GetMutex(), return chainman.ActiveTip())
             ->GetBlockTime();
     const COutPoint utxo{TxId(GetRandHash()), 0};
     const Amount amount = (int64_t(minScore / 4) * COIN) / 100;
     const int height = 100;
     const bool isCoinbase = false;
     {
         LOCK(cs_main);
         CCoinsViewCache &coins = active_chainstate.CoinsTip();
         coins.AddCoin(utxo,
                       Coin(CTxOut(amount, GetScriptForDestination(
                                               PKHash(key.GetPubKey()))),
                            height, isCoinbase),
                       false);
     }
     ProofBuilder pb(1, tipTime + 1, key, UNSPENDABLE_ECREG_PAYOUT_SCRIPT);
     BOOST_CHECK(pb.addUTXO(utxo, amount, height, isCoinbase, key));
     auto proof2 = pb.build();
 
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK(pm.registerProof(proof2));
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4);
     });
     BOOST_CHECK(!m_processor->isQuorumEstablished());
 
     // Adding a node should cause the quorum to be detected and locked-in
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         pm.addNode(8, proof2->getId());
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore);
         // The peer manager knows that proof2 has a node attached ...
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 2);
     });
     // ... but the processor also account for the local proof, so we reached 50%
     BOOST_CHECK(m_processor->isQuorumEstablished());
 
     // Go back to not having enough connected score, but we've already latched
     // the quorum as established
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         pm.removeNode(8);
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4);
     });
     BOOST_CHECK(m_processor->isQuorumEstablished());
 
     // Removing one more node drops our count below the minimum and the quorum
     // is no longer ready
     m_processor->withPeerManager(
         [&](avalanche::PeerManager &pm) { pm.removeNode(7); });
     BOOST_CHECK(!m_processor->isQuorumEstablished());
 
     // It resumes when we have enough nodes again
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         pm.addNode(7, m_processor->getLocalProof()->getId());
     });
     BOOST_CHECK(m_processor->isQuorumEstablished());
 
     // Remove peers one at a time until the quorum is no longer established
     auto spendProofUtxo = [&](ProofRef proof) {
         {
             LOCK(cs_main);
             CCoinsViewCache &coins = chainman.ActiveChainstate().CoinsTip();
             coins.SpendCoin(proof->getStakes()[0].getStake().getUTXO());
         }
         m_processor->withPeerManager([&proof](avalanche::PeerManager &pm) {
             pm.updatedBlockTip();
             BOOST_CHECK(!pm.isBoundToPeer(proof->getId()));
         });
     };
 
     // Expire proof2, the quorum is still latched
     for (int64_t i = 0; i < 6; i++) {
         SetMockTime(proof2->getExpirationTime() + i);
         CreateAndProcessBlock({}, CScript());
     }
     BOOST_CHECK_EQUAL(
         WITH_LOCK(chainman.GetMutex(), return chainman.ActiveTip())
             ->GetMedianTimePast(),
         proof2->getExpirationTime());
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         pm.updatedBlockTip();
         BOOST_CHECK(!pm.exists(proof2->getId()));
     });
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 3 * minScore / 4);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4);
     });
     BOOST_CHECK(m_processor->isQuorumEstablished());
 
     spendProofUtxo(proof1);
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4);
     });
     BOOST_CHECK(m_processor->isQuorumEstablished());
 
     spendProofUtxo(m_processor->getLocalProof());
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 0);
         BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0);
     });
     // There is no node left
     BOOST_CHECK(!m_processor->isQuorumEstablished());
 }
 
 BOOST_AUTO_TEST_CASE(quorum_detection_parameter_validation) {
     // Create vector of tuples of:
     // <min stake, min ratio, min avaproofs messages, success bool>
     const std::vector<std::tuple<std::string, std::string, std::string, bool>>
         testCases = {
             // All parameters are invalid
             {"", "", "", false},
             {"-1", "-1", "-1", false},
 
             // Min stake is out of range
             {"-1", "0", "0", false},
             {"-0.01", "0", "0", false},
             {"21000000000000.01", "0", "0", false},
 
             // Min connected ratio is out of range
             {"0", "-1", "0", false},
             {"0", "1.1", "0", false},
 
             // Min avaproofs messages ratio is out of range
             {"0", "0", "-1", false},
 
             // All parameters are valid
             {"0", "0", "0", true},
             {"0.00", "0", "0", true},
             {"0.01", "0", "0", true},
             {"1", "0.1", "0", true},
             {"10", "0.5", "0", true},
             {"10", "1", "0", true},
             {"21000000000000.00", "0", "0", true},
             {"0", "0", "1", true},
             {"0", "0", "100", true},
         };
 
     // For each case set the parameters and check that making the processor
     // succeeds or fails as expected
     for (const auto &[stake, stakeRatio, numProofsMessages, success] :
          testCases) {
         setArg("-avaminquorumstake", stake);
         setArg("-avaminquorumconnectedstakeratio", stakeRatio);
         setArg("-avaminavaproofsnodecount", numProofsMessages);
 
         bilingual_str error;
         std::unique_ptr<Processor> processor = Processor::MakeProcessor(
             *m_node.args, *m_node.chain, m_node.connman.get(),
             *Assert(m_node.chainman), m_node.mempool.get(), *m_node.scheduler,
             error);
 
         if (success) {
             BOOST_CHECK(processor != nullptr);
             BOOST_CHECK(error.empty());
             BOOST_CHECK_EQUAL(error.original, "");
         } else {
             BOOST_CHECK(processor == nullptr);
             BOOST_CHECK(!error.empty());
             BOOST_CHECK(error.original != "");
         }
     }
 }
 
 BOOST_AUTO_TEST_CASE(min_avaproofs_messages) {
     ChainstateManager &chainman = *Assert(m_node.chainman);
 
     auto checkMinAvaproofsMessages = [&](int64_t minAvaproofsMessages) {
         setArg("-avaminavaproofsnodecount", ToString(minAvaproofsMessages));
 
         bilingual_str error;
         auto processor = Processor::MakeProcessor(
             *m_node.args, *m_node.chain, m_node.connman.get(), chainman,
             m_node.mempool.get(), *m_node.scheduler, error);
 
         auto addNode = [&](NodeId nodeid) {
             auto proof = buildRandomProof(chainman.ActiveChainstate(),
                                           MIN_VALID_PROOF_SCORE);
             processor->withPeerManager([&](avalanche::PeerManager &pm) {
                 BOOST_CHECK(pm.registerProof(proof));
                 BOOST_CHECK(pm.addNode(nodeid, proof->getId()));
             });
         };
 
         // Add enough node to have a conclusive vote, but don't account any
         // avaproofs.
         // NOTE: we can't use the test facilites like ConnectNodes() because we
         // are not testing on m_processor.
         for (NodeId id = 100; id < 108; id++) {
             addNode(id);
         }
 
         BOOST_CHECK_EQUAL(processor->isQuorumEstablished(),
                           minAvaproofsMessages <= 0);
 
         for (int64_t i = 0; i < minAvaproofsMessages - 1; i++) {
             addNode(i);
 
             processor->avaproofsSent(i);
             BOOST_CHECK_EQUAL(processor->getAvaproofsNodeCounter(), i + 1);
 
             // Receiving again on the same node does not increase the counter
             processor->avaproofsSent(i);
             BOOST_CHECK_EQUAL(processor->getAvaproofsNodeCounter(), i + 1);
 
             BOOST_CHECK(!processor->isQuorumEstablished());
         }
 
         addNode(minAvaproofsMessages);
         processor->avaproofsSent(minAvaproofsMessages);
         BOOST_CHECK(processor->isQuorumEstablished());
 
         // Check the latch
         AvalancheTest::clearavaproofsNodeCounter(*processor);
         BOOST_CHECK(processor->isQuorumEstablished());
     };
 
     checkMinAvaproofsMessages(0);
     checkMinAvaproofsMessages(1);
     checkMinAvaproofsMessages(10);
     checkMinAvaproofsMessages(100);
 }
 
 BOOST_AUTO_TEST_CASE_TEMPLATE(voting_parameters, P, VoteItemProviders) {
     // Check that setting voting parameters has the expected effect
     setArg("-avastalevotethreshold",
            ToString(AVALANCHE_VOTE_STALE_MIN_THRESHOLD));
     setArg("-avastalevotefactor", "2");
 
     const std::vector<std::tuple<int, int>> testCases = {
         // {number of yes votes, number of neutral votes}
         {0, AVALANCHE_VOTE_STALE_MIN_THRESHOLD},
         {AVALANCHE_FINALIZATION_SCORE + 4, AVALANCHE_FINALIZATION_SCORE - 6},
     };
 
     bilingual_str error;
     m_processor = Processor::MakeProcessor(
         *m_node.args, *m_node.chain, m_node.connman.get(),
         *Assert(m_node.chainman), m_node.mempool.get(), *m_node.scheduler,
         error);
 
     BOOST_CHECK(m_processor != nullptr);
     BOOST_CHECK(error.empty());
 
     P provider(this);
     const uint32_t invType = provider.invType;
 
     const auto item = provider.buildVoteItem();
     const auto itemid = provider.getVoteItemId(item);
 
     // Create nodes that supports avalanche.
     auto avanodes = ConnectNodes();
     int nextNodeIndex = 0;
 
     std::vector<avalanche::VoteItemUpdate> updates;
     for (const auto &[numYesVotes, numNeutralVotes] : testCases) {
         // Add a new item. Check it is added to the polls.
         BOOST_CHECK(addToReconcile(item));
         auto invs = getInvsForNextPoll();
         BOOST_CHECK_EQUAL(invs.size(), 1);
         BOOST_CHECK_EQUAL(invs[0].type, invType);
         BOOST_CHECK(invs[0].hash == itemid);
 
         BOOST_CHECK(m_processor->isAccepted(item));
 
         auto registerNewVote = [&](const Response &resp) {
             runEventLoop();
             auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId();
             BOOST_CHECK(registerVotes(nodeid, resp, updates));
         };
 
         // Add some confidence
         for (int i = 0; i < numYesVotes; i++) {
             Response resp = {getRound(), 0, {Vote(0, itemid)}};
             registerNewVote(next(resp));
             BOOST_CHECK(m_processor->isAccepted(item));
             BOOST_CHECK_EQUAL(m_processor->getConfidence(item),
                               i >= 6 ? i - 5 : 0);
             BOOST_CHECK_EQUAL(updates.size(), 0);
         }
 
         // Vote until just before item goes stale
         for (int i = 0; i < numNeutralVotes; i++) {
             Response resp = {getRound(), 0, {Vote(-1, itemid)}};
             registerNewVote(next(resp));
             BOOST_CHECK_EQUAL(updates.size(), 0);
         }
 
         // As long as it is not stale, we poll.
         invs = getInvsForNextPoll();
         BOOST_CHECK_EQUAL(invs.size(), 1);
         BOOST_CHECK_EQUAL(invs[0].type, invType);
         BOOST_CHECK(invs[0].hash == itemid);
 
         // Now stale
         Response resp = {getRound(), 0, {Vote(-1, itemid)}};
         registerNewVote(next(resp));
         BOOST_CHECK_EQUAL(updates.size(), 1);
         BOOST_CHECK(provider.fromAnyVoteItem(updates[0].getVoteItem()) == item);
         BOOST_CHECK(updates[0].getStatus() == VoteStatus::Stale);
         updates.clear();
 
         // Once stale, there is no poll for it.
         invs = getInvsForNextPoll();
         BOOST_CHECK_EQUAL(invs.size(), 0);
     }
 }
 
 BOOST_AUTO_TEST_CASE(block_vote_finalization_tip) {
     BlockProvider provider(this);
 
     std::vector<CBlockIndex *> blockIndexes;
     for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL; i++) {
         CBlockIndex *pindex = provider.buildVoteItem();
         BOOST_CHECK(addToReconcile(pindex));
         blockIndexes.push_back(pindex);
     }
 
     auto invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL);
     for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL; i++) {
         BOOST_CHECK_EQUAL(
             invs[i].hash,
             blockIndexes[AVALANCHE_MAX_ELEMENT_POLL - i - 1]->GetBlockHash());
     }
 
     // Build a vote vector with the 11th block only being accepted and others
     // unknown.
     const BlockHash eleventhBlockHash =
         blockIndexes[AVALANCHE_MAX_ELEMENT_POLL - 10 - 1]->GetBlockHash();
     std::vector<Vote> votes;
     votes.reserve(AVALANCHE_MAX_ELEMENT_POLL);
     for (size_t i = AVALANCHE_MAX_ELEMENT_POLL; i > 0; i--) {
         BlockHash blockhash = blockIndexes[i - 1]->GetBlockHash();
         votes.emplace_back(blockhash == eleventhBlockHash ? 0 : -1, blockhash);
     }
 
     auto avanodes = ConnectNodes();
     int nextNodeIndex = 0;
 
     std::vector<avalanche::VoteItemUpdate> updates;
     auto registerNewVote = [&]() {
         Response resp = {getRound(), 0, votes};
         runEventLoop();
         auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId();
         BOOST_CHECK(registerVotes(nodeid, resp, updates));
     };
 
     // Vote for the blocks until the one being accepted finalizes
     bool eleventhBlockFinalized = false;
     for (size_t i = 0; i < 10000 && !eleventhBlockFinalized; i++) {
         registerNewVote();
 
         for (auto &update : updates) {
             if (update.getStatus() == VoteStatus::Finalized &&
                 provider.fromAnyVoteItem(update.getVoteItem())
                         ->GetBlockHash() == eleventhBlockHash) {
                 eleventhBlockFinalized = true;
             }
         }
     }
     BOOST_CHECK(eleventhBlockFinalized);
 
     // From now only the 10 blocks with more work are polled for
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 10);
     for (size_t i = 0; i < 10; i++) {
         BOOST_CHECK_EQUAL(
             invs[i].hash,
             blockIndexes[AVALANCHE_MAX_ELEMENT_POLL - i - 1]->GetBlockHash());
     }
 
     // Adding ancestor blocks to reconcile will fail
     for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL - 10 - 1; i++) {
         BOOST_CHECK(!addToReconcile(blockIndexes[i]));
     }
 
     // Create a couple concurrent chain tips
     CBlockIndex *tip = provider.buildVoteItem();
 
     auto &activeChainstate = m_node.chainman->ActiveChainstate();
     BlockValidationState state;
     activeChainstate.InvalidateBlock(state, tip);
 
     // Use another script to make sure we don't generate the same block again
     CBlock altblock = CreateAndProcessBlock({}, CScript() << OP_TRUE);
     auto alttip = WITH_LOCK(
         cs_main, return Assert(m_node.chainman)
                      ->m_blockman.LookupBlockIndex(altblock.GetHash()));
     BOOST_CHECK(alttip);
     BOOST_CHECK(alttip->pprev == tip->pprev);
     BOOST_CHECK(alttip->GetBlockHash() != tip->GetBlockHash());
 
     // Reconsider the previous tip valid, so we have concurrent tip candidates
     {
         LOCK(cs_main);
         activeChainstate.ResetBlockFailureFlags(tip);
     }
     activeChainstate.ActivateBestChain(state);
 
     BOOST_CHECK(addToReconcile(tip));
     BOOST_CHECK(addToReconcile(alttip));
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 12);
 
     // Vote for the tip until it finalizes
     BlockHash tiphash = tip->GetBlockHash();
     votes.clear();
     votes.reserve(12);
     for (auto &inv : invs) {
         votes.emplace_back(inv.hash == tiphash ? 0 : -1, inv.hash);
     }
 
     bool tipFinalized = false;
     for (size_t i = 0; i < 10000 && !tipFinalized; i++) {
         registerNewVote();
 
         for (auto &update : updates) {
             if (update.getStatus() == VoteStatus::Finalized &&
                 provider.fromAnyVoteItem(update.getVoteItem())
                         ->GetBlockHash() == tiphash) {
                 tipFinalized = true;
             }
         }
     }
     BOOST_CHECK(tipFinalized);
 
     // Now the tip and all its ancestors will be removed from polls. Only the
     // alttip remains because it is on a forked chain so we want to keep polling
     // for that one until it's invalidated or stalled.
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].hash, alttip->GetBlockHash());
 
     // Cannot reconcile a finalized block
     BOOST_CHECK(!addToReconcile(tip));
 
     // Vote for alttip until it invalidates
     BlockHash alttiphash = alttip->GetBlockHash();
     votes = {{1, alttiphash}};
 
     bool alttipInvalidated = false;
     for (size_t i = 0; i < 10000 && !alttipInvalidated; i++) {
         registerNewVote();
 
         for (auto &update : updates) {
             if (update.getStatus() == VoteStatus::Invalid &&
                 provider.fromAnyVoteItem(update.getVoteItem())
                         ->GetBlockHash() == alttiphash) {
                 alttipInvalidated = true;
             }
         }
     }
     BOOST_CHECK(alttipInvalidated);
     invs = getInvsForNextPoll();
     BOOST_CHECK_EQUAL(invs.size(), 0);
 
     // Cannot reconcile an invalidated block
     BOOST_CHECK(!addToReconcile(alttip));
 }
 
 BOOST_AUTO_TEST_CASE(vote_map_comparator) {
     ChainstateManager &chainman = *Assert(m_node.chainman);
     Chainstate &activeChainState = chainman.ActiveChainstate();
 
     const int numberElementsEachType = 100;
     FastRandomContext rng;
 
     std::vector<ProofRef> proofs;
     for (size_t i = 1; i <= numberElementsEachType; i++) {
         auto proof =
             buildRandomProof(activeChainState, i * MIN_VALID_PROOF_SCORE);
         BOOST_CHECK(proof != nullptr);
         proofs.emplace_back(std::move(proof));
     }
     Shuffle(proofs.begin(), proofs.end(), rng);
 
     std::vector<CBlockIndex> indexes;
     for (size_t i = 1; i <= numberElementsEachType; i++) {
         CBlockIndex index;
         index.nChainWork = i;
         indexes.emplace_back(std::move(index));
     }
     Shuffle(indexes.begin(), indexes.end(), rng);
 
     CTxMemPool *mempool = Assert(m_node.mempool.get());
     TestMemPoolEntryHelper mempoolEntryHelper;
     std::vector<CTransactionRef> txs;
     for (size_t i = 1; i <= numberElementsEachType; i++) {
         CMutableTransaction mtx;
         mtx.nVersion = 2;
         mtx.vin.emplace_back(COutPoint{TxId(rng.rand256()), 0});
         mtx.vout.emplace_back(1000 * COIN, CScript() << OP_TRUE);
 
         CTransactionRef tx = MakeTransactionRef(std::move(mtx));
 
         auto entry = mempoolEntryHelper.Fee(int64_t(i) * COIN).FromTx(tx);
         {
             LOCK2(cs_main, mempool->cs);
             mempool->addUnchecked(entry);
             BOOST_CHECK(mempool->exists(tx->GetId()));
         }
 
         txs.emplace_back(std::move(tx));
     }
 
     auto allItems =
         std::make_tuple(std::move(proofs), std::move(indexes), std::move(txs));
     static const size_t numTypes = std::tuple_size<decltype(allItems)>::value;
 
     RWCollection<VoteMap> voteMap(VoteMap(m_node.mempool.get()));
 
     {
         auto writeView = voteMap.getWriteView();
         for (size_t i = 0; i < numberElementsEachType; i++) {
             // Randomize the insert order at each loop increment
             const size_t firstType = rng.randrange(numTypes);
 
             for (size_t j = 0; j < numTypes; j++) {
                 switch ((firstType + j) % numTypes) {
                     // ProofRef
                     case 0:
                         writeView->insert(std::make_pair(
                             std::get<0>(allItems)[i], VoteRecord(true)));
                         break;
                     // CBlockIndex *
                     case 1:
                         writeView->insert(std::make_pair(
                             &std::get<1>(allItems)[i], VoteRecord(true)));
                         break;
                     // CTransactionRef
                     case 2:
                         writeView->insert(std::make_pair(
                             std::get<2>(allItems)[i], VoteRecord(true)));
                         break;
                     default:
                         break;
                 }
             }
         }
     }
 
     {
         // Check ordering
         auto readView = voteMap.getReadView();
         auto it = readView.begin();
 
         // The first batch of items is the proofs ordered by score
         // (descending)
         uint32_t lastScore = std::numeric_limits<uint32_t>::max();
         for (size_t i = 0; i < numberElementsEachType; i++) {
             BOOST_CHECK(std::holds_alternative<const ProofRef>(it->first));
 
             uint32_t currentScore =
                 std::get<const ProofRef>(it->first)->getScore();
             BOOST_CHECK_LT(currentScore, lastScore);
             lastScore = currentScore;
 
             it++;
         }
 
         // The next batch of items is the block indexes ordered by work
         // (descending)
         arith_uint256 lastWork = ~arith_uint256(0);
         for (size_t i = 0; i < numberElementsEachType; i++) {
             BOOST_CHECK(std::holds_alternative<const CBlockIndex *>(it->first));
 
             arith_uint256 currentWork =
                 std::get<const CBlockIndex *>(it->first)->nChainWork;
             BOOST_CHECK(currentWork < lastWork);
             lastWork = currentWork;
 
             it++;
         }
 
         // The last batch of items is the txs ordered by modified fee rate
         CFeeRate lastFeeRate{MAX_MONEY};
         {
             LOCK(mempool->cs);
 
             for (size_t i = 0; i < numberElementsEachType; i++) {
                 BOOST_CHECK(
                     std::holds_alternative<const CTransactionRef>(it->first));
 
                 auto iter = mempool->GetIter(
                     std::get<const CTransactionRef>(it->first)->GetId());
                 BOOST_CHECK(iter.has_value());
 
                 CFeeRate currentFeeRate = (**iter)->GetModifiedFeeRate();
 
                 BOOST_CHECK(currentFeeRate < lastFeeRate);
                 lastFeeRate = currentFeeRate;
 
                 it++;
             }
         }
 
         BOOST_CHECK(it == readView.end());
     }
 }
 
 BOOST_AUTO_TEST_CASE(vote_map_tx_comparator) {
     CTxMemPool *mempool = Assert(m_node.mempool.get());
     TestMemPoolEntryHelper mempoolEntryHelper;
     TxProvider provider(this);
 
     std::vector<CTransactionRef> txs;
     for (size_t i = 0; i < 5; i++) {
         txs.emplace_back(provider.buildVoteItem());
     }
 
     {
         // When there is no mempool, the txs are sorted by txid
         RWCollection<VoteMap> voteMap(VoteMap(nullptr));
         {
             auto writeView = voteMap.getWriteView();
             for (const auto &tx : txs) {
                 writeView->insert(std::make_pair(tx, VoteRecord(true)));
             }
         }
 
         auto readView = voteMap.getReadView();
         TxId lastTxId{uint256::ZERO};
         for (const auto &[item, vote] : readView) {
             auto tx = std::get<const CTransactionRef>(item);
             BOOST_CHECK_GT(tx->GetId(), lastTxId);
             lastTxId = tx->GetId();
         }
     }
 
     // Remove the 5 first txs from the mempool, and add 5 more
     mempool->clear();
     for (size_t i = 0; i < 5; i++) {
         txs.emplace_back(provider.buildVoteItem());
     }
 
     {
         RWCollection<VoteMap> voteMap((VoteMap(mempool)));
 
         {
             auto writeView = voteMap.getWriteView();
             for (const auto &tx : txs) {
                 writeView->insert(std::make_pair(tx, VoteRecord(true)));
             }
         }
 
         auto readView = voteMap.getReadView();
         auto it = readView.begin();
 
         LOCK(mempool->cs);
 
         // The first 5 txs are sorted by fee
         CFeeRate lastFeeRate{MAX_MONEY};
         for (size_t i = 0; i < 5; i++) {
             auto tx = std::get<const CTransactionRef>(it->first);
 
             auto iter = mempool->GetIter(tx->GetId());
             BOOST_CHECK(iter.has_value());
 
             BOOST_CHECK((**iter)->GetModifiedFeeRate() <= lastFeeRate);
             lastFeeRate = (**iter)->GetModifiedFeeRate();
             it++;
         }
 
         // The last 5 txs are sorted by txid
         TxId lastTxId{uint256::ZERO};
         for (size_t i = 0; i < 5; i++) {
             auto tx = std::get<const CTransactionRef>(it->first);
 
             BOOST_CHECK(!mempool->exists(tx->GetId()));
 
             BOOST_CHECK_GT(tx->GetId(), lastTxId);
             lastTxId = tx->GetId();
             it++;
         }
     }
 }
 
 BOOST_AUTO_TEST_CASE(block_reconcile_initial_vote) {
     auto &chainman = Assert(m_node.chainman);
     Chainstate &chainstate = chainman->ActiveChainstate();
 
     const auto block = std::make_shared<const CBlock>(
         this->CreateBlock({}, CScript(), chainstate));
     const BlockHash blockhash = block->GetHash();
 
     BlockValidationState state;
     CBlockIndex *blockindex;
     {
         LOCK(cs_main);
         BOOST_CHECK(chainstate.AcceptBlock(block, state,
                                            /*fRequested=*/true, /*dbp=*/nullptr,
                                            /*fNewBlock=*/nullptr,
                                            /*min_pow_checked=*/true));
 
         blockindex = chainman->m_blockman.LookupBlockIndex(blockhash);
         BOOST_CHECK(blockindex);
     }
 
     // The block is not connected yet, and not added to the poll list yet
     BOOST_CHECK(AvalancheTest::getInvsForNextPoll(*m_processor).empty());
     BOOST_CHECK(!m_processor->isAccepted(blockindex));
 
     // Call ActivateBestChain to connect the new block
     BOOST_CHECK(chainstate.ActivateBestChain(state, block, m_processor.get()));
     // It is a valid block so the tip is updated
     BOOST_CHECK_EQUAL(chainstate.m_chain.Tip(), blockindex);
 
     // Check the block is added to the poll
     auto invs = AvalancheTest::getInvsForNextPoll(*m_processor);
     BOOST_CHECK_EQUAL(invs.size(), 1);
     BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
     BOOST_CHECK_EQUAL(invs[0].hash, blockhash);
 
     // This block is our new tip so we should vote "yes"
     BOOST_CHECK(m_processor->isAccepted(blockindex));
 
     // Prevent a data race between UpdatedBlockTip and the Processor destructor
     SyncWithValidationInterfaceQueue();
 }
 
 BOOST_AUTO_TEST_CASE(compute_staking_rewards) {
     auto now = GetTime<std::chrono::seconds>();
     SetMockTime(now);
 
     // Pick in the middle
     BlockHash prevBlockHash{uint256::ZERO};
 
     std::vector<CScript> winners;
 
     BOOST_CHECK(!m_processor->getStakingRewardWinners(prevBlockHash, winners));
 
     // Null index
     BOOST_CHECK(!m_processor->computeStakingReward(nullptr));
     BOOST_CHECK(!m_processor->getStakingRewardWinners(prevBlockHash, winners));
 
     CBlockIndex prevBlock;
     prevBlock.phashBlock = &prevBlockHash;
     prevBlock.nHeight = 100;
     prevBlock.nTime = now.count();
 
     // No quorum
     BOOST_CHECK(!m_processor->computeStakingReward(&prevBlock));
     BOOST_CHECK(!m_processor->getStakingRewardWinners(prevBlockHash, winners));
 
     setArg("-avaminquorumstake", "0");
     setArg("-avaminquorumconnectedstakeratio", "0");
     setArg("-avaminavaproofsnodecount", "0");
 
     // Setup a bunch of proofs
     size_t numProofs = 10;
     std::vector<ProofRef> proofs;
     proofs.reserve(numProofs);
     for (size_t i = 0; i < numProofs; i++) {
         const CKey key = CKey::MakeCompressedKey();
         CScript payoutScript = GetScriptForRawPubKey(key.GetPubKey());
 
         auto proof = GetProof(payoutScript);
         m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
             BOOST_CHECK(pm.registerProof(proof));
             BOOST_CHECK(pm.addNode(i, proof->getId()));
             // Finalize the proof
             BOOST_CHECK(pm.forPeer(proof->getId(), [&](const Peer peer) {
                 return pm.setFinalized(peer.peerid);
             }));
         });
 
         proofs.emplace_back(std::move(proof));
     }
 
     BOOST_CHECK(m_processor->isQuorumEstablished());
 
     // Proofs are too recent so we still have no winner
     BOOST_CHECK(!m_processor->computeStakingReward(&prevBlock));
     BOOST_CHECK(!m_processor->getStakingRewardWinners(prevBlockHash, winners));
 
     // Make sure we picked a payout script from one of our proofs
     auto winnerExists = [&](const CScript &expectedWinner) {
         const std::string winnerString = FormatScript(expectedWinner);
 
         for (const ProofRef &proof : proofs) {
             if (winnerString == FormatScript(proof->getPayoutScript())) {
                 return true;
             }
         }
         return false;
     };
 
     // Elapse some time
     now += 1h + 1s;
     SetMockTime(now);
     prevBlock.nTime = now.count();
 
     // Now we successfully inserted a winner in our map
     BOOST_CHECK(m_processor->computeStakingReward(&prevBlock));
     BOOST_CHECK(m_processor->getStakingRewardWinners(prevBlockHash, winners));
     BOOST_CHECK(winnerExists(winners[0]));
 
     // Subsequent calls are a no-op
     BOOST_CHECK(m_processor->computeStakingReward(&prevBlock));
     BOOST_CHECK(m_processor->getStakingRewardWinners(prevBlockHash, winners));
     BOOST_CHECK(winnerExists(winners[0]));
 
     CBlockIndex prevBlockHigh = prevBlock;
     BlockHash prevBlockHashHigh =
         BlockHash(ArithToUint256({std::numeric_limits<uint64_t>::max()}));
     prevBlockHigh.phashBlock = &prevBlockHashHigh;
     prevBlockHigh.nHeight = 101;
     BOOST_CHECK(m_processor->computeStakingReward(&prevBlockHigh));
     BOOST_CHECK(
         m_processor->getStakingRewardWinners(prevBlockHashHigh, winners));
     BOOST_CHECK(winnerExists(winners[0]));
 
     // No impact on previous winner so far
     BOOST_CHECK(m_processor->getStakingRewardWinners(prevBlockHash, winners));
     BOOST_CHECK(winnerExists(winners[0]));
 
     // Cleanup to height 101
     m_processor->cleanupStakingRewards(101);
 
     // Now the previous winner has been cleared
     BOOST_CHECK(!m_processor->getStakingRewardWinners(prevBlockHash, winners));
 
     // But the last one remain
     BOOST_CHECK(
         m_processor->getStakingRewardWinners(prevBlockHashHigh, winners));
     BOOST_CHECK(winnerExists(winners[0]));
 
     // We can add it again
     BOOST_CHECK(m_processor->computeStakingReward(&prevBlock));
     BOOST_CHECK(m_processor->getStakingRewardWinners(prevBlockHash, winners));
     BOOST_CHECK(winnerExists(winners[0]));
 
     // Cleanup to higher height
     m_processor->cleanupStakingRewards(200);
 
     // No winner anymore
     BOOST_CHECK(!m_processor->getStakingRewardWinners(prevBlockHash, winners));
     BOOST_CHECK(
         !m_processor->getStakingRewardWinners(prevBlockHashHigh, winners));
 }
 
 BOOST_AUTO_TEST_CASE(local_proof_status) {
     const CKey key = CKey::MakeCompressedKey();
 
     const COutPoint outpoint{TxId(GetRandHash()), 0};
     {
         CScript script = GetScriptForDestination(PKHash(key.GetPubKey()));
 
         LOCK(cs_main);
         CCoinsViewCache &coins =
             Assert(m_node.chainman)->ActiveChainstate().CoinsTip();
         coins.AddCoin(outpoint,
                       Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 100, false),
                       false);
     }
 
     auto buildProof = [&](const COutPoint &outpoint, uint64_t sequence,
                           uint32_t height) {
         ProofBuilder pb(sequence, 0, key, UNSPENDABLE_ECREG_PAYOUT_SCRIPT);
         BOOST_CHECK(
             pb.addUTXO(outpoint, PROOF_DUST_THRESHOLD, height, false, key));
         return pb.build();
     };
 
     auto localProof = buildProof(outpoint, 1, 100);
 
     setArg("-avamasterkey", EncodeSecret(key));
     setArg("-avaproof", localProof->ToHex());
     setArg("-avalancheconflictingproofcooldown", "0");
     setArg("-avalanchepeerreplacementcooldown", "0");
     setArg("-avaproofstakeutxoconfirmations", "3");
 
     bilingual_str error;
     ChainstateManager &chainman = *Assert(m_node.chainman);
     m_processor = Processor::MakeProcessor(
         *m_node.args, *m_node.chain, m_node.connman.get(), chainman,
         m_node.mempool.get(), *m_node.scheduler, error);
 
     BOOST_CHECK_EQUAL(m_processor->getLocalProof()->getId(),
                       localProof->getId());
 
     auto checkLocalProofState =
         [&](const bool boundToPeer,
             const ProofRegistrationResult expectedResult) {
             BOOST_CHECK_EQUAL(
                 m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
                     return pm.isBoundToPeer(localProof->getId());
                 }),
                 boundToPeer);
             BOOST_CHECK_MESSAGE(
                 m_processor->getLocalProofRegistrationState().GetResult() ==
                     expectedResult,
                 m_processor->getLocalProofRegistrationState().ToString());
         };
 
     checkLocalProofState(false, ProofRegistrationResult::NONE);
 
     // Not ready to share, the local proof isn't registered
     BOOST_CHECK(!m_processor->canShareLocalProof());
     AvalancheTest::updatedBlockTip(*m_processor);
     checkLocalProofState(false, ProofRegistrationResult::NONE);
 
     // Ready to share, but the proof is immature
     AvalancheTest::setLocalProofShareable(*m_processor, true);
     BOOST_CHECK(m_processor->canShareLocalProof());
     AvalancheTest::updatedBlockTip(*m_processor);
     checkLocalProofState(false, ProofRegistrationResult::IMMATURE);
 
     // Mine a block to re-evaluate the proof, it remains immature
     mineBlocks(1);
     AvalancheTest::updatedBlockTip(*m_processor);
     checkLocalProofState(false, ProofRegistrationResult::IMMATURE);
 
     // One more block and the proof turns mature
     mineBlocks(1);
     AvalancheTest::updatedBlockTip(*m_processor);
     checkLocalProofState(true, ProofRegistrationResult::NONE);
 
     // Build a conflicting proof and check the status is updated accordingly
     auto conflictingProof = buildProof(outpoint, 2, 100);
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK(pm.registerProof(conflictingProof));
         BOOST_CHECK(pm.isBoundToPeer(conflictingProof->getId()));
         BOOST_CHECK(pm.isInConflictingPool(localProof->getId()));
     });
     AvalancheTest::updatedBlockTip(*m_processor);
     checkLocalProofState(false, ProofRegistrationResult::CONFLICTING);
 }
 
 BOOST_AUTO_TEST_CASE(reconcileOrFinalize) {
     setArg("-avalancheconflictingproofcooldown", "0");
     setArg("-avalanchepeerreplacementcooldown", "0");
 
     // Proof is null
     BOOST_CHECK(!m_processor->reconcileOrFinalize(ProofRef()));
 
     ChainstateManager &chainman = *Assert(m_node.chainman);
     Chainstate &activeChainState = chainman.ActiveChainstate();
 
     const CKey key = CKey::MakeCompressedKey();
     const COutPoint outpoint{TxId(GetRandHash()), 0};
     {
         CScript script = GetScriptForDestination(PKHash(key.GetPubKey()));
 
         LOCK(cs_main);
         CCoinsViewCache &coins = activeChainState.CoinsTip();
         coins.AddCoin(outpoint,
                       Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 100, false),
                       false);
     }
 
     auto buildProof = [&](const COutPoint &outpoint, uint64_t sequence) {
         ProofBuilder pb(sequence, 0, key, UNSPENDABLE_ECREG_PAYOUT_SCRIPT);
         BOOST_CHECK(
             pb.addUTXO(outpoint, PROOF_DUST_THRESHOLD, 100, false, key));
         return pb.build();
     };
 
     auto proof = buildProof(outpoint, 1);
     BOOST_CHECK(proof);
 
     // Not a peer nor conflicting
     BOOST_CHECK(!m_processor->reconcileOrFinalize(proof));
 
     // Register the proof
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK(pm.registerProof(proof));
         BOOST_CHECK(pm.isBoundToPeer(proof->getId()));
         BOOST_CHECK(!pm.isInConflictingPool(proof->getId()));
     });
 
     // Reconcile works
     BOOST_CHECK(m_processor->reconcileOrFinalize(proof));
     // Repeated calls fail and do nothing
     BOOST_CHECK(!m_processor->reconcileOrFinalize(proof));
 
     // Finalize
     AvalancheTest::addProofToRecentfinalized(*m_processor, proof->getId());
     BOOST_CHECK(m_processor->isRecentlyFinalized(proof->getId()));
     BOOST_CHECK(m_processor->reconcileOrFinalize(proof));
 
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         // The peer is marked as final
         BOOST_CHECK(pm.forPeer(proof->getId(), [&](const Peer &peer) {
             return peer.hasFinalized;
         }));
         BOOST_CHECK(pm.isBoundToPeer(proof->getId()));
         BOOST_CHECK(!pm.isInConflictingPool(proof->getId()));
     });
 
     // Same proof with a higher sequence number
     auto betterProof = buildProof(outpoint, 2);
     BOOST_CHECK(betterProof);
 
     // Not registered nor conflicting yet
     BOOST_CHECK(!m_processor->reconcileOrFinalize(betterProof));
 
     m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
         BOOST_CHECK(pm.registerProof(betterProof));
         BOOST_CHECK(pm.isBoundToPeer(betterProof->getId()));
         BOOST_CHECK(!pm.isInConflictingPool(betterProof->getId()));
 
         BOOST_CHECK(!pm.isBoundToPeer(proof->getId()));
         BOOST_CHECK(pm.isInConflictingPool(proof->getId()));
     });
 
     // Recently finalized, not worth polling
     BOOST_CHECK(!m_processor->reconcileOrFinalize(proof));
     // But the better proof can be polled
     BOOST_CHECK(m_processor->reconcileOrFinalize(betterProof));
 }
 
 BOOST_AUTO_TEST_SUITE_END()