diff --git a/contrib/linearize/linearize-data.py b/contrib/linearize/linearize-data.py index 48fc8a0a78..f3d38be19f 100755 --- a/contrib/linearize/linearize-data.py +++ b/contrib/linearize/linearize-data.py @@ -1,339 +1,339 @@ #!/usr/bin/env python3 # # linearize-data.py: Construct a linear, no-fork version of the chain. # # Copyright (c) 2013-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from __future__ import print_function, division import struct import re import os import os.path import sys import hashlib import datetime import time from collections import namedtuple -from binascii import hexlify, unhexlify +from binascii import unhexlify settings = {} def hex_switchEndian(s): """ Switches the endianness of a hex string (in pairs of hex chars) """ pairList = [s[i:i + 2].encode() for i in range(0, len(s), 2)] return b''.join(pairList[::-1]).decode() def uint32(x): return x & 0xffffffff def bytereverse(x): return uint32((((x) << 24) | (((x) << 8) & 0x00ff0000) | (((x) >> 8) & 0x0000ff00) | ((x) >> 24))) def bufreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): word = struct.unpack('@I', in_buf[i:i + 4])[0] out_words.append(struct.pack('@I', bytereverse(word))) return b''.join(out_words) def wordreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): out_words.append(in_buf[i:i + 4]) out_words.reverse() return b''.join(out_words) def calc_hdr_hash(blk_hdr): hash1 = hashlib.sha256() hash1.update(blk_hdr) hash1_o = hash1.digest() hash2 = hashlib.sha256() hash2.update(hash1_o) hash2_o = hash2.digest() return hash2_o def calc_hash_str(blk_hdr): hash = calc_hdr_hash(blk_hdr) hash = bufreverse(hash) hash = wordreverse(hash) - hash_str = hexlify(hash).decode('utf-8') + hash_str = hash.hex() return hash_str def get_blk_dt(blk_hdr): members = struct.unpack(" self.maxOutSz): self.outF.close() if self.setFileTime: os.utime(self.outFname, (int(time.time()), self.highTS)) self.outF = None self.outFname = None self.outFn = self.outFn + 1 self.outsz = 0 (blkDate, blkTS) = get_blk_dt(blk_hdr) if self.timestampSplit and (blkDate > self.lastDate): print("New month " + blkDate.strftime("%Y-%m") + " @ " + self.hash_str) self.lastDate = blkDate if self.outF: self.outF.close() if self.setFileTime: os.utime(self.outFname, (int(time.time()), self.highTS)) self.outF = None self.outFname = None self.outFn = self.outFn + 1 self.outsz = 0 if not self.outF: if self.fileOutput: self.outFname = self.settings['output_file'] else: self.outFname = os.path.join( self.settings['output'], "blk{:05d}.dat".format(self.outFn)) print("Output file " + self.outFname) self.outF = open(self.outFname, "wb") self.outF.write(inhdr) self.outF.write(blk_hdr) self.outF.write(rawblock) self.outsz = self.outsz + len(inhdr) + len(blk_hdr) + len(rawblock) self.blkCountOut = self.blkCountOut + 1 if blkTS > self.highTS: self.highTS = blkTS if (self.blkCountOut % 1000) == 0: print('{} blocks scanned, {} blocks written (of {}, {:.1f}% complete)'.format( self.blkCountIn, self.blkCountOut, len(self.blkindex), 100.0 * self.blkCountOut / len(self.blkindex))) def inFileName(self, fn): return os.path.join(self.settings['input'], "blk{:05d}.dat".format(fn)) def fetchBlock(self, extent): '''Fetch block contents from disk given extents''' with open(self.inFileName(extent.fn), "rb") as f: f.seek(extent.offset) return f.read(extent.size) def copyOneBlock(self): '''Find the next block to be written in the input, and copy it to the output.''' extent = self.blockExtents.pop(self.blkCountOut) if self.blkCountOut in self.outOfOrderData: # If the data is cached, use it from memory and remove from the cache rawblock = self.outOfOrderData.pop(self.blkCountOut) self.outOfOrderSize -= len(rawblock) else: # Otherwise look up data on disk rawblock = self.fetchBlock(extent) self.writeBlock(extent.inhdr, extent.blkhdr, rawblock) def run(self): while self.blkCountOut < len(self.blkindex): if not self.inF: fname = self.inFileName(self.inFn) print("Input file " + fname) try: self.inF = open(fname, "rb") except IOError: print("Premature end of block data") return inhdr = self.inF.read(8) if (not inhdr or (inhdr[0] == "\0")): self.inF.close() self.inF = None self.inFn = self.inFn + 1 continue inMagic = inhdr[:4] if (inMagic != self.settings['netmagic']): - print("Invalid magic: " + hexlify(inMagic).decode('utf-8')) + print("Invalid magic: " + inMagic.hex()) return inLenLE = inhdr[4:] su = struct.unpack(" rpc_result = self.nodes[0].decodescript( '00' + push_signature + push_signature) assert_equal('0 ' + signature + ' ' + signature, rpc_result['asm']) # 4) P2SH scriptSig # an empty P2SH redeemScript is valid and makes for a very simple test case. # thus, such a spending scriptSig would just need to pass the outer redeemScript # hash test and leave true on the top of the stack. rpc_result = self.nodes[0].decodescript('5100') assert_equal('1 0', rpc_result['asm']) # 5) null data scriptSig - no such thing because null data scripts can not be spent. # thus, no test case for that standard transaction type is here. def decodescript_script_pub_key(self): public_key = '03b0da749730dc9b4b1f4a14d6902877a92541f5368778853d9c4a0cb7802dcfb2' push_public_key = '21' + public_key public_key_hash = '11695b6cd891484c2d49ec5aa738ec2b2f897777' push_public_key_hash = '14' + public_key_hash # below are test cases for all of the standard transaction types # 1) P2PK scriptPubKey # OP_CHECKSIG rpc_result = self.nodes[0].decodescript(push_public_key + 'ac') assert_equal(public_key + ' OP_CHECKSIG', rpc_result['asm']) # 2) P2PKH scriptPubKey # OP_DUP OP_HASH160 OP_EQUALVERIFY OP_CHECKSIG rpc_result = self.nodes[0].decodescript( '76a9' + push_public_key_hash + '88ac') assert_equal('OP_DUP OP_HASH160 ' + public_key_hash + ' OP_EQUALVERIFY OP_CHECKSIG', rpc_result['asm']) # 3) multisig scriptPubKey # OP_CHECKMULTISIG # just imagine that the pub keys used below are different. # for our purposes here it does not matter that they are the same even # though it is unrealistic. rpc_result = self.nodes[0].decodescript( '52' + push_public_key + push_public_key + push_public_key + '53ae') assert_equal('2 ' + public_key + ' ' + public_key + ' ' + public_key + ' 3 OP_CHECKMULTISIG', rpc_result['asm']) # 4) P2SH scriptPubKey # OP_HASH160 OP_EQUAL. # push_public_key_hash here should actually be the hash of a redeem script. # but this works the same for purposes of this test. rpc_result = self.nodes[0].decodescript( 'a9' + push_public_key_hash + '87') assert_equal( 'OP_HASH160 ' + public_key_hash + ' OP_EQUAL', rpc_result['asm']) # 5) null data scriptPubKey # use a signature look-alike here to make sure that we do not decode random data as a signature. # this matters if/when signature sighash decoding comes along. # would want to make sure that no such decoding takes place in this # case. signature_imposter = '48304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c509001' # OP_RETURN rpc_result = self.nodes[0].decodescript('6a' + signature_imposter) assert_equal('OP_RETURN ' + signature_imposter[2:], rpc_result['asm']) # 6) a CLTV redeem script. redeem scripts are in-effect scriptPubKey scripts, so adding a test here. # OP_NOP2 is also known as OP_CHECKLOCKTIMEVERIFY. # just imagine that the pub keys used below are different. # for our purposes here it does not matter that they are the same even though it is unrealistic. # # OP_IF # OP_CHECKSIGVERIFY # OP_ELSE # OP_CHECKLOCKTIMEVERIFY OP_DROP # OP_ENDIF # OP_CHECKSIG # # lock until block 500,000 rpc_result = self.nodes[0].decodescript( '63' + push_public_key + 'ad670320a107b17568' + push_public_key + 'ac') assert_equal('OP_IF ' + public_key + ' OP_CHECKSIGVERIFY OP_ELSE 500000 OP_CHECKLOCKTIMEVERIFY OP_DROP OP_ENDIF ' + public_key + ' OP_CHECKSIG', rpc_result['asm']) def decoderawtransaction_asm_sighashtype(self): """Test decoding scripts via RPC command "decoderawtransaction". This test is in with the "decodescript" tests because they are testing the same "asm" script decodes. """ # this test case uses a random plain vanilla mainnet transaction with a # single P2PKH input and output tx = '0100000001696a20784a2c70143f634e95227dbdfdf0ecd51647052e70854512235f5986ca010000008a47304402207174775824bec6c2700023309a168231ec80b82c6069282f5133e6f11cbb04460220570edc55c7c5da2ca687ebd0372d3546ebc3f810516a002350cac72dfe192dfb014104d3f898e6487787910a690410b7a917ef198905c27fb9d3b0a42da12aceae0544fc7088d239d9a48f2828a15a09e84043001f27cc80d162cb95404e1210161536ffffffff0100e1f505000000001976a914eb6c6e0cdb2d256a32d97b8df1fc75d1920d9bca88ac00000000' rpc_result = self.nodes[0].decoderawtransaction(tx) assert_equal( '304402207174775824bec6c2700023309a168231ec80b82c6069282f5133e6f11cbb04460220570edc55c7c5da2ca687ebd0372d3546ebc3f810516a002350cac72dfe192dfb[ALL] 04d3f898e6487787910a690410b7a917ef198905c27fb9d3b0a42da12aceae0544fc7088d239d9a48f2828a15a09e84043001f27cc80d162cb95404e1210161536', rpc_result['vin'][0]['scriptSig']['asm']) # this test case uses a mainnet transaction that has a P2SH input and both P2PKH and P2SH outputs. # it's from James D'Angelo's awesome introductory videos about multisig: https://www.youtube.com/watch?v=zIbUSaZBJgU and https://www.youtube.com/watch?v=OSA1pwlaypc # verify that we have not altered scriptPubKey decoding. tx = '01000000018d1f5635abd06e2c7e2ddf58dc85b3de111e4ad6e0ab51bb0dcf5e84126d927300000000fdfe0000483045022100ae3b4e589dfc9d48cb82d41008dc5fa6a86f94d5c54f9935531924602730ab8002202f88cf464414c4ed9fa11b773c5ee944f66e9b05cc1e51d97abc22ce098937ea01483045022100b44883be035600e9328a01b66c7d8439b74db64187e76b99a68f7893b701d5380220225bf286493e4c4adcf928c40f785422572eb232f84a0b83b0dea823c3a19c75014c695221020743d44be989540d27b1b4bbbcfd17721c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a938d39ddd9fe0ebc45ea97e1d27a7cbd671d5431416d3dd87210213820eb3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53aeffffffff02611e0000000000001976a914dc863734a218bfe83ef770ee9d41a27f824a6e5688acee2a02000000000017a9142a5edea39971049a540474c6a99edf0aa4074c588700000000' rpc_result = self.nodes[0].decoderawtransaction(tx) assert_equal( '8e3730608c3b0bb5df54f09076e196bc292a8e39a78e73b44b6ba08c78f5cbb0', rpc_result['txid']) assert_equal( '0 3045022100ae3b4e589dfc9d48cb82d41008dc5fa6a86f94d5c54f9935531924602730ab8002202f88cf464414c4ed9fa11b773c5ee944f66e9b05cc1e51d97abc22ce098937ea[ALL] 3045022100b44883be035600e9328a01b66c7d8439b74db64187e76b99a68f7893b701d5380220225bf286493e4c4adcf928c40f785422572eb232f84a0b83b0dea823c3a19c75[ALL] 5221020743d44be989540d27b1b4bbbcfd17721c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a938d39ddd9fe0ebc45ea97e1d27a7cbd671d5431416d3dd87210213820eb3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53ae', rpc_result['vin'][0]['scriptSig']['asm']) assert_equal( 'OP_DUP OP_HASH160 dc863734a218bfe83ef770ee9d41a27f824a6e56 OP_EQUALVERIFY OP_CHECKSIG', rpc_result['vout'][0]['scriptPubKey']['asm']) assert_equal( 'OP_HASH160 2a5edea39971049a540474c6a99edf0aa4074c58 OP_EQUAL', rpc_result['vout'][1]['scriptPubKey']['asm']) txSave = FromHex(CTransaction(), tx) # make sure that a specifically crafted op_return value will not pass # all the IsDERSignature checks and then get decoded as a sighash type tx = '01000000015ded05872fdbda629c7d3d02b194763ce3b9b1535ea884e3c8e765d42e316724020000006b48304502204c10d4064885c42638cbff3585915b322de33762598321145ba033fc796971e2022100bb153ad3baa8b757e30a2175bd32852d2e1cb9080f84d7e32fcdfd667934ef1b012103163c0ff73511ea1743fb5b98384a2ff09dd06949488028fd819f4d83f56264efffffffff0200000000000000000b6a0930060201000201000180380100000000001976a9141cabd296e753837c086da7a45a6c2fe0d49d7b7b88ac00000000' rpc_result = self.nodes[0].decoderawtransaction(tx) assert_equal('OP_RETURN 300602010002010001', rpc_result['vout'][0]['scriptPubKey']['asm']) # verify that we have not altered scriptPubKey processing even of a # specially crafted P2PKH pubkeyhash and P2SH redeem script hash that # is made to pass the der signature checks tx = '01000000018d1f5635abd06e2c7e2ddf58dc85b3de111e4ad6e0ab51bb0dcf5e84126d927300000000fdfe0000483045022100ae3b4e589dfc9d48cb82d41008dc5fa6a86f94d5c54f9935531924602730ab8002202f88cf464414c4ed9fa11b773c5ee944f66e9b05cc1e51d97abc22ce098937ea01483045022100b44883be035600e9328a01b66c7d8439b74db64187e76b99a68f7893b701d5380220225bf286493e4c4adcf928c40f785422572eb232f84a0b83b0dea823c3a19c75014c695221020743d44be989540d27b1b4bbbcfd17721c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a938d39ddd9fe0ebc45ea97e1d27a7cbd671d5431416d3dd87210213820eb3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53aeffffffff02611e0000000000001976a914301102070101010101010102060101010101010188acee2a02000000000017a91430110207010101010101010206010101010101018700000000' rpc_result = self.nodes[0].decoderawtransaction(tx) assert_equal( 'OP_DUP OP_HASH160 3011020701010101010101020601010101010101 OP_EQUALVERIFY OP_CHECKSIG', rpc_result['vout'][0]['scriptPubKey']['asm']) assert_equal( 'OP_HASH160 3011020701010101010101020601010101010101 OP_EQUAL', rpc_result['vout'][1]['scriptPubKey']['asm']) # some more full transaction tests of varying specific scriptSigs. used instead of # tests in decodescript_script_sig because the decodescript RPC is specifically # for working on scriptPubKeys (argh!). - push_signature = bytes_to_hex_str( - txSave.vin[0].scriptSig)[2:(0x48 * 2 + 4)] + push_signature = txSave.vin[0].scriptSig.hex()[2:(0x48 * 2 + 4)] signature = push_signature[2:] der_signature = signature[:-2] signature_sighash_decoded = der_signature + '[ALL]' signature_2 = der_signature + '82' push_signature_2 = '48' + signature_2 signature_2_sighash_decoded = der_signature + '[NONE|ANYONECANPAY]' # 1) P2PK scriptSig txSave.vin[0].scriptSig = hex_str_to_bytes(push_signature) rpc_result = self.nodes[0].decoderawtransaction(ToHex(txSave)) assert_equal(signature_sighash_decoded, rpc_result['vin'][0]['scriptSig']['asm']) # make sure that the sighash decodes come out correctly for a more # complex / lesser used case. txSave.vin[0].scriptSig = hex_str_to_bytes(push_signature_2) rpc_result = self.nodes[0].decoderawtransaction(ToHex(txSave)) assert_equal(signature_2_sighash_decoded, rpc_result['vin'][0]['scriptSig']['asm']) # 2) multisig scriptSig txSave.vin[0].scriptSig = hex_str_to_bytes( '00' + push_signature + push_signature_2) rpc_result = self.nodes[0].decoderawtransaction(ToHex(txSave)) assert_equal('0 ' + signature_sighash_decoded + ' ' + signature_2_sighash_decoded, rpc_result['vin'][0]['scriptSig']['asm']) # 3) test a scriptSig that contains more than push operations. # in fact, it contains an OP_RETURN with data specially crafted to # cause improper decode if the code does not catch it. txSave.vin[0].scriptSig = hex_str_to_bytes( '6a143011020701010101010101020601010101010101') rpc_result = self.nodes[0].decoderawtransaction(ToHex(txSave)) assert_equal('OP_RETURN 3011020701010101010101020601010101010101', rpc_result['vin'][0]['scriptSig']['asm']) def run_test(self): self.decodescript_script_sig() self.decodescript_script_pub_key() self.decoderawtransaction_asm_sighashtype() if __name__ == '__main__': DecodeScriptTest().main() diff --git a/test/functional/rpc_rawtransaction.py b/test/functional/rpc_rawtransaction.py index b9b51f2388..0ef394f708 100755 --- a/test/functional/rpc_rawtransaction.py +++ b/test/functional/rpc_rawtransaction.py @@ -1,497 +1,496 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the rawtranscation RPCs. Test the following RPCs: - createrawtransaction - signrawtransactionwithwallet - sendrawtransaction - decoderawtransaction - getrawtransaction """ from decimal import Decimal from collections import OrderedDict from io import BytesIO from test_framework.messages import CTransaction, ToHex from test_framework.test_framework import BitcoinTestFramework from test_framework.txtools import pad_raw_tx from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, connect_nodes_bi, hex_str_to_bytes, - bytes_to_hex_str, ) class multidict(dict): """Dictionary that allows duplicate keys. Constructed with a list of (key, value) tuples. When dumped by the json module, will output invalid json with repeated keys, eg: >>> json.dumps(multidict([(1,2),(1,2)]) '{"1": 2, "1": 2}' Used to test calls to rpc methods with repeated keys in the json object.""" def __init__(self, x): dict.__init__(self, x) self.x = x def items(self): return self.x # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 def setup_network(self, split=False): super().setup_network() connect_nodes_bi(self.nodes[0], self.nodes[2]) def run_test(self): self.log.info( 'prepare some coins for multiple *rawtransaction commands') self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.sync_all() self.nodes[0].generate(5) self.sync_all() self.log.info( 'Test getrawtransaction on genesis block coinbase returns an error') block = self.nodes[0].getblock(self.nodes[0].getblockhash(0)) assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot']) self.log.info( 'Check parameter types and required parameters of createrawtransaction') # Test `createrawtransaction` required parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction) assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, []) # Test `createrawtransaction` invalid extra parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, 'foo') # Test `createrawtransaction` invalid `inputs` txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000' assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {}) assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{}], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be a number", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {}) assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {}) # Test `createrawtransaction` invalid `outputs` address = self.nodes[0].getnewaddress() address2 = self.nodes[0].getnewaddress() assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo') # Should not throw for backwards compatibility self.nodes[0].createrawtransaction(inputs=[], outputs={}) self.nodes[0].createrawtransaction(inputs=[], outputs=[]) assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'}) assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0}) assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'}) assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1}) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: {}".format( address), self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)])) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: {}".format( address), self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}]) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}]) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']]) # Test `createrawtransaction` invalid `locktime` assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo') assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1) assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296) self.log.info( 'Check that createrawtransaction accepts an array and object as outputs') tx = CTransaction() # One output tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction( inputs=[{'txid': txid, 'vout': 9}], outputs={address: 99})))) assert_equal(len(tx.vout), 1) assert_equal( - bytes_to_hex_str(tx.serialize()), + tx.serialize().hex(), self.nodes[2].createrawtransaction( inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}]), ) # Two outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)]))))) assert_equal(len(tx.vout), 2) assert_equal( - bytes_to_hex_str(tx.serialize()), + tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {address: 99}, {address2: 99}]), ) # Two data outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=multidict([('data', '99'), ('data', '99')]))))) assert_equal(len(tx.vout), 2) assert_equal( - bytes_to_hex_str(tx.serialize()), + tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {'data': '99'}, {'data': '99'}]), ) # Multiple mixed outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=multidict([(address, 99), ('data', '99'), ('data', '99')]))))) assert_equal(len(tx.vout), 3) assert_equal( - bytes_to_hex_str(tx.serialize()), + tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {address: 99}, {'data': '99'}, {'data': '99'}]), ) self.log.info('sendrawtransaction with missing input') # won't exists inputs = [ {'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout': 1}] outputs = {self.nodes[0].getnewaddress(): 4.998} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) rawtx = pad_raw_tx(rawtx) rawtx = self.nodes[2].signrawtransactionwithwallet(rawtx) # This will raise an exception since there are missing inputs assert_raises_rpc_error( -25, "Missing inputs", self.nodes[2].sendrawtransaction, rawtx['hex']) ##################################### # getrawtransaction with block hash # ##################################### # make a tx by sending then generate 2 blocks; block1 has the tx in it tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1) block1, block2 = self.nodes[2].generate(2) self.sync_all() # We should be able to get the raw transaction by providing the correct block gottx = self.nodes[0].getrawtransaction(tx, True, block1) assert_equal(gottx['txid'], tx) assert_equal(gottx['in_active_chain'], True) # We should not have the 'in_active_chain' flag when we don't provide a block gottx = self.nodes[0].getrawtransaction(tx, True) assert_equal(gottx['txid'], tx) assert 'in_active_chain' not in gottx # We should not get the tx if we provide an unrelated block assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2) # An invalid block hash should raise the correct errors assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, True) assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, "foobar") assert_raises_rpc_error(-8, "parameter 3 must be of length 64", self.nodes[0].getrawtransaction, tx, True, "abcd1234") assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000") # Undo the blocks and check in_active_chain self.nodes[0].invalidateblock(block1) gottx = self.nodes[0].getrawtransaction( txid=tx, verbose=True, blockhash=block1) assert_equal(gottx['in_active_chain'], False) self.nodes[0].reconsiderblock(block1) assert_equal(self.nodes[0].getbestblockhash(), block2) # # RAW TX MULTISIG TESTS # # # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) # Tests for createmultisig and addmultisigaddress assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"]) # createmultisig can only take public keys self.nodes[0].createmultisig( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here. assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr1])['address'] # use balance deltas instead of absolute values bal = self.nodes[2].getbalance() # send 1.2 BCH to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[0].generate(1) self.sync_all() # node2 has both keys of the 2of2 ms addr., tx should affect the # balance assert_equal(self.nodes[2].getbalance(), bal + Decimal('1.20000000')) # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) addr3Obj = self.nodes[2].getaddressinfo(addr3) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address'] txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # THIS IS AN INCOMPLETE FEATURE # NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND # COUNT AT BALANCE CALCULATION # for now, assume the funds of a 2of3 multisig tx are not marked as # spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{ "txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "amount": vout['value'], }] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet( rawTx, inputs) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned['complete'], False) rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs) # node2 can sign the tx compl., own two of three keys assert_equal(rawTxSigned['complete'], True) self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal + Decimal( '50.00000000') + Decimal('2.19000000')) # block reward + tx rawTxBlock = self.nodes[0].getblock(self.nodes[0].getbestblockhash()) # 2of2 test for combining transactions bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) self.nodes[1].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObjValid = self.nodes[2].getaddressinfo(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # the funds of a 2of2 multisig tx should not be marked as spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx2['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{"txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey'] ['hex'], "redeemScript": mSigObjValid['hex'], "amount": vout['value']}] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned1) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned1['complete'], False) rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned2) # node2 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned2['complete'], False) rawTxComb = self.nodes[2].combinerawtransaction( [rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']]) self.log.debug(rawTxComb) self.nodes[2].sendrawtransaction(rawTxComb) rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance( ), bal+Decimal('50.00000000')+Decimal('2.19000000')) # block reward + tx # getrawtransaction tests # 1. valid parameters - only supply txid txHash = rawTx["hash"] assert_equal( self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal( self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[0].getrawtransaction( txHash, False), rawTxSigned['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to # update this test every time the output format changes. assert_equal(self.nodes[0].getrawtransaction( txHash, 1)["hex"], rawTxSigned['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[0].getrawtransaction( txHash, True)["hex"], rawTxSigned['hex']) # 6. invalid parameters - supply txid and string "Flase" assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, "False") # 7. invalid parameters - supply txid and empty array assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, []) # 8. invalid parameters - supply txid and empty dict assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, {}) # Sanity checks on verbose getrawtransaction output rawTxOutput = self.nodes[0].getrawtransaction(txHash, True) assert_equal(rawTxOutput["hex"], rawTxSigned["hex"]) assert_equal(rawTxOutput["txid"], txHash) assert_equal(rawTxOutput["hash"], txHash) assert_greater_than(rawTxOutput["size"], 300) assert_equal(rawTxOutput["version"], 0x02) assert_equal(rawTxOutput["locktime"], 0) assert_equal(len(rawTxOutput["vin"]), 1) assert_equal(len(rawTxOutput["vout"]), 1) assert_equal(rawTxOutput["blockhash"], rawTxBlock["hash"]) assert_equal(rawTxOutput["confirmations"], 3) assert_equal(rawTxOutput["time"], rawTxBlock["time"]) assert_equal(rawTxOutput["blocktime"], rawTxBlock["time"]) inputs = [ {'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'sequence': 1000}] outputs = {self.nodes[0].getnewaddress(): 1} assert_raises_rpc_error( -8, 'Invalid parameter, missing vout key', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = "1" assert_raises_rpc_error( -8, 'Invalid parameter, vout must be a number', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = -1 assert_raises_rpc_error( -8, 'Invalid parameter, vout must be positive', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = 1 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 1000) # 9. invalid parameters - sequence number out of range inputs[0]['sequence'] = -1 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) # 10. invalid parameters - sequence number out of range inputs[0]['sequence'] = 4294967296 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['sequence'] = 4294967294 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 4294967294) #################################### # TRANSACTION VERSION NUMBER TESTS # #################################### # Test the minimum transaction version number that fits in a signed 32-bit integer. tx = CTransaction() tx.nVersion = -0x80000000 rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], -0x80000000) # Test the maximum transaction version number that fits in a signed 32-bit integer. tx = CTransaction() tx.nVersion = 0x7fffffff rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], 0x7fffffff) if __name__ == '__main__': RawTransactionsTest().main() diff --git a/test/functional/test_framework/address.py b/test/functional/test_framework/address.py index 814c55ee05..b4c50e4307 100644 --- a/test/functional/test_framework/address.py +++ b/test/functional/test_framework/address.py @@ -1,66 +1,66 @@ #!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Encode and decode BASE58, P2PKH and P2SH addresses.""" from .script import CScript, hash160, hash256 -from .util import bytes_to_hex_str, hex_str_to_bytes +from .util import hex_str_to_bytes chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' def byte_to_base58(b, version): result = '' - str = bytes_to_hex_str(b) - str = bytes_to_hex_str(chr(version).encode('latin-1')) + str - checksum = bytes_to_hex_str(hash256(hex_str_to_bytes(str))) + str = b.hex() + str = chr(version).encode('latin-1').hex() + str + checksum = hash256(hex_str_to_bytes(str)).hex() str += checksum[:8] value = int('0x' + str, 0) while value > 0: result = chars[value % 58] + result value //= 58 while (str[:2] == '00'): result = chars[0] + result str = str[2:] return result # TODO: def base58_decode def keyhash_to_p2pkh(hash, main=False): assert (len(hash) == 20) version = 0 if main else 111 return byte_to_base58(hash, version) def scripthash_to_p2sh(hash, main=False): assert (len(hash) == 20) version = 5 if main else 196 return byte_to_base58(hash, version) def key_to_p2pkh(key, main=False): key = check_key(key) return keyhash_to_p2pkh(hash160(key), main) def script_to_p2sh(script, main=False): script = check_script(script) return scripthash_to_p2sh(hash160(script), main) def check_key(key): if (type(key) is str): key = hex_str_to_bytes(key) # Assuming this is hex string if (type(key) is bytes and (len(key) == 33 or len(key) == 65)): return key assert(False) def check_script(script): if (type(script) is str): script = hex_str_to_bytes(script) # Assuming this is hex string if (type(script) is bytes or type(script) is CScript): return script assert(False) diff --git a/test/functional/test_framework/messages.py b/test/functional/test_framework/messages.py index 39faa9c8fd..c51ae829e3 100755 --- a/test/functional/test_framework/messages.py +++ b/test/functional/test_framework/messages.py @@ -1,1331 +1,1330 @@ #!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin test framework primitive and message structures CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization. Classes use __slots__ to ensure extraneous attributes aren't accidentally added by tests, compromising their intended effect. """ from codecs import encode import copy import hashlib from io import BytesIO import random import socket import struct import time from test_framework.siphash import siphash256 -from test_framework.util import bytes_to_hex_str, hex_str_to_bytes +from test_framework.util import hex_str_to_bytes MIN_VERSION_SUPPORTED = 60001 # past bip-31 for ping/pong MY_VERSION = 70014 MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" # from version 70001 onwards, fRelay should be appended to version messages (BIP37) MY_RELAY = 1 MAX_INV_SZ = 50000 MAX_BLOCK_BASE_SIZE = 1000000 # 1 BCH in satoshis COIN = 100000000 NODE_NETWORK = (1 << 0) # NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) # NODE_WITNESS = (1 << 3) NODE_XTHIN = (1 << 4) NODE_BITCOIN_CASH = (1 << 5) NODE_NETWORK_LIMITED = (1 << 10) MSG_TX = 1 MSG_BLOCK = 2 MSG_TYPE_MASK = 0xffffffff >> 2 # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def ripemd160(s): return hashlib.new('ripemd160', s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(l): r = b"" if l < 253: r = struct.pack("B", l) elif l < 0x10000: r = struct.pack(">= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector. def ser_vector(l, ser_function_name=None): r = ser_compact_size(len(l)) for i in l: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r # Deserialize from a hex string representation (eg from RPC) def FromHex(obj, hex_string): obj.deserialize(BytesIO(hex_str_to_bytes(hex_string))) return obj # Convert a binary-serializable object to hex (eg for submission via RPC) def ToHex(obj): - return bytes_to_hex_str(obj.serialize()) + return obj.serialize().hex() # Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress: __slots__ = ("ip", "nServices", "pchReserved", "port", "time") def __init__(self): self.time = 0 self.nServices = 1 self.pchReserved = b"\x00" * 10 + b"\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f, with_time=True): if with_time: self.time = struct.unpack("H", f.read(2))[0] def serialize(self, with_time=True): r = b"" if with_time: r += struct.pack("H", self.port) return r def __repr__(self): return "CAddress(nServices={} ip={} port={})".format( self.nServices, self.ip, self.port) class CInv: __slots__ = ("hash", "type") typemap = { 0: "Error", 1: "TX", 2: "Block", 4: "CompactBlock" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack(" 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion={} vin={} vout={} nLockTime={})".format( self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader: __slots__ = ("hash", "hashMerkleRoot", "hashPrevBlock", "nBits", "nNonce", "nTime", "nVersion", "sha256") def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack(" 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i + 1, len(hashes) - 1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion={} hashPrevBlock={:064x} hashMerkleRoot={:064x} nTime={} nBits={:08x} nNonce={:08x} vtx={})".format( self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class PrefilledTransaction: __slots__ = ("index", "tx") def __init__(self, index=0, tx=None): self.index = index self.tx = tx def deserialize(self, f): self.index = deser_compact_size(f) self.tx = CTransaction() self.tx.deserialize(f) def serialize(self): r = b"" r += ser_compact_size(self.index) r += self.tx.serialize() return r def __repr__(self): return "PrefilledTransaction(index={}, tx={})".format( self.index, repr(self.tx)) # This is what we send on the wire, in a cmpctblock message. class P2PHeaderAndShortIDs: __slots__ = ("header", "nonce", "prefilled_txn", "prefilled_txn_length", "shortids", "shortids_length") def __init__(self): self.header = CBlockHeader() self.nonce = 0 self.shortids_length = 0 self.shortids = [] self.prefilled_txn_length = 0 self.prefilled_txn = [] def deserialize(self, f): self.header.deserialize(f) self.nonce = struct.unpack("= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f, False) self.nNonce = struct.unpack("= 209: self.nStartingHeight = struct.unpack("= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack(" class msg_headers: __slots__ = ("headers",) command = b"headers" def __init__(self, headers=None): self.headers = headers if headers is not None else [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers={})".format(repr(self.headers)) class msg_reject: __slots__ = ("code", "data", "message", "reason") command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0 def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack(" 2**32 struct_size = 40 if is_64bits else 32 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) max_possible = 8 # initial value while True: bytes = max_possible * struct_size names = array.array('B', b'\0' * bytes) outbytes = struct.unpack('iL', fcntl.ioctl( s.fileno(), 0x8912, # SIOCGIFCONF struct.pack('iL', bytes, names.buffer_info()[0]) ))[0] if outbytes == bytes: max_possible *= 2 else: break namestr = names.tobytes() return [(namestr[i:i + 16].split(b'\0', 1)[0], socket.inet_ntoa(namestr[i + 20:i + 24])) for i in range(0, outbytes, struct_size)] def addr_to_hex(addr): ''' Convert string IPv4 or IPv6 address to binary address as returned by get_bind_addrs. Very naive implementation that certainly doesn't work for all IPv6 variants. ''' if '.' in addr: # IPv4 addr = [int(x) for x in addr.split('.')] elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i, comp in enumerate(addr): if comp == '': # skip empty component at beginning or end if i == 0 or i == (len(addr) - 1): continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) addr = sub[0] + ([0] * nullbytes) + sub[1] else: raise ValueError('Could not parse address {}'.format(addr)) - return hexlify(bytearray(addr)).decode('ascii') + return bytearray(addr).hex() def test_ipv6_local(): ''' Check for (local) IPv6 support. ''' import socket # By using SOCK_DGRAM this will not actually make a connection, but it will # fail if there is no route to IPv6 localhost. have_ipv6 = True try: s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) s.connect(('::1', 0)) except socket.error: have_ipv6 = False return have_ipv6 diff --git a/test/functional/test_framework/script.py b/test/functional/test_framework/script.py index 65546c2569..c2621b9d48 100644 --- a/test/functional/test_framework/script.py +++ b/test/functional/test_framework/script.py @@ -1,725 +1,724 @@ #!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Functionality to build scripts, as well as SignatureHash(). This file is modified from python-bitcoinlib. """ from .bignum import bn2vch -from binascii import hexlify import hashlib import struct from .messages import ( CTransaction, CTxOut, hash256, ser_string, ser_uint256, sha256, uint256_from_str, ) MAX_SCRIPT_ELEMENT_SIZE = 520 OPCODE_NAMES = {} def hash160(s): return hashlib.new('ripemd160', sha256(s)).digest() _opcode_instances = [] class CScriptOp(int): """A single script opcode""" __slots__ = () @staticmethod def encode_op_pushdata(d): """Encode a PUSHDATA op, returning bytes""" if len(d) < 0x4c: # OP_PUSHDATA return b'' + bytes([len(d)]) + d elif len(d) <= 0xff: # OP_PUSHDATA1 return b'\x4c' + bytes([len(d)]) + d elif len(d) <= 0xffff: return b'\x4d' + struct.pack(b'>= 8 if r[-1] & 0x80: r.append(0x80 if neg else 0) elif neg: r[-1] |= 0x80 return bytes([len(r)]) + r class CScript(bytes): """Serialized script A bytes subclass, so you can use this directly whenever bytes are accepted. Note that this means that indexing does *not* work - you'll get an index by byte rather than opcode. This format was chosen for efficiency so that the general case would not require creating a lot of little CScriptOP objects. iter(script) however does iterate by opcode. """ __slots__ = () @classmethod def __coerce_instance(cls, other): # Coerce other into bytes if isinstance(other, CScriptOp): other = bytes([other]) elif isinstance(other, CScriptNum): if (other.value == 0): other = bytes([CScriptOp(OP_0)]) else: other = CScriptNum.encode(other) elif isinstance(other, int): if 0 <= other <= 16: other = bytes([CScriptOp.encode_op_n(other)]) elif other == -1: other = bytes([OP_1NEGATE]) else: other = CScriptOp.encode_op_pushdata(bn2vch(other)) elif isinstance(other, (bytes, bytearray)): other = CScriptOp.encode_op_pushdata(other) return other def __add__(self, other): # Do the coercion outside of the try block so that errors in it are # noticed. other = self.__coerce_instance(other) try: # bytes.__add__ always returns bytes instances unfortunately return CScript(super(CScript, self).__add__(other)) except TypeError: raise TypeError( 'Can not add a {!r} instance to a CScript'.format(other.__class__)) def join(self, iterable): # join makes no sense for a CScript() raise NotImplementedError def __new__(cls, value=b''): if isinstance(value, bytes) or isinstance(value, bytearray): return super(CScript, cls).__new__(cls, value) else: def coerce_iterable(iterable): for instance in iterable: yield cls.__coerce_instance(instance) # Annoyingly on both python2 and python3 bytes.join() always # returns a bytes instance even when subclassed. return super(CScript, cls).__new__(cls, b''.join(coerce_iterable(value))) def raw_iter(self): """Raw iteration Yields tuples of (opcode, data, sop_idx) so that the different possible PUSHDATA encodings can be accurately distinguished, as well as determining the exact opcode byte indexes. (sop_idx) """ i = 0 while i < len(self): sop_idx = i opcode = self[i] i += 1 if opcode > OP_PUSHDATA4: yield (opcode, None, sop_idx) else: datasize = None pushdata_type = None if opcode < OP_PUSHDATA1: pushdata_type = 'PUSHDATA({})'.format(opcode) datasize = opcode elif opcode == OP_PUSHDATA1: pushdata_type = 'PUSHDATA1' if i >= len(self): raise CScriptInvalidError( 'PUSHDATA1: missing data length') datasize = self[i] i += 1 elif opcode == OP_PUSHDATA2: pushdata_type = 'PUSHDATA2' if i + 1 >= len(self): raise CScriptInvalidError( 'PUSHDATA2: missing data length') datasize = self[i] + (self[i + 1] << 8) i += 2 elif opcode == OP_PUSHDATA4: pushdata_type = 'PUSHDATA4' if i + 3 >= len(self): raise CScriptInvalidError( 'PUSHDATA4: missing data length') datasize = self[i] + (self[i + 1] << 8) + \ (self[i + 2] << 16) + (self[i + 3] << 24) i += 4 else: assert False # shouldn't happen data = bytes(self[i:i + datasize]) # Check for truncation if len(data) < datasize: raise CScriptTruncatedPushDataError( '{}: truncated data'.format(pushdata_type, data)) i += datasize yield (opcode, data, sop_idx) def __iter__(self): """'Cooked' iteration Returns either a CScriptOP instance, an integer, or bytes, as appropriate. See raw_iter() if you need to distinguish the different possible PUSHDATA encodings. """ for (opcode, data, sop_idx) in self.raw_iter(): if data is not None: yield data else: opcode = CScriptOp(opcode) if opcode.is_small_int(): yield opcode.decode_op_n() else: yield CScriptOp(opcode) def __repr__(self): def _repr(o): if isinstance(o, bytes): - return "x('{}')".format(hexlify(o).decode('ascii')) + return "x('{}')".format(o.hex()) else: return repr(o) ops = [] i = iter(self) while True: op = None try: op = _repr(next(i)) except CScriptTruncatedPushDataError as err: op = '{}...'.format(_repr(err.data), err) break except CScriptInvalidError as err: op = ''.format(err) break except StopIteration: break finally: if op is not None: ops.append(op) return "CScript([{}])".format(', '.join(ops)) def GetSigOpCount(self, fAccurate): """Get the SigOp count. fAccurate - Accurately count CHECKMULTISIG, see BIP16 for details. Note that this is consensus-critical. """ n = 0 lastOpcode = OP_INVALIDOPCODE for (opcode, data, sop_idx) in self.raw_iter(): if opcode in (OP_CHECKSIG, OP_CHECKSIGVERIFY): n += 1 elif opcode in (OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY): if fAccurate and (OP_1 <= lastOpcode <= OP_16): n += opcode.decode_op_n() else: n += 20 lastOpcode = opcode return n SIGHASH_ALL = 1 SIGHASH_NONE = 2 SIGHASH_SINGLE = 3 SIGHASH_FORKID = 0x40 SIGHASH_ANYONECANPAY = 0x80 def FindAndDelete(script, sig): """Consensus critical, see FindAndDelete() in Satoshi codebase""" r = b'' last_sop_idx = sop_idx = 0 skip = True for (opcode, data, sop_idx) in script.raw_iter(): if not skip: r += script[last_sop_idx:sop_idx] last_sop_idx = sop_idx if script[sop_idx:sop_idx + len(sig)] == sig: skip = True else: skip = False if not skip: r += script[last_sop_idx:] return CScript(r) def SignatureHash(script, txTo, inIdx, hashtype): """Consensus-correct SignatureHash Returns (hash, err) to precisely match the consensus-critical behavior of the SIGHASH_SINGLE bug. (inIdx is *not* checked for validity) """ HASH_ONE = b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' if inIdx >= len(txTo.vin): return (HASH_ONE, "inIdx {} out of range ({})".format(inIdx, len(txTo.vin))) txtmp = CTransaction(txTo) for txin in txtmp.vin: txin.scriptSig = b'' txtmp.vin[inIdx].scriptSig = FindAndDelete( script, CScript([OP_CODESEPARATOR])) if (hashtype & 0x1f) == SIGHASH_NONE: txtmp.vout = [] for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 elif (hashtype & 0x1f) == SIGHASH_SINGLE: outIdx = inIdx if outIdx >= len(txtmp.vout): return (HASH_ONE, "outIdx {} out of range ({})".format(outIdx, len(txtmp.vout))) tmp = txtmp.vout[outIdx] txtmp.vout = [] for i in range(outIdx): txtmp.vout.append(CTxOut(-1)) txtmp.vout.append(tmp) for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 if hashtype & SIGHASH_ANYONECANPAY: tmp = txtmp.vin[inIdx] txtmp.vin = [] txtmp.vin.append(tmp) s = txtmp.serialize() s += struct.pack(b" (tx_size + wiggleroom) * fee_per_kB / 1000: raise AssertionError( "Fee of {} BCH too high! (Should be {} BCH)".format(str(fee), str(target_fee))) def assert_equal(thing1, thing2, *args): if thing1 != thing2 or any(thing1 != arg for arg in args): raise AssertionError("not({})".format(" == ".join(str(arg) for arg in (thing1, thing2) + args))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("{} <= {}".format(str(thing1), str(thing2))) def assert_greater_than_or_equal(thing1, thing2): if thing1 < thing2: raise AssertionError("{} < {}".format(str(thing1), str(thing2))) def assert_raises(exc, fun, *args, **kwds): assert_raises_message(exc, None, fun, *args, **kwds) def assert_raises_message(exc, message, fun, *args, **kwds): try: fun(*args, **kwds) except JSONRPCException: raise AssertionError( "Use assert_raises_rpc_error() to test RPC failures") except exc as e: if message is not None and message not in e.error['message']: raise AssertionError( "Expected substring not found:" + e.error['message']) except Exception as e: raise AssertionError( "Unexpected exception raised: " + type(e).__name__) else: raise AssertionError("No exception raised") def assert_raises_process_error(returncode, output, fun, *args, **kwds): """Execute a process and asserts the process return code and output. Calls function `fun` with arguments `args` and `kwds`. Catches a CalledProcessError and verifies that the return code and output are as expected. Throws AssertionError if no CalledProcessError was raised or if the return code and output are not as expected. Args: returncode (int): the process return code. output (string): [a substring of] the process output. fun (function): the function to call. This should execute a process. args*: positional arguments for the function. kwds**: named arguments for the function. """ try: fun(*args, **kwds) except CalledProcessError as e: if returncode != e.returncode: raise AssertionError( "Unexpected returncode {}".format(e.returncode)) if output not in e.output: raise AssertionError("Expected substring not found:" + e.output) else: raise AssertionError("No exception raised") def assert_raises_rpc_error(code, message, fun, *args, **kwds): """Run an RPC and verify that a specific JSONRPC exception code and message is raised. Calls function `fun` with arguments `args` and `kwds`. Catches a JSONRPCException and verifies that the error code and message are as expected. Throws AssertionError if no JSONRPCException was raised or if the error code/message are not as expected. Args: code (int), optional: the error code returned by the RPC call (defined in src/rpc/protocol.h). Set to None if checking the error code is not required. message (string), optional: [a substring of] the error string returned by the RPC call. Set to None if checking the error string is not required. fun (function): the function to call. This should be the name of an RPC. args*: positional arguments for the function. kwds**: named arguments for the function. """ assert try_rpc(code, message, fun, *args, **kwds), "No exception raised" def try_rpc(code, message, fun, *args, **kwds): """Tries to run an rpc command. Test against error code and message if the rpc fails. Returns whether a JSONRPCException was raised.""" try: fun(*args, **kwds) except JSONRPCException as e: # JSONRPCException was thrown as expected. Check the code and message values are correct. if (code is not None) and (code != e.error["code"]): raise AssertionError( "Unexpected JSONRPC error code {}".format(e.error["code"])) if (message is not None) and (message not in e.error['message']): raise AssertionError( "Expected substring not found:" + e.error['message']) return True except Exception as e: raise AssertionError( "Unexpected exception raised: " + type(e).__name__) else: return False def assert_is_hex_string(string): try: int(string, 16) except Exception as e: raise AssertionError( "Couldn't interpret {!r} as hexadecimal; raised: {}".format(string, e)) def assert_is_hash_string(string, length=64): if not isinstance(string, str): raise AssertionError( "Expected a string, got type {!r}".format(type(string))) elif length and len(string) != length: raise AssertionError( "String of length {} expected; got {}".format(length, len(string))) elif not re.match('[abcdef0-9]+$', string): raise AssertionError( "String {!r} contains invalid characters for a hash.".format(string)) def assert_array_result(object_array, to_match, expected, should_not_find=False): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. If the should_not_find flag is true, to_match should not be found in object_array """ if should_not_find: assert_equal(expected, {}) num_matched = 0 for item in object_array: all_match = True for key, value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue elif should_not_find: num_matched = num_matched + 1 for key, value in expected.items(): if item[key] != value: raise AssertionError("{} : expected {}={}".format( str(item), str(key), str(value))) num_matched = num_matched + 1 if num_matched == 0 and not should_not_find: raise AssertionError("No objects matched {}".format(str(to_match))) if num_matched > 0 and should_not_find: raise AssertionError("Objects were found {}".format(str(to_match))) # Utility functions ################### def check_json_precision(): """Make sure json library being used does not lose precision converting BCH values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n))) * 1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def count_bytes(hex_string): return len(bytearray.fromhex(hex_string)) -def bytes_to_hex_str(byte_str): - return hexlify(byte_str).decode('ascii') +def b_2_x(byte_str): + return byte_str.hex() def hash256(byte_str): sha256 = hashlib.sha256() sha256.update(byte_str) sha256d = hashlib.sha256() sha256d.update(sha256.digest()) return sha256d.digest()[::-1] def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) def wait_until(predicate, *, attempts=float('inf'), timeout=float('inf'), lock=None): if attempts == float('inf') and timeout == float('inf'): timeout = 60 attempt = 0 time_end = time.time() + timeout while attempt < attempts and time.time() < time_end: if lock: with lock: if predicate(): return else: if predicate(): return attempt += 1 time.sleep(0.05) # Print the cause of the timeout predicate_source = inspect.getsourcelines(predicate) logger.error("wait_until() failed. Predicate: {}".format(predicate_source)) if attempt >= attempts: raise AssertionError("Predicate {} not true after {} attempts".format( predicate_source, attempts)) elif time.time() >= time_end: raise AssertionError( "Predicate {} not true after {} seconds".format(predicate_source, timeout)) raise RuntimeError('Unreachable') # RPC/P2P connection constants and functions ############################################ # The maximum number of nodes a single test can spawn MAX_NODES = 8 # Don't assign rpc or p2p ports lower than this PORT_MIN = 11000 # The number of ports to "reserve" for p2p and rpc, each PORT_RANGE = 5000 class PortSeed: # Must be initialized with a unique integer for each process n = None def get_rpc_proxy(url, node_number, timeout=None, coveragedir=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = timeout proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( coveragedir, node_number) if coveragedir else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def p2p_port(n): assert(n <= MAX_NODES) return PORT_MIN + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_port(n): return PORT_MIN + PORT_RANGE + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_url(datadir, host, port): rpc_u, rpc_p = get_auth_cookie(datadir) if host == None: host = '127.0.0.1' return "http://{}:{}@{}:{}".format(rpc_u, rpc_p, host, int(port)) # Node functions ################ def initialize_datadir(dirname, n): datadir = get_datadir_path(dirname, n) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "bitcoin.conf"), 'w', encoding='utf8') as f: f.write("regtest=1\n") f.write("[regtest]\n") f.write("port=" + str(p2p_port(n)) + "\n") f.write("rpcport=" + str(rpc_port(n)) + "\n") f.write("server=1\n") f.write("keypool=1\n") f.write("discover=0\n") f.write("listenonion=0\n") f.write("usecashaddr=1\n") os.makedirs(os.path.join(datadir, 'stderr'), exist_ok=True) os.makedirs(os.path.join(datadir, 'stdout'), exist_ok=True) return datadir def get_datadir_path(dirname, n): return os.path.join(dirname, "node" + str(n)) def append_config(datadir, options): with open(os.path.join(datadir, "bitcoin.conf"), 'a', encoding='utf8') as f: for option in options: f.write(option + "\n") def get_auth_cookie(datadir): user = None password = None if os.path.isfile(os.path.join(datadir, "bitcoin.conf")): with open(os.path.join(datadir, "bitcoin.conf"), 'r', encoding='utf8') as f: for line in f: if line.startswith("rpcuser="): assert user is None # Ensure that there is only one rpcuser line user = line.split("=")[1].strip("\n") if line.startswith("rpcpassword="): assert password is None # Ensure that there is only one rpcpassword line password = line.split("=")[1].strip("\n") if os.path.isfile(os.path.join(datadir, "regtest", ".cookie")): with open(os.path.join(datadir, "regtest", ".cookie"), 'r', encoding="ascii") as f: userpass = f.read() split_userpass = userpass.split(':') user = split_userpass[0] password = split_userpass[1] if user is None or password is None: raise ValueError("No RPC credentials") return user, password # If a cookie file exists in the given datadir, delete it. def delete_cookie_file(datadir): if os.path.isfile(os.path.join(datadir, "regtest", ".cookie")): logger.debug("Deleting leftover cookie file") os.remove(os.path.join(datadir, "regtest", ".cookie")) def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def disconnect_nodes(from_node, to_node): for peer_id in [peer['id'] for peer in from_node.getpeerinfo() if to_node.name in peer['subver']]: try: from_node.disconnectnode(nodeid=peer_id) except JSONRPCException as e: # If this node is disconnected between calculating the peer id # and issuing the disconnect, don't worry about it. # This avoids a race condition if we're mass-disconnecting peers. if e.error['code'] != -29: # RPC_CLIENT_NODE_NOT_CONNECTED raise # wait to disconnect wait_until(lambda: [peer['id'] for peer in from_node.getpeerinfo( ) if to_node.name in peer['subver']] == [], timeout=5) def connect_nodes(from_node, to_node): host = to_node.host if host == None: host = '127.0.0.1' ip_port = host + ':' + str(to_node.p2p_port) from_node.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying wait_until(lambda: all(peer['version'] != 0 for peer in from_node.getpeerinfo())) def connect_nodes_bi(a, b): connect_nodes(a, b) connect_nodes(b, a) def sync_blocks(rpc_connections, *, wait=1, timeout=60): """ Wait until everybody has the same tip. sync_blocks needs to be called with an rpc_connections set that has least one node already synced to the latest, stable tip, otherwise there's a chance it might return before all nodes are stably synced. """ stop_time = time.time() + timeout while time.time() <= stop_time: best_hash = [x.getbestblockhash() for x in rpc_connections] if best_hash.count(best_hash[0]) == len(rpc_connections): return time.sleep(wait) raise AssertionError("Block sync timed out:{}".format( "".join("\n {!r}".format(b) for b in best_hash))) def sync_mempools(rpc_connections, *, wait=1, timeout=60, flush_scheduler=True): """ Wait until everybody has the same transactions in their memory pools """ stop_time = time.time() + timeout while time.time() <= stop_time: pool = [set(r.getrawmempool()) for r in rpc_connections] if pool.count(pool[0]) == len(rpc_connections): if flush_scheduler: for r in rpc_connections: r.syncwithvalidationinterfacequeue() return time.sleep(wait) raise AssertionError("Mempool sync timed out:{}".format( "".join("\n {!r}".format(m) for m in pool))) # Transaction/Block functions ############################# def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid {} : {} not found".format( txid, str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >= 0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append( {"txid": t["txid"], "vout": t["vout"], "address": t["address"]}) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need {}, have {}".format( amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out + fee change = amount_in - amount if change > amount * 2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal( change / 2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using its output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount + fee * 2) outputs = make_change(from_node, total_in, amount + fee, fee) outputs[self_address] = float(amount + fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransactionwithwallet(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount + fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [{"txid": self_txid, "vout": vout}] outputs = {to_node.getnewaddress(): float(amount)} rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransactionwithwallet(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment * random.randint(0, fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment * random.randint(0, fee_variants) (total_in, inputs) = gather_inputs(from_node, amount + fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransactionwithwallet(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) # Create large OP_RETURN txouts that can be appended to a transaction # to make it large (helper for constructing large transactions). def gen_return_txouts(): # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create # So we have big transactions (and therefore can't fit very many into each block) # create one script_pubkey script_pubkey = "6a4d0200" # OP_RETURN OP_PUSH2 512 bytes for i in range(512): script_pubkey = script_pubkey + "01" # concatenate 128 txouts of above script_pubkey which we'll insert before # the txout for change txouts = "81" for k in range(128): # add txout value txouts = txouts + "0000000000000000" # add length of script_pubkey txouts = txouts + "fd0402" # add script_pubkey txouts = txouts + script_pubkey return txouts def create_tx(node, coinbase, to_address, amount): inputs = [{"txid": coinbase, "vout": 0}] outputs = {to_address: amount} rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransactionwithwallet(rawtx) assert_equal(signresult["complete"], True) return signresult["hex"] # Create a spend of each passed-in utxo, splicing in "txouts" to each raw # transaction to make it large. See gen_return_txouts() above. def create_lots_of_big_transactions(node, txouts, utxos, num, fee): addr = node.getnewaddress() txids = [] for _ in range(num): t = utxos.pop() inputs = [{"txid": t["txid"], "vout": t["vout"]}] outputs = {} change = t['amount'] - fee outputs[addr] = satoshi_round(change) rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + txouts newtx = newtx + rawtx[94:] signresult = node.signrawtransactionwithwallet( newtx, None, "NONE|FORKID") txid = node.sendrawtransaction(signresult["hex"], True) txids.append(txid) return txids def find_vout_for_address(node, txid, addr): """ Locate the vout index of the given transaction sending to the given address. Raises runtime error exception if not found. """ tx = node.getrawtransaction(txid, True) for i in range(len(tx["vout"])): if any([addr == a for a in tx["vout"][i]["scriptPubKey"]["addresses"]]): return i raise RuntimeError( "Vout not found for address: txid={}, addr={}".format(txid, addr))