diff --git a/src/primitives/transaction.cpp b/src/primitives/transaction.cpp index c0fd81cb4a..64caf58f94 100644 --- a/src/primitives/transaction.cpp +++ b/src/primitives/transaction.cpp @@ -1,127 +1,127 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "primitives/transaction.h" #include "hash.h" #include "tinyformat.h" #include "utilstrencodings.h" std::string COutPoint::ToString() const { - return strprintf("COutPoint(%s, %u)", hash.ToString().substr(0, 10), n); + return strprintf("COutPoint(%s, %u)", txid.ToString().substr(0, 10), n); } std::string CTxIn::ToString() const { std::string str; str += "CTxIn("; str += prevout.ToString(); if (prevout.IsNull()) { str += strprintf(", coinbase %s", HexStr(scriptSig)); } else { str += strprintf(", scriptSig=%s", HexStr(scriptSig).substr(0, 24)); } if (nSequence != SEQUENCE_FINAL) { str += strprintf(", nSequence=%u", nSequence); } str += ")"; return str; } std::string CTxOut::ToString() const { return strprintf("CTxOut(nValue=%d.%08d, scriptPubKey=%s)", nValue.GetSatoshis() / COIN.GetSatoshis(), nValue.GetSatoshis() % COIN.GetSatoshis(), HexStr(scriptPubKey).substr(0, 30)); } CMutableTransaction::CMutableTransaction() : nVersion(CTransaction::CURRENT_VERSION), nLockTime(0) {} CMutableTransaction::CMutableTransaction(const CTransaction &tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime) {} static uint256 ComputeCMutableTransactionHash(const CMutableTransaction &tx) { return SerializeHash(tx, SER_GETHASH, 0); } TxId CMutableTransaction::GetId() const { return TxId(ComputeCMutableTransactionHash(*this)); } TxHash CMutableTransaction::GetHash() const { return TxHash(ComputeCMutableTransactionHash(*this)); } uint256 CTransaction::ComputeHash() const { return SerializeHash(*this, SER_GETHASH, 0); } /** * For backward compatibility, the hash is initialized to 0. * TODO: remove the need for this default constructor entirely. */ CTransaction::CTransaction() : nVersion(CTransaction::CURRENT_VERSION), vin(), vout(), nLockTime(0), hash() {} CTransaction::CTransaction(const CMutableTransaction &tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime), hash(ComputeHash()) {} CTransaction::CTransaction(CMutableTransaction &&tx) : nVersion(tx.nVersion), vin(std::move(tx.vin)), vout(std::move(tx.vout)), nLockTime(tx.nLockTime), hash(ComputeHash()) {} Amount CTransaction::GetValueOut() const { Amount nValueOut(0); for (std::vector<CTxOut>::const_iterator it(vout.begin()); it != vout.end(); ++it) { nValueOut += it->nValue; if (!MoneyRange(it->nValue) || !MoneyRange(nValueOut)) throw std::runtime_error(std::string(__func__) + ": value out of range"); } return nValueOut; } double CTransaction::ComputePriority(double dPriorityInputs, unsigned int nTxSize) const { nTxSize = CalculateModifiedSize(nTxSize); if (nTxSize == 0) return 0.0; return dPriorityInputs / nTxSize; } unsigned int CTransaction::CalculateModifiedSize(unsigned int nTxSize) const { // In order to avoid disincentivizing cleaning up the UTXO set we don't // count the constant overhead for each txin and up to 110 bytes of // scriptSig (which is enough to cover a compressed pubkey p2sh redemption) // for priority. Providing any more cleanup incentive than making additional // inputs free would risk encouraging people to create junk outputs to // redeem later. if (nTxSize == 0) nTxSize = GetTotalSize(); for (std::vector<CTxIn>::const_iterator it(vin.begin()); it != vin.end(); ++it) { unsigned int offset = 41U + std::min(110U, (unsigned int)it->scriptSig.size()); if (nTxSize > offset) nTxSize -= offset; } return nTxSize; } unsigned int CTransaction::GetTotalSize() const { return ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION); } std::string CTransaction::ToString() const { std::string str; str += strprintf("CTransaction(txid=%s, ver=%d, vin.size=%u, vout.size=%u, " "nLockTime=%u)\n", GetId().ToString().substr(0, 10), nVersion, vin.size(), vout.size(), nLockTime); for (unsigned int i = 0; i < vin.size(); i++) str += " " + vin[i].ToString() + "\n"; for (unsigned int i = 0; i < vout.size(); i++) str += " " + vout[i].ToString() + "\n"; return str; } \ No newline at end of file diff --git a/src/primitives/transaction.h b/src/primitives/transaction.h index d1b3015a37..3263dce1ff 100644 --- a/src/primitives/transaction.h +++ b/src/primitives/transaction.h @@ -1,405 +1,406 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_PRIMITIVES_TRANSACTION_H #define BITCOIN_PRIMITIVES_TRANSACTION_H #include "amount.h" #include "script/script.h" #include "serialize.h" #include "uint256.h" static const int SERIALIZE_TRANSACTION = 0x00; /** * A TxId is the identifier of a transaction. Currently identical to TxHash but * differentiated for type safety. */ struct TxId : public uint256 { explicit TxId(const uint256 &b) : uint256(b) {} }; /** * A TxHash is the double sha256 hash of the full transaction data. */ struct TxHash : public uint256 { explicit TxHash(const uint256 &b) : uint256(b) {} }; /** * An outpoint - a combination of a transaction hash and an index n into its * vout. */ class COutPoint { -public: - uint256 hash; +private: + uint256 txid; uint32_t n; +public: COutPoint() { SetNull(); } - COutPoint(uint256 hashIn, uint32_t nIn) { - hash = hashIn; + COutPoint(uint256 txidIn, uint32_t nIn) { + txid = txidIn; n = nIn; } ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream &s, Operation ser_action) { - READWRITE(hash); + READWRITE(txid); READWRITE(n); } void SetNull() { - hash.SetNull(); + txid.SetNull(); n = uint32_t(-1); } - bool IsNull() const { return hash.IsNull() && n == uint32_t(-1); } + bool IsNull() const { return txid.IsNull() && n == uint32_t(-1); } - TxId GetTxId() const { return TxId(hash); } + TxId GetTxId() const { return TxId(txid); } uint32_t GetN() const { return n; } friend bool operator<(const COutPoint &a, const COutPoint &b) { - int cmp = a.hash.Compare(b.hash); + int cmp = a.txid.Compare(b.txid); return cmp < 0 || (cmp == 0 && a.n < b.n); } friend bool operator==(const COutPoint &a, const COutPoint &b) { - return (a.hash == b.hash && a.n == b.n); + return (a.txid == b.txid && a.n == b.n); } friend bool operator!=(const COutPoint &a, const COutPoint &b) { return !(a == b); } std::string ToString() const; }; /** * An input of a transaction. It contains the location of the previous * transaction's output that it claims and a signature that matches the output's * public key. */ class CTxIn { public: COutPoint prevout; CScript scriptSig; uint32_t nSequence; /** * Setting nSequence to this value for every input in a transaction disables * nLockTime. */ static const uint32_t SEQUENCE_FINAL = 0xffffffff; /* Below flags apply in the context of BIP 68*/ /** * If this flag set, CTxIn::nSequence is NOT interpreted as a relative * lock-time. */ static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31); /** * If CTxIn::nSequence encodes a relative lock-time and this flag is set, * the relative lock-time has units of 512 seconds, otherwise it specifies * blocks with a granularity of 1. */ static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22); /** * If CTxIn::nSequence encodes a relative lock-time, this mask is applied to * extract that lock-time from the sequence field. */ static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff; /** * In order to use the same number of bits to encode roughly the same * wall-clock duration, and because blocks are naturally limited to occur * every 600s on average, the minimum granularity for time-based relative * lock-time is fixed at 512 seconds. Converting from CTxIn::nSequence to * seconds is performed by multiplying by 512 = 2^9, or equivalently * shifting up by 9 bits. */ static const int SEQUENCE_LOCKTIME_GRANULARITY = 9; CTxIn() { nSequence = SEQUENCE_FINAL; } explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn = CScript(), uint32_t nSequenceIn = SEQUENCE_FINAL) : prevout(prevoutIn), scriptSig(scriptSigIn), nSequence(nSequenceIn) {} CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn = CScript(), uint32_t nSequenceIn = SEQUENCE_FINAL) : CTxIn(COutPoint(hashPrevTx, nOut), scriptSigIn, nSequenceIn) {} ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(prevout); READWRITE(scriptSig); READWRITE(nSequence); } friend bool operator==(const CTxIn &a, const CTxIn &b) { return (a.prevout == b.prevout && a.scriptSig == b.scriptSig && a.nSequence == b.nSequence); } friend bool operator!=(const CTxIn &a, const CTxIn &b) { return !(a == b); } std::string ToString() const; }; /** * An output of a transaction. It contains the public key that the next input * must be able to sign with to claim it. */ class CTxOut { public: Amount nValue; CScript scriptPubKey; CTxOut() { SetNull(); } CTxOut(Amount nValueIn, CScript scriptPubKeyIn) : nValue(nValueIn), scriptPubKey(scriptPubKeyIn) {} ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(nValue); READWRITE(scriptPubKey); } void SetNull() { nValue = Amount(-1); scriptPubKey.clear(); } bool IsNull() const { return (nValue == Amount(-1)); } Amount GetDustThreshold(const CFeeRate &minRelayTxFee) const { /** * "Dust" is defined in terms of CTransaction::minRelayTxFee, which has * units satoshis-per-kilobyte. If you'd pay more than 1/3 in fees to * spend something, then we consider it dust. A typical spendable * non-segwit txout is 34 bytes big, and will need a CTxIn of at least * 148 bytes to spend: so dust is a spendable txout less than * 546*minRelayTxFee/1000 (in satoshis). A typical spendable segwit * txout is 31 bytes big, and will need a CTxIn of at least 67 bytes to * spend: so dust is a spendable txout less than 294*minRelayTxFee/1000 * (in satoshis). */ if (scriptPubKey.IsUnspendable()) return Amount(0); size_t nSize = GetSerializeSize(*this, SER_DISK, 0); // the 148 mentioned above nSize += (32 + 4 + 1 + 107 + 4); return 3 * minRelayTxFee.GetFee(nSize); } bool IsDust(const CFeeRate &minRelayTxFee) const { return (nValue < GetDustThreshold(minRelayTxFee)); } friend bool operator==(const CTxOut &a, const CTxOut &b) { return (a.nValue == b.nValue && a.scriptPubKey == b.scriptPubKey); } friend bool operator!=(const CTxOut &a, const CTxOut &b) { return !(a == b); } std::string ToString() const; }; class CMutableTransaction; /** * Basic transaction serialization format: * - int32_t nVersion * - std::vector<CTxIn> vin * - std::vector<CTxOut> vout * - uint32_t nLockTime */ template <typename Stream, typename TxType> inline void UnserializeTransaction(TxType &tx, Stream &s) { s >> tx.nVersion; tx.vin.clear(); tx.vout.clear(); /* Try to read the vin. In case the dummy is there, this will be read as an * empty vector. */ s >> tx.vin; /* We read a non-empty vin. Assume a normal vout follows. */ s >> tx.vout; s >> tx.nLockTime; } template <typename Stream, typename TxType> inline void SerializeTransaction(const TxType &tx, Stream &s) { s << tx.nVersion; s << tx.vin; s << tx.vout; s << tx.nLockTime; } /** * The basic transaction that is broadcasted on the network and contained in * blocks. A transaction can contain multiple inputs and outputs. */ class CTransaction { public: // Default transaction version. static const int32_t CURRENT_VERSION = 2; // Changing the default transaction version requires a two step process: // first adapting relay policy by bumping MAX_STANDARD_VERSION, and then // later date bumping the default CURRENT_VERSION at which point both // CURRENT_VERSION and MAX_STANDARD_VERSION will be equal. static const int32_t MAX_STANDARD_VERSION = 2; // The local variables are made const to prevent unintended modification // without updating the cached hash value. However, CTransaction is not // actually immutable; deserialization and assignment are implemented, // and bypass the constness. This is safe, as they update the entire // structure, including the hash. const int32_t nVersion; const std::vector<CTxIn> vin; const std::vector<CTxOut> vout; const uint32_t nLockTime; private: /** Memory only. */ const uint256 hash; uint256 ComputeHash() const; public: /** Construct a CTransaction that qualifies as IsNull() */ CTransaction(); /** Convert a CMutableTransaction into a CTransaction. */ explicit CTransaction(const CMutableTransaction &tx); explicit CTransaction(CMutableTransaction &&tx); template <typename Stream> inline void Serialize(Stream &s) const { SerializeTransaction(*this, s); } /** * This deserializing constructor is provided instead of an Unserialize * method. Unserialize is not possible, since it would require overwriting * const fields. */ template <typename Stream> CTransaction(deserialize_type, Stream &s) : CTransaction(CMutableTransaction(deserialize, s)) {} bool IsNull() const { return vin.empty() && vout.empty(); } const TxId GetId() const { return TxId(hash); } const TxHash GetHash() const { return TxHash(hash); } // Return sum of txouts. Amount GetValueOut() const; // GetValueIn() is a method on CCoinsViewCache, because // inputs must be known to compute value in. // Compute priority, given priority of inputs and (optionally) tx size double ComputePriority(double dPriorityInputs, unsigned int nTxSize = 0) const; // Compute modified tx size for priority calculation (optionally given tx // size) unsigned int CalculateModifiedSize(unsigned int nTxSize = 0) const; /** * Get the total transaction size in bytes. * @return Total transaction size in bytes */ unsigned int GetTotalSize() const; bool IsCoinBase() const { return (vin.size() == 1 && vin[0].prevout.IsNull()); } friend bool operator==(const CTransaction &a, const CTransaction &b) { return a.hash == b.hash; } friend bool operator!=(const CTransaction &a, const CTransaction &b) { return a.hash != b.hash; } std::string ToString() const; }; /** * A mutable version of CTransaction. */ class CMutableTransaction { public: int32_t nVersion; std::vector<CTxIn> vin; std::vector<CTxOut> vout; uint32_t nLockTime; CMutableTransaction(); CMutableTransaction(const CTransaction &tx); template <typename Stream> inline void Serialize(Stream &s) const { SerializeTransaction(*this, s); } template <typename Stream> inline void Unserialize(Stream &s) { UnserializeTransaction(*this, s); } template <typename Stream> CMutableTransaction(deserialize_type, Stream &s) { Unserialize(s); } /** * Compute the id and hash of this CMutableTransaction. This is computed on * the fly, as opposed to GetId() and GetHash() in CTransaction, which uses * a cached result. */ TxId GetId() const; TxHash GetHash() const; friend bool operator==(const CMutableTransaction &a, const CMutableTransaction &b) { return a.GetId() == b.GetId(); } }; typedef std::shared_ptr<const CTransaction> CTransactionRef; static inline CTransactionRef MakeTransactionRef() { return std::make_shared<const CTransaction>(); } template <typename Tx> static inline CTransactionRef MakeTransactionRef(Tx &&txIn) { return std::make_shared<const CTransaction>(std::forward<Tx>(txIn)); } /** Precompute sighash midstate to avoid quadratic hashing */ struct PrecomputedTransactionData { uint256 hashPrevouts, hashSequence, hashOutputs; PrecomputedTransactionData() : hashPrevouts(), hashSequence(), hashOutputs() {} PrecomputedTransactionData(const PrecomputedTransactionData &txdata) : hashPrevouts(txdata.hashPrevouts), hashSequence(txdata.hashSequence), hashOutputs(txdata.hashOutputs) {} PrecomputedTransactionData(const CTransaction &tx); }; #endif // BITCOIN_PRIMITIVES_TRANSACTION_H diff --git a/src/test/multisig_tests.cpp b/src/test/multisig_tests.cpp index 0c708cd43c..ed00d28d4d 100644 --- a/src/test/multisig_tests.cpp +++ b/src/test/multisig_tests.cpp @@ -1,361 +1,360 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "key.h" #include "keystore.h" #include "policy/policy.h" #include "script/interpreter.h" #include "script/ismine.h" #include "script/script.h" #include "script/script_error.h" #include "script/sighashtype.h" #include "script/sign.h" #include "test/test_bitcoin.h" #include "uint256.h" #include <boost/test/unit_test.hpp> typedef std::vector<uint8_t> valtype; BOOST_FIXTURE_TEST_SUITE(multisig_tests, BasicTestingSetup) CScript sign_multisig(CScript scriptPubKey, std::vector<CKey> keys, CMutableTransaction mutableTransaction, int whichIn) { uint256 hash = SignatureHash(scriptPubKey, CTransaction(mutableTransaction), whichIn, SigHashType(), Amount(0)); CScript result; // CHECKMULTISIG bug workaround result << OP_0; for (const CKey &key : keys) { std::vector<uint8_t> vchSig; BOOST_CHECK(key.Sign(hash, vchSig)); vchSig.push_back(uint8_t(SIGHASH_ALL)); result << vchSig; } return result; } BOOST_AUTO_TEST_CASE(multisig_verify) { - unsigned int flags = SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC; + uint32_t flags = SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC; ScriptError err; CKey key[4]; Amount amount(0); - for (int i = 0; i < 4; i++) + for (int i = 0; i < 4; i++) { key[i].MakeNewKey(true); + } CScript a_and_b; a_and_b << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript a_or_b; a_or_b << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript escrow; escrow << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; // Funding transaction CMutableTransaction txFrom; txFrom.vout.resize(3); txFrom.vout[0].scriptPubKey = a_and_b; txFrom.vout[1].scriptPubKey = a_or_b; txFrom.vout[2].scriptPubKey = escrow; // Spending transaction CMutableTransaction txTo[3]; for (int i = 0; i < 3; i++) { txTo[i].vin.resize(1); txTo[i].vout.resize(1); - txTo[i].vin[0].prevout.n = i; - txTo[i].vin[0].prevout.hash = txFrom.GetId(); + txTo[i].vin[0].prevout = COutPoint(txFrom.GetId(), i); txTo[i].vout[0].nValue = Amount(1); } std::vector<CKey> keys; CScript s; // Test a AND b: keys.assign(1, key[0]); keys.push_back(key[1]); s = sign_multisig(a_and_b, keys, txTo[0], 0); BOOST_CHECK(VerifyScript( s, a_and_b, flags, MutableTransactionSignatureChecker(&txTo[0], 0, amount), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); for (int i = 0; i < 4; i++) { keys.assign(1, key[i]); s = sign_multisig(a_and_b, keys, txTo[0], 0); BOOST_CHECK_MESSAGE( !VerifyScript( s, a_and_b, flags, MutableTransactionSignatureChecker(&txTo[0], 0, amount), &err), strprintf("a&b 1: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_INVALID_STACK_OPERATION, ScriptErrorString(err)); keys.assign(1, key[1]); keys.push_back(key[i]); s = sign_multisig(a_and_b, keys, txTo[0], 0); BOOST_CHECK_MESSAGE( !VerifyScript( s, a_and_b, flags, MutableTransactionSignatureChecker(&txTo[0], 0, amount), &err), strprintf("a&b 2: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } // Test a OR b: for (int i = 0; i < 4; i++) { keys.assign(1, key[i]); s = sign_multisig(a_or_b, keys, txTo[1], 0); if (i == 0 || i == 1) { BOOST_CHECK_MESSAGE(VerifyScript(s, a_or_b, flags, MutableTransactionSignatureChecker( &txTo[1], 0, amount), &err), strprintf("a|b: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } else { BOOST_CHECK_MESSAGE( !VerifyScript( s, a_or_b, flags, MutableTransactionSignatureChecker(&txTo[1], 0, amount), &err), strprintf("a|b: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } } s.clear(); s << OP_0 << OP_1; BOOST_CHECK(!VerifyScript( s, a_or_b, flags, MutableTransactionSignatureChecker(&txTo[1], 0, amount), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_SIG_DER, ScriptErrorString(err)); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) { keys.assign(1, key[i]); keys.push_back(key[j]); s = sign_multisig(escrow, keys, txTo[2], 0); if (i < j && i < 3 && j < 3) { BOOST_CHECK_MESSAGE( VerifyScript( s, escrow, flags, MutableTransactionSignatureChecker(&txTo[2], 0, amount), &err), strprintf("escrow 1: %d %d", i, j)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } else { BOOST_CHECK_MESSAGE( !VerifyScript( s, escrow, flags, MutableTransactionSignatureChecker(&txTo[2], 0, amount), &err), strprintf("escrow 2: %d %d", i, j)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } } } BOOST_AUTO_TEST_CASE(multisig_IsStandard) { CKey key[4]; for (int i = 0; i < 4; i++) key[i].MakeNewKey(true); txnouttype whichType; CScript a_and_b; a_and_b << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(::IsStandard(a_and_b, whichType)); CScript a_or_b; a_or_b << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(::IsStandard(a_or_b, whichType)); CScript escrow; escrow << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; BOOST_CHECK(::IsStandard(escrow, whichType)); CScript one_of_four; one_of_four << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << ToByteVector(key[3].GetPubKey()) << OP_4 << OP_CHECKMULTISIG; BOOST_CHECK(!::IsStandard(one_of_four, whichType)); CScript malformed[6]; malformed[0] << OP_3 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; malformed[1] << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; malformed[2] << OP_0 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; malformed[3] << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_0 << OP_CHECKMULTISIG; malformed[4] << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_CHECKMULTISIG; malformed[5] << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()); for (int i = 0; i < 6; i++) BOOST_CHECK(!::IsStandard(malformed[i], whichType)); } BOOST_AUTO_TEST_CASE(multisig_Solver1) { // Tests Solver() that returns lists of keys that are required to satisfy a // ScriptPubKey // // Also tests IsMine() and ExtractDestination() // // Note: ExtractDestination for the multisignature transactions always // returns false for this release, even if you have one key that would // satisfy an (a|b) or 2-of-3 keys needed to spend an escrow transaction. // CBasicKeyStore keystore, emptykeystore, partialkeystore; CKey key[3]; CTxDestination keyaddr[3]; for (int i = 0; i < 3; i++) { key[i].MakeNewKey(true); keystore.AddKey(key[i]); keyaddr[i] = key[i].GetPubKey().GetID(); } partialkeystore.AddKey(key[0]); { std::vector<valtype> solutions; txnouttype whichType; CScript s; s << ToByteVector(key[0].GetPubKey()) << OP_CHECKSIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK(solutions.size() == 1); CTxDestination addr; BOOST_CHECK(ExtractDestination(s, addr)); BOOST_CHECK(addr == keyaddr[0]); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); } { std::vector<valtype> solutions; txnouttype whichType; CScript s; s << OP_DUP << OP_HASH160 << ToByteVector(key[0].GetPubKey().GetID()) << OP_EQUALVERIFY << OP_CHECKSIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK(solutions.size() == 1); CTxDestination addr; BOOST_CHECK(ExtractDestination(s, addr)); BOOST_CHECK(addr == keyaddr[0]); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); } { std::vector<valtype> solutions; txnouttype whichType; CScript s; s << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK_EQUAL(solutions.size(), 4U); CTxDestination addr; BOOST_CHECK(!ExtractDestination(s, addr)); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); BOOST_CHECK(!IsMine(partialkeystore, s)); } { std::vector<valtype> solutions; txnouttype whichType; CScript s; s << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK_EQUAL(solutions.size(), 4U); std::vector<CTxDestination> addrs; int nRequired; BOOST_CHECK(ExtractDestinations(s, whichType, addrs, nRequired)); BOOST_CHECK(addrs[0] == keyaddr[0]); BOOST_CHECK(addrs[1] == keyaddr[1]); BOOST_CHECK(nRequired == 1); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); BOOST_CHECK(!IsMine(partialkeystore, s)); } { std::vector<valtype> solutions; txnouttype whichType; CScript s; s << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK(solutions.size() == 5); } } BOOST_AUTO_TEST_CASE(multisig_Sign) { // Test SignSignature() (and therefore the version of Solver() that signs // transactions) CBasicKeyStore keystore; CKey key[4]; for (int i = 0; i < 4; i++) { key[i].MakeNewKey(true); keystore.AddKey(key[i]); } CScript a_and_b; a_and_b << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript a_or_b; a_or_b << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript escrow; escrow << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; // Funding transaction CMutableTransaction txFrom; txFrom.vout.resize(3); txFrom.vout[0].scriptPubKey = a_and_b; txFrom.vout[1].scriptPubKey = a_or_b; txFrom.vout[2].scriptPubKey = escrow; // Spending transaction CMutableTransaction txTo[3]; for (int i = 0; i < 3; i++) { txTo[i].vin.resize(1); txTo[i].vout.resize(1); - txTo[i].vin[0].prevout.n = i; - txTo[i].vin[0].prevout.hash = txFrom.GetId(); + txTo[i].vin[0].prevout = COutPoint(txFrom.GetId(), i); txTo[i].vout[0].nValue = Amount(1); } for (int i = 0; i < 3; i++) { BOOST_CHECK_MESSAGE(SignSignature(keystore, CTransaction(txFrom), txTo[i], 0, SigHashType().withForkId()), strprintf("SignSignature %d", i)); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/transaction_tests.cpp b/src/test/transaction_tests.cpp index 31c4414f92..a4a68413e5 100644 --- a/src/test/transaction_tests.cpp +++ b/src/test/transaction_tests.cpp @@ -1,792 +1,787 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "data/tx_invalid.json.h" #include "data/tx_valid.json.h" #include "test/test_bitcoin.h" #include "checkqueue.h" #include "clientversion.h" #include "consensus/validation.h" #include "core_io.h" #include "key.h" #include "keystore.h" #include "policy/policy.h" #include "script/script.h" #include "script/script_error.h" #include "script/sign.h" #include "script/standard.h" #include "test/jsonutil.h" #include "test/scriptflags.h" #include "utilstrencodings.h" #include "validation.h" // For CheckRegularTransaction #include <map> #include <string> #include <boost/range/adaptor/reversed.hpp> #include <boost/test/unit_test.hpp> #include <univalue.h> typedef std::vector<uint8_t> valtype; BOOST_FIXTURE_TEST_SUITE(transaction_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(tx_valid) { // Read tests from test/data/tx_valid.json // Format is an array of arrays // Inner arrays are either [ "comment" ] // or [[[prevout hash, prevout index, prevout scriptPubKey], [input 2], // ...],"], serializedTransaction, verifyFlags // ... where all scripts are stringified scripts. // // verifyFlags is a comma separated list of script verification flags to // apply, or "NONE" UniValue tests = read_json( std::string(json_tests::tx_valid, json_tests::tx_valid + sizeof(json_tests::tx_valid))); ScriptError err; for (size_t idx = 0; idx < tests.size(); idx++) { UniValue test = tests[idx]; std::string strTest = test.write(); if (test[0].isArray()) { if (test.size() != 3 || !test[1].isStr() || !test[2].isStr()) { BOOST_ERROR("Bad test: " << strTest); continue; } std::map<COutPoint, CScript> mapprevOutScriptPubKeys; std::map<COutPoint, Amount> mapprevOutValues; UniValue inputs = test[0].get_array(); bool fValid = true; for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++) { const UniValue &input = inputs[inpIdx]; if (!input.isArray()) { fValid = false; break; } UniValue vinput = input.get_array(); if (vinput.size() < 3 || vinput.size() > 4) { fValid = false; break; } COutPoint outpoint(uint256S(vinput[0].get_str()), vinput[1].get_int()); mapprevOutScriptPubKeys[outpoint] = ParseScript(vinput[2].get_str()); if (vinput.size() >= 4) { mapprevOutValues[outpoint] = Amount(vinput[3].get_int64()); } } if (!fValid) { BOOST_ERROR("Bad test: " << strTest); continue; } std::string transaction = test[1].get_str(); CDataStream stream(ParseHex(transaction), SER_NETWORK, PROTOCOL_VERSION); CTransaction tx(deserialize, stream); CValidationState state; BOOST_CHECK_MESSAGE(tx.IsCoinBase() ? CheckCoinbase(tx, state) : CheckRegularTransaction(tx, state), strTest); BOOST_CHECK(state.IsValid()); PrecomputedTransactionData txdata(tx); for (size_t i = 0; i < tx.vin.size(); i++) { if (!mapprevOutScriptPubKeys.count(tx.vin[i].prevout)) { BOOST_ERROR("Bad test: " << strTest); break; } Amount amount(0); if (mapprevOutValues.count(tx.vin[i].prevout)) { amount = Amount(mapprevOutValues[tx.vin[i].prevout]); } uint32_t verify_flags = ParseScriptFlags(test[2].get_str()); BOOST_CHECK_MESSAGE( VerifyScript(tx.vin[i].scriptSig, mapprevOutScriptPubKeys[tx.vin[i].prevout], verify_flags, TransactionSignatureChecker( &tx, i, amount, txdata), &err), strTest); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } } } } BOOST_AUTO_TEST_CASE(tx_invalid) { // Read tests from test/data/tx_invalid.json // Format is an array of arrays // Inner arrays are either [ "comment" ] // or [[[prevout hash, prevout index, prevout scriptPubKey], [input 2], // ...],"], serializedTransaction, verifyFlags // ... where all scripts are stringified scripts. // // verifyFlags is a comma separated list of script verification flags to // apply, or "NONE" UniValue tests = read_json( std::string(json_tests::tx_invalid, json_tests::tx_invalid + sizeof(json_tests::tx_invalid))); ScriptError err; for (size_t idx = 0; idx < tests.size(); idx++) { UniValue test = tests[idx]; std::string strTest = test.write(); if (test[0].isArray()) { if (test.size() != 3 || !test[1].isStr() || !test[2].isStr()) { BOOST_ERROR("Bad test: " << strTest); continue; } std::map<COutPoint, CScript> mapprevOutScriptPubKeys; std::map<COutPoint, Amount> mapprevOutValues; UniValue inputs = test[0].get_array(); bool fValid = true; for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++) { const UniValue &input = inputs[inpIdx]; if (!input.isArray()) { fValid = false; break; } UniValue vinput = input.get_array(); if (vinput.size() < 3 || vinput.size() > 4) { fValid = false; break; } COutPoint outpoint(uint256S(vinput[0].get_str()), vinput[1].get_int()); mapprevOutScriptPubKeys[outpoint] = ParseScript(vinput[2].get_str()); if (vinput.size() >= 4) { mapprevOutValues[outpoint] = Amount(vinput[3].get_int64()); } } if (!fValid) { BOOST_ERROR("Bad test: " << strTest); continue; } std::string transaction = test[1].get_str(); CDataStream stream(ParseHex(transaction), SER_NETWORK, PROTOCOL_VERSION); CTransaction tx(deserialize, stream); CValidationState state; fValid = CheckRegularTransaction(tx, state) && state.IsValid(); PrecomputedTransactionData txdata(tx); for (size_t i = 0; i < tx.vin.size() && fValid; i++) { if (!mapprevOutScriptPubKeys.count(tx.vin[i].prevout)) { BOOST_ERROR("Bad test: " << strTest); break; } Amount amount(0); if (0 != mapprevOutValues.count(tx.vin[i].prevout)) { amount = mapprevOutValues[tx.vin[i].prevout]; } uint32_t verify_flags = ParseScriptFlags(test[2].get_str()); fValid = VerifyScript( tx.vin[i].scriptSig, mapprevOutScriptPubKeys[tx.vin[i].prevout], verify_flags, TransactionSignatureChecker(&tx, i, amount, txdata), &err); } BOOST_CHECK_MESSAGE(!fValid, strTest); BOOST_CHECK_MESSAGE(err != SCRIPT_ERR_OK, ScriptErrorString(err)); } } } BOOST_AUTO_TEST_CASE(basic_transaction_tests) { // Random real transaction // (e2769b09e784f32f62ef849763d4f45b98e07ba658647343b915ff832b110436) uint8_t ch[] = { 0x01, 0x00, 0x00, 0x00, 0x01, 0x6b, 0xff, 0x7f, 0xcd, 0x4f, 0x85, 0x65, 0xef, 0x40, 0x6d, 0xd5, 0xd6, 0x3d, 0x4f, 0xf9, 0x4f, 0x31, 0x8f, 0xe8, 0x20, 0x27, 0xfd, 0x4d, 0xc4, 0x51, 0xb0, 0x44, 0x74, 0x01, 0x9f, 0x74, 0xb4, 0x00, 0x00, 0x00, 0x00, 0x8c, 0x49, 0x30, 0x46, 0x02, 0x21, 0x00, 0xda, 0x0d, 0xc6, 0xae, 0xce, 0xfe, 0x1e, 0x06, 0xef, 0xdf, 0x05, 0x77, 0x37, 0x57, 0xde, 0xb1, 0x68, 0x82, 0x09, 0x30, 0xe3, 0xb0, 0xd0, 0x3f, 0x46, 0xf5, 0xfc, 0xf1, 0x50, 0xbf, 0x99, 0x0c, 0x02, 0x21, 0x00, 0xd2, 0x5b, 0x5c, 0x87, 0x04, 0x00, 0x76, 0xe4, 0xf2, 0x53, 0xf8, 0x26, 0x2e, 0x76, 0x3e, 0x2d, 0xd5, 0x1e, 0x7f, 0xf0, 0xbe, 0x15, 0x77, 0x27, 0xc4, 0xbc, 0x42, 0x80, 0x7f, 0x17, 0xbd, 0x39, 0x01, 0x41, 0x04, 0xe6, 0xc2, 0x6e, 0xf6, 0x7d, 0xc6, 0x10, 0xd2, 0xcd, 0x19, 0x24, 0x84, 0x78, 0x9a, 0x6c, 0xf9, 0xae, 0xa9, 0x93, 0x0b, 0x94, 0x4b, 0x7e, 0x2d, 0xb5, 0x34, 0x2b, 0x9d, 0x9e, 0x5b, 0x9f, 0xf7, 0x9a, 0xff, 0x9a, 0x2e, 0xe1, 0x97, 0x8d, 0xd7, 0xfd, 0x01, 0xdf, 0xc5, 0x22, 0xee, 0x02, 0x28, 0x3d, 0x3b, 0x06, 0xa9, 0xd0, 0x3a, 0xcf, 0x80, 0x96, 0x96, 0x8d, 0x7d, 0xbb, 0x0f, 0x91, 0x78, 0xff, 0xff, 0xff, 0xff, 0x02, 0x8b, 0xa7, 0x94, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xba, 0xde, 0xec, 0xfd, 0xef, 0x05, 0x07, 0x24, 0x7f, 0xc8, 0xf7, 0x42, 0x41, 0xd7, 0x3b, 0xc0, 0x39, 0x97, 0x2d, 0x7b, 0x88, 0xac, 0x40, 0x94, 0xa8, 0x02, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xc1, 0x09, 0x32, 0x48, 0x3f, 0xec, 0x93, 0xed, 0x51, 0xf5, 0xfe, 0x95, 0xe7, 0x25, 0x59, 0xf2, 0xcc, 0x70, 0x43, 0xf9, 0x88, 0xac, 0x00, 0x00, 0x00, 0x00, 0x00}; std::vector<uint8_t> vch(ch, ch + sizeof(ch) - 1); CDataStream stream(vch, SER_DISK, CLIENT_VERSION); CMutableTransaction tx; stream >> tx; CValidationState state; BOOST_CHECK_MESSAGE(CheckRegularTransaction(CTransaction(tx), state) && state.IsValid(), "Simple deserialized transaction should be valid."); // Check that duplicate txins fail tx.vin.push_back(tx.vin[0]); BOOST_CHECK_MESSAGE(!CheckRegularTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with duplicate txins should be invalid."); } // // Helper: create two dummy transactions, each with // two outputs. The first has 11 and 50 CENT outputs // paid to a TX_PUBKEY, the second 21 and 22 CENT outputs // paid to a TX_PUBKEYHASH. // static std::vector<CMutableTransaction> SetupDummyInputs(CBasicKeyStore &keystoreRet, CCoinsViewCache &coinsRet) { std::vector<CMutableTransaction> dummyTransactions; dummyTransactions.resize(2); // Add some keys to the keystore: CKey key[4]; for (int i = 0; i < 4; i++) { key[i].MakeNewKey(i % 2); keystoreRet.AddKey(key[i]); } // Create some dummy input transactions dummyTransactions[0].vout.resize(2); dummyTransactions[0].vout[0].nValue = 11 * CENT; dummyTransactions[0].vout[0].scriptPubKey << ToByteVector(key[0].GetPubKey()) << OP_CHECKSIG; dummyTransactions[0].vout[1].nValue = 50 * CENT; dummyTransactions[0].vout[1].scriptPubKey << ToByteVector(key[1].GetPubKey()) << OP_CHECKSIG; AddCoins(coinsRet, CTransaction(dummyTransactions[0]), 0); dummyTransactions[1].vout.resize(2); dummyTransactions[1].vout[0].nValue = 21 * CENT; dummyTransactions[1].vout[0].scriptPubKey = GetScriptForDestination(key[2].GetPubKey().GetID()); dummyTransactions[1].vout[1].nValue = 22 * CENT; dummyTransactions[1].vout[1].scriptPubKey = GetScriptForDestination(key[3].GetPubKey().GetID()); AddCoins(coinsRet, CTransaction(dummyTransactions[1]), 0); return dummyTransactions; } BOOST_AUTO_TEST_CASE(test_Get) { CBasicKeyStore keystore; CCoinsView coinsDummy; CCoinsViewCache coins(&coinsDummy); std::vector<CMutableTransaction> dummyTransactions = SetupDummyInputs(keystore, coins); CMutableTransaction t1; t1.vin.resize(3); - t1.vin[0].prevout.hash = dummyTransactions[0].GetId(); - t1.vin[0].prevout.n = 1; + t1.vin[0].prevout = COutPoint(dummyTransactions[0].GetId(), 1); t1.vin[0].scriptSig << std::vector<uint8_t>(65, 0); - t1.vin[1].prevout.hash = dummyTransactions[1].GetId(); - t1.vin[1].prevout.n = 0; + t1.vin[1].prevout = COutPoint(dummyTransactions[1].GetId(), 0); t1.vin[1].scriptSig << std::vector<uint8_t>(65, 0) << std::vector<uint8_t>(33, 4); - t1.vin[2].prevout.hash = dummyTransactions[1].GetId(); - t1.vin[2].prevout.n = 1; + t1.vin[2].prevout = COutPoint(dummyTransactions[1].GetId(), 1); t1.vin[2].scriptSig << std::vector<uint8_t>(65, 0) << std::vector<uint8_t>(33, 4); t1.vout.resize(2); t1.vout[0].nValue = 90 * CENT; t1.vout[0].scriptPubKey << OP_1; BOOST_CHECK(AreInputsStandard(CTransaction(t1), coins)); BOOST_CHECK_EQUAL(coins.GetValueIn(CTransaction(t1)), (50 + 21 + 22) * CENT); } void CreateCreditAndSpend(const CKeyStore &keystore, const CScript &outscript, CTransactionRef &output, CMutableTransaction &input, bool success = true) { CMutableTransaction outputm; outputm.nVersion = 1; outputm.vin.resize(1); outputm.vin[0].prevout.SetNull(); outputm.vin[0].scriptSig = CScript(); outputm.vout.resize(1); outputm.vout[0].nValue = Amount(1); outputm.vout[0].scriptPubKey = outscript; CDataStream ssout(SER_NETWORK, PROTOCOL_VERSION); ssout << outputm; ssout >> output; BOOST_CHECK_EQUAL(output->vin.size(), 1UL); BOOST_CHECK(output->vin[0] == outputm.vin[0]); BOOST_CHECK_EQUAL(output->vout.size(), 1UL); BOOST_CHECK(output->vout[0] == outputm.vout[0]); CMutableTransaction inputm; inputm.nVersion = 1; inputm.vin.resize(1); - inputm.vin[0].prevout.hash = output->GetId(); - inputm.vin[0].prevout.n = 0; + inputm.vin[0].prevout = COutPoint(output->GetId(), 0); inputm.vout.resize(1); inputm.vout[0].nValue = Amount(1); inputm.vout[0].scriptPubKey = CScript(); bool ret = SignSignature(keystore, *output, inputm, 0, SigHashType().withForkId()); BOOST_CHECK_EQUAL(ret, success); CDataStream ssin(SER_NETWORK, PROTOCOL_VERSION); ssin << inputm; ssin >> input; BOOST_CHECK_EQUAL(input.vin.size(), 1UL); BOOST_CHECK(input.vin[0] == inputm.vin[0]); BOOST_CHECK_EQUAL(input.vout.size(), 1UL); BOOST_CHECK(input.vout[0] == inputm.vout[0]); } void CheckWithFlag(const CTransactionRef &output, const CMutableTransaction &input, int flags, bool success) { ScriptError error; CTransaction inputi(input); bool ret = VerifyScript( inputi.vin[0].scriptSig, output->vout[0].scriptPubKey, flags | SCRIPT_ENABLE_SIGHASH_FORKID, TransactionSignatureChecker(&inputi, 0, output->vout[0].nValue), &error); BOOST_CHECK_EQUAL(ret, success); } static CScript PushAll(const std::vector<valtype> &values) { CScript result; for (const valtype &v : values) { if (v.size() == 0) { result << OP_0; } else if (v.size() == 1 && v[0] >= 1 && v[0] <= 16) { result << CScript::EncodeOP_N(v[0]); } else { result << v; } } return result; } void ReplaceRedeemScript(CScript &script, const CScript &redeemScript) { std::vector<valtype> stack; EvalScript(stack, script, SCRIPT_VERIFY_STRICTENC, BaseSignatureChecker()); BOOST_CHECK(stack.size() > 0); stack.back() = std::vector<uint8_t>(redeemScript.begin(), redeemScript.end()); script = PushAll(stack); } BOOST_AUTO_TEST_CASE(test_big_transaction) { CKey key; key.MakeNewKey(false); CBasicKeyStore keystore; keystore.AddKeyPubKey(key, key.GetPubKey()); CScript scriptPubKey = CScript() << ToByteVector(key.GetPubKey()) << OP_CHECKSIG; std::vector<SigHashType> sigHashes; sigHashes.emplace_back(SIGHASH_NONE | SIGHASH_FORKID); sigHashes.emplace_back(SIGHASH_SINGLE | SIGHASH_FORKID); sigHashes.emplace_back(SIGHASH_ALL | SIGHASH_FORKID); sigHashes.emplace_back(SIGHASH_NONE | SIGHASH_FORKID | SIGHASH_ANYONECANPAY); sigHashes.emplace_back(SIGHASH_SINGLE | SIGHASH_FORKID | SIGHASH_ANYONECANPAY); sigHashes.emplace_back(SIGHASH_ALL | SIGHASH_FORKID | SIGHASH_ANYONECANPAY); CMutableTransaction mtx; mtx.nVersion = 1; // create a big transaction of 4500 inputs signed by the same key. const static size_t OUTPUT_COUNT = 4500; mtx.vout.reserve(OUTPUT_COUNT); for (size_t ij = 0; ij < OUTPUT_COUNT; ij++) { size_t i = mtx.vin.size(); uint256 prevId = uint256S( "0000000000000000000000000000000000000000000000000000000000000100"); COutPoint outpoint(prevId, i); mtx.vin.resize(mtx.vin.size() + 1); mtx.vin[i].prevout = outpoint; mtx.vin[i].scriptSig = CScript(); mtx.vout.emplace_back(Amount(1000), CScript() << OP_1); } // sign all inputs for (size_t i = 0; i < mtx.vin.size(); i++) { bool hashSigned = SignSignature(keystore, scriptPubKey, mtx, i, Amount(1000), sigHashes.at(i % sigHashes.size())); BOOST_CHECK_MESSAGE(hashSigned, "Failed to sign test transaction"); } CTransaction tx(mtx); // check all inputs concurrently, with the cache PrecomputedTransactionData txdata(tx); boost::thread_group threadGroup; CCheckQueue<CScriptCheck> scriptcheckqueue(128); CCheckQueueControl<CScriptCheck> control(&scriptcheckqueue); for (int i = 0; i < 20; i++) { threadGroup.create_thread(boost::bind( &CCheckQueue<CScriptCheck>::Thread, boost::ref(scriptcheckqueue))); } std::vector<Coin> coins; for (size_t i = 0; i < mtx.vin.size(); i++) { CTxOut out; out.nValue = Amount(1000); out.scriptPubKey = scriptPubKey; coins.emplace_back(std::move(out), 1, false); } for (size_t i = 0; i < mtx.vin.size(); i++) { std::vector<CScriptCheck> vChecks; - CTxOut &out = coins[tx.vin[i].prevout.n].GetTxOut(); + CTxOut &out = coins[tx.vin[i].prevout.GetN()].GetTxOut(); CScriptCheck check(out.scriptPubKey, out.nValue, tx, i, MANDATORY_SCRIPT_VERIFY_FLAGS, false, txdata); vChecks.push_back(CScriptCheck()); check.swap(vChecks.back()); control.Add(vChecks); } bool controlCheck = control.Wait(); BOOST_CHECK(controlCheck); threadGroup.interrupt_all(); threadGroup.join_all(); } BOOST_AUTO_TEST_CASE(test_witness) { CBasicKeyStore keystore, keystore2; CKey key1, key2, key3, key1L, key2L; CPubKey pubkey1, pubkey2, pubkey3, pubkey1L, pubkey2L; key1.MakeNewKey(true); key2.MakeNewKey(true); key3.MakeNewKey(true); key1L.MakeNewKey(false); key2L.MakeNewKey(false); pubkey1 = key1.GetPubKey(); pubkey2 = key2.GetPubKey(); pubkey3 = key3.GetPubKey(); pubkey1L = key1L.GetPubKey(); pubkey2L = key2L.GetPubKey(); keystore.AddKeyPubKey(key1, pubkey1); keystore.AddKeyPubKey(key2, pubkey2); keystore.AddKeyPubKey(key1L, pubkey1L); keystore.AddKeyPubKey(key2L, pubkey2L); CScript scriptPubkey1, scriptPubkey2, scriptPubkey1L, scriptPubkey2L, scriptMulti; scriptPubkey1 << ToByteVector(pubkey1) << OP_CHECKSIG; scriptPubkey2 << ToByteVector(pubkey2) << OP_CHECKSIG; scriptPubkey1L << ToByteVector(pubkey1L) << OP_CHECKSIG; scriptPubkey2L << ToByteVector(pubkey2L) << OP_CHECKSIG; std::vector<CPubKey> oneandthree; oneandthree.push_back(pubkey1); oneandthree.push_back(pubkey3); scriptMulti = GetScriptForMultisig(2, oneandthree); keystore.AddCScript(scriptPubkey1); keystore.AddCScript(scriptPubkey2); keystore.AddCScript(scriptPubkey1L); keystore.AddCScript(scriptPubkey2L); keystore.AddCScript(scriptMulti); keystore2.AddCScript(scriptMulti); keystore2.AddKeyPubKey(key3, pubkey3); CTransactionRef output1, output2; CMutableTransaction input1, input2; SignatureData sigdata; // Normal pay-to-compressed-pubkey. CreateCreditAndSpend(keystore, scriptPubkey1, output1, input1); CreateCreditAndSpend(keystore, scriptPubkey2, output2, input2); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, false); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // P2SH pay-to-compressed-pubkey. CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey1)), output1, input1); CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey2)), output2, input2); ReplaceRedeemScript(input2.vin[0].scriptSig, scriptPubkey1); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, true); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // Normal pay-to-uncompressed-pubkey. CreateCreditAndSpend(keystore, scriptPubkey1L, output1, input1); CreateCreditAndSpend(keystore, scriptPubkey2L, output2, input2); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, false); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // P2SH pay-to-uncompressed-pubkey. CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey1L)), output1, input1); CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey2L)), output2, input2); ReplaceRedeemScript(input2.vin[0].scriptSig, scriptPubkey1L); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, true); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // Normal 2-of-2 multisig CreateCreditAndSpend(keystore, scriptMulti, output1, input1, false); CheckWithFlag(output1, input1, 0, false); CreateCreditAndSpend(keystore2, scriptMulti, output2, input2, false); CheckWithFlag(output2, input2, 0, false); BOOST_CHECK(*output1 == *output2); UpdateTransaction( input1, 0, CombineSignatures(output1->vout[0].scriptPubKey, MutableTransactionSignatureChecker( &input1, 0, output1->vout[0].nValue), DataFromTransaction(input1, 0), DataFromTransaction(input2, 0))); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); // P2SH 2-of-2 multisig CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptMulti)), output1, input1, false); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, false); CreateCreditAndSpend(keystore2, GetScriptForDestination(CScriptID(scriptMulti)), output2, input2, false); CheckWithFlag(output2, input2, 0, true); CheckWithFlag(output2, input2, SCRIPT_VERIFY_P2SH, false); BOOST_CHECK(*output1 == *output2); UpdateTransaction( input1, 0, CombineSignatures(output1->vout[0].scriptPubKey, MutableTransactionSignatureChecker( &input1, 0, output1->vout[0].nValue), DataFromTransaction(input1, 0), DataFromTransaction(input2, 0))); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); } BOOST_AUTO_TEST_CASE(test_IsStandard) { LOCK(cs_main); CBasicKeyStore keystore; CCoinsView coinsDummy; CCoinsViewCache coins(&coinsDummy); std::vector<CMutableTransaction> dummyTransactions = SetupDummyInputs(keystore, coins); CMutableTransaction t; t.vin.resize(1); - t.vin[0].prevout.hash = dummyTransactions[0].GetId(); - t.vin[0].prevout.n = 1; + t.vin[0].prevout = COutPoint(dummyTransactions[0].GetId(), 1); t.vin[0].scriptSig << std::vector<uint8_t>(65, 0); t.vout.resize(1); t.vout[0].nValue = 90 * CENT; CKey key; key.MakeNewKey(true); t.vout[0].scriptPubKey = GetScriptForDestination(key.GetPubKey().GetID()); std::string reason; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // Check dust with default relay fee: Amount nDustThreshold = 3 * 182 * dustRelayFee.GetFeePerK() / 1000; BOOST_CHECK_EQUAL(nDustThreshold, Amount(546)); // dust: t.vout[0].nValue = nDustThreshold - Amount(1); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // not dust: t.vout[0].nValue = nDustThreshold; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // Check dust with odd relay fee to verify rounding: // nDustThreshold = 182 * 1234 / 1000 * 3 dustRelayFee = CFeeRate(Amount(1234)); // dust: t.vout[0].nValue = Amount(672 - 1); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // not dust: t.vout[0].nValue = Amount(672); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); dustRelayFee = CFeeRate(DUST_RELAY_TX_FEE); t.vout[0].scriptPubKey = CScript() << OP_1; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // MAX_OP_RETURN_RELAY-byte TX_NULL_DATA (standard) t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef38"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY, t.vout[0].scriptPubKey.size()); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // MAX_OP_RETURN_RELAY+1-byte TX_NULL_DATA (non-standard) t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef3800"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY + 1, t.vout[0].scriptPubKey.size()); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); /** * Check acceptance of larger op_return when asked to. */ // New default size of 223 byte is standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("646578784062697477617463682e636f2092c558ed52c56d" "8dd14ca76226bc936a84820d898443873eb03d8854b21fa3" "952b99a2981873e74509281730d78a21786d34a38bd1ebab" "822fad42278f7f4420db6ab1fd2b6826148d4f73bb41ec2d" "40a6d5793d66e17074a0c56a8a7df21062308f483dd6e38d" "53609d350038df0a1b2a9ac8332016e0b904f66880dd0108" "81c4e8074cce8e4ad6c77cb3460e01bf0e7e811b5f945f83" "732ba6677520a893d75d9a966cb8f85dc301656b1635c631" "f5d00d4adf73f2dd112ca75cf19754651909becfbe65aed1" "3afb2ab8"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY_LARGE, t.vout[0].scriptPubKey.size()); BOOST_CHECK(IsStandardTx(CTransaction(t), reason, true)); // Larger than default size of 223 byte is non-standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("646578784062697477617463682e636f2092c558ed52c56d" "8dd14ca76226bc936a84820d898443873eb03d8854b21fa3" "952b99a2981873e74509281730d78a21786d34a38bd1ebab" "822fad42278f7f4420db6ab1fd2b6826148d4f73bb41ec2d" "40a6d5793d66e17074a0c56a8a7df21062308f483dd6e38d" "53609d350038df0a1b2a9ac8332016e0b904f66880dd0108" "81c4e8074cce8e4ad6c77cb3460e01bf0e7e811b5f945f83" "732ba6677520a893d75d9a966cb8f85dc301656b1635c631" "f5d00d4adf73f2dd112ca75cf19754651909becfbe65aed1" "3afb2ab800"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY_LARGE + 1, t.vout[0].scriptPubKey.size()); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason, true)); /** * Check when a custom value is used for -datacarriersize . */ unsigned newMaxSize = MAX_OP_RETURN_RELAY + 7; gArgs.ForceSetArg("-datacarriersize", std::to_string(newMaxSize)); // Max user provided payload size is standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef3877696e64657878"); BOOST_CHECK_EQUAL(t.vout[0].scriptPubKey.size(), newMaxSize); BOOST_CHECK(IsStandardTx(CTransaction(t), reason, false)); BOOST_CHECK(IsStandardTx(CTransaction(t), reason, true)); // Max user provided payload size + 1 is non-standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef3877696e6465787800"); BOOST_CHECK_EQUAL(t.vout[0].scriptPubKey.size(), newMaxSize + 1); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason, false)); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason, true)); // Clear custom confirguration. gArgs.ClearArg("-datacarriersize"); // Data payload can be encoded in any way... t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex(""); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("00") << ParseHex("01"); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // OP_RESERVED *is* considered to be a PUSHDATA type opcode by IsPushOnly()! t.vout[0].scriptPubKey = CScript() << OP_RETURN << OP_RESERVED << -1 << 0 << ParseHex("01") << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10 << 11 << 12 << 13 << 14 << 15 << 16; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN << 0 << ParseHex("01") << 2 << ParseHex("fffffffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffffff"); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // ...so long as it only contains PUSHDATA's t.vout[0].scriptPubKey = CScript() << OP_RETURN << OP_RETURN; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // TX_NULL_DATA w/o PUSHDATA t.vout.resize(1); t.vout[0].scriptPubKey = CScript() << OP_RETURN; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // Only one TX_NULL_DATA permitted in all cases t.vout.resize(2); t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38"); t.vout[1].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38"); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38"); t.vout[1].scriptPubKey = CScript() << OP_RETURN; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN; t.vout[1].scriptPubKey = CScript() << OP_RETURN; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); } BOOST_AUTO_TEST_SUITE_END()