diff --git a/src/script/script.cpp b/src/script/script.cpp
index a98bdd210b..88ba045c2d 100644
--- a/src/script/script.cpp
+++ b/src/script/script.cpp
@@ -1,381 +1,376 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2016 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #include "script.h"
 
 #include "tinyformat.h"
 #include "utilstrencodings.h"
 
 const char *GetOpName(opcodetype opcode) {
     switch (opcode) {
         // push value
         case OP_0:
             return "0";
         case OP_PUSHDATA1:
             return "OP_PUSHDATA1";
         case OP_PUSHDATA2:
             return "OP_PUSHDATA2";
         case OP_PUSHDATA4:
             return "OP_PUSHDATA4";
         case OP_1NEGATE:
             return "-1";
         case OP_RESERVED:
             return "OP_RESERVED";
         case OP_1:
             return "1";
         case OP_2:
             return "2";
         case OP_3:
             return "3";
         case OP_4:
             return "4";
         case OP_5:
             return "5";
         case OP_6:
             return "6";
         case OP_7:
             return "7";
         case OP_8:
             return "8";
         case OP_9:
             return "9";
         case OP_10:
             return "10";
         case OP_11:
             return "11";
         case OP_12:
             return "12";
         case OP_13:
             return "13";
         case OP_14:
             return "14";
         case OP_15:
             return "15";
         case OP_16:
             return "16";
 
         // control
         case OP_NOP:
             return "OP_NOP";
         case OP_VER:
             return "OP_VER";
         case OP_IF:
             return "OP_IF";
         case OP_NOTIF:
             return "OP_NOTIF";
         case OP_VERIF:
             return "OP_VERIF";
         case OP_VERNOTIF:
             return "OP_VERNOTIF";
         case OP_ELSE:
             return "OP_ELSE";
         case OP_ENDIF:
             return "OP_ENDIF";
         case OP_VERIFY:
             return "OP_VERIFY";
         case OP_RETURN:
             return "OP_RETURN";
 
         // stack ops
         case OP_TOALTSTACK:
             return "OP_TOALTSTACK";
         case OP_FROMALTSTACK:
             return "OP_FROMALTSTACK";
         case OP_2DROP:
             return "OP_2DROP";
         case OP_2DUP:
             return "OP_2DUP";
         case OP_3DUP:
             return "OP_3DUP";
         case OP_2OVER:
             return "OP_2OVER";
         case OP_2ROT:
             return "OP_2ROT";
         case OP_2SWAP:
             return "OP_2SWAP";
         case OP_IFDUP:
             return "OP_IFDUP";
         case OP_DEPTH:
             return "OP_DEPTH";
         case OP_DROP:
             return "OP_DROP";
         case OP_DUP:
             return "OP_DUP";
         case OP_NIP:
             return "OP_NIP";
         case OP_OVER:
             return "OP_OVER";
         case OP_PICK:
             return "OP_PICK";
         case OP_ROLL:
             return "OP_ROLL";
         case OP_ROT:
             return "OP_ROT";
         case OP_SWAP:
             return "OP_SWAP";
         case OP_TUCK:
             return "OP_TUCK";
 
         // splice ops
         case OP_CAT:
             return "OP_CAT";
         case OP_SUBSTR:
             return "OP_SUBSTR";
         case OP_LEFT:
             return "OP_LEFT";
         case OP_RIGHT:
             return "OP_RIGHT";
         case OP_SIZE:
             return "OP_SIZE";
 
         // bit logic
         case OP_INVERT:
             return "OP_INVERT";
         case OP_AND:
             return "OP_AND";
         case OP_OR:
             return "OP_OR";
         case OP_XOR:
             return "OP_XOR";
         case OP_EQUAL:
             return "OP_EQUAL";
         case OP_EQUALVERIFY:
             return "OP_EQUALVERIFY";
         case OP_RESERVED1:
             return "OP_RESERVED1";
         case OP_RESERVED2:
             return "OP_RESERVED2";
 
         // numeric
         case OP_1ADD:
             return "OP_1ADD";
         case OP_1SUB:
             return "OP_1SUB";
         case OP_2MUL:
             return "OP_2MUL";
         case OP_2DIV:
             return "OP_2DIV";
         case OP_NEGATE:
             return "OP_NEGATE";
         case OP_ABS:
             return "OP_ABS";
         case OP_NOT:
             return "OP_NOT";
         case OP_0NOTEQUAL:
             return "OP_0NOTEQUAL";
         case OP_ADD:
             return "OP_ADD";
         case OP_SUB:
             return "OP_SUB";
         case OP_MUL:
             return "OP_MUL";
         case OP_DIV:
             return "OP_DIV";
         case OP_MOD:
             return "OP_MOD";
         case OP_LSHIFT:
             return "OP_LSHIFT";
         case OP_RSHIFT:
             return "OP_RSHIFT";
         case OP_BOOLAND:
             return "OP_BOOLAND";
         case OP_BOOLOR:
             return "OP_BOOLOR";
         case OP_NUMEQUAL:
             return "OP_NUMEQUAL";
         case OP_NUMEQUALVERIFY:
             return "OP_NUMEQUALVERIFY";
         case OP_NUMNOTEQUAL:
             return "OP_NUMNOTEQUAL";
         case OP_LESSTHAN:
             return "OP_LESSTHAN";
         case OP_GREATERTHAN:
             return "OP_GREATERTHAN";
         case OP_LESSTHANOREQUAL:
             return "OP_LESSTHANOREQUAL";
         case OP_GREATERTHANOREQUAL:
             return "OP_GREATERTHANOREQUAL";
         case OP_MIN:
             return "OP_MIN";
         case OP_MAX:
             return "OP_MAX";
         case OP_WITHIN:
             return "OP_WITHIN";
 
         // crypto
         case OP_RIPEMD160:
             return "OP_RIPEMD160";
         case OP_SHA1:
             return "OP_SHA1";
         case OP_SHA256:
             return "OP_SHA256";
         case OP_HASH160:
             return "OP_HASH160";
         case OP_HASH256:
             return "OP_HASH256";
         case OP_CODESEPARATOR:
             return "OP_CODESEPARATOR";
         case OP_CHECKSIG:
             return "OP_CHECKSIG";
         case OP_CHECKSIGVERIFY:
             return "OP_CHECKSIGVERIFY";
         case OP_CHECKMULTISIG:
             return "OP_CHECKMULTISIG";
         case OP_CHECKMULTISIGVERIFY:
             return "OP_CHECKMULTISIGVERIFY";
 
         // expansion
         case OP_NOP1:
             return "OP_NOP1";
         case OP_CHECKLOCKTIMEVERIFY:
             return "OP_CHECKLOCKTIMEVERIFY";
         case OP_CHECKSEQUENCEVERIFY:
             return "OP_CHECKSEQUENCEVERIFY";
         case OP_NOP4:
             return "OP_NOP4";
         case OP_NOP5:
             return "OP_NOP5";
         case OP_NOP6:
             return "OP_NOP6";
         case OP_NOP7:
             return "OP_NOP7";
         case OP_NOP8:
             return "OP_NOP8";
         case OP_NOP9:
             return "OP_NOP9";
         case OP_NOP10:
             return "OP_NOP10";
 
         case OP_INVALIDOPCODE:
             return "OP_INVALIDOPCODE";
 
         // Note:
         //  The template matching params OP_SMALLINTEGER/etc are defined in
         //  opcodetype enum as kind of implementation hack, they are *NOT*
         //  real opcodes. If found in real Script, just let the default:
         //  case deal with them.
 
         default:
             return "OP_UNKNOWN";
     }
 }
 
 unsigned int CScript::GetSigOpCount(bool fAccurate) const {
     unsigned int n = 0;
     const_iterator pc = begin();
     opcodetype lastOpcode = OP_INVALIDOPCODE;
     while (pc < end()) {
         opcodetype opcode;
         if (!GetOp(pc, opcode)) break;
         if (opcode == OP_CHECKSIG || opcode == OP_CHECKSIGVERIFY)
             n++;
         else if (opcode == OP_CHECKMULTISIG ||
                  opcode == OP_CHECKMULTISIGVERIFY) {
             if (fAccurate && lastOpcode >= OP_1 && lastOpcode <= OP_16)
                 n += DecodeOP_N(lastOpcode);
             else
                 n += MAX_PUBKEYS_PER_MULTISIG;
         }
         lastOpcode = opcode;
     }
     return n;
 }
 
 unsigned int CScript::GetSigOpCount(const CScript &scriptSig) const {
     if (!IsPayToScriptHash()) return GetSigOpCount(true);
 
     // This is a pay-to-script-hash scriptPubKey;
     // get the last item that the scriptSig
     // pushes onto the stack:
     const_iterator pc = scriptSig.begin();
     std::vector<uint8_t> data;
     while (pc < scriptSig.end()) {
         opcodetype opcode;
         if (!scriptSig.GetOp(pc, opcode, data)) return 0;
         if (opcode > OP_16) return 0;
     }
 
     /// ... and return its opcount:
     CScript subscript(data.begin(), data.end());
     return subscript.GetSigOpCount(true);
 }
 
 bool CScript::IsPayToScriptHash() const {
     // Extra-fast test for pay-to-script-hash CScripts:
     return (this->size() == 23 && (*this)[0] == OP_HASH160 &&
             (*this)[1] == 0x14 && (*this)[22] == OP_EQUAL);
 }
 
-bool CScript::IsPayToWitnessScriptHash() const {
-    // Extra-fast test for pay-to-witness-script-hash CScripts:
-    return (this->size() == 34 && (*this)[0] == OP_0 && (*this)[1] == 0x20);
-}
-
 bool CScript::IsCommitment(const std::vector<uint8_t> &data) const {
     // To ensure we have an immediate push, we limit the commitment size to 64
     // bytes. In addition to the data themselves, we have 2 extra bytes:
     // OP_RETURN and the push opcode itself.
     if (data.size() > 64 || this->size() != data.size() + 2) {
         return false;
     }
 
     if ((*this)[0] != OP_RETURN || (*this)[1] != data.size()) {
         return false;
     }
 
     for (size_t i = 0; i < data.size(); i++) {
         if ((*this)[i + 2] != data[i]) {
             return false;
         }
     }
 
     return true;
 }
 
 // A witness program is any valid CScript that consists of a 1-byte push opcode
 // followed by a data push between 2 and 40 bytes.
 bool CScript::IsWitnessProgram(int &version,
                                std::vector<uint8_t> &program) const {
     if (this->size() < 4 || this->size() > 42) {
         return false;
     }
     if ((*this)[0] != OP_0 && ((*this)[0] < OP_1 || (*this)[0] > OP_16)) {
         return false;
     }
     if ((size_t)((*this)[1] + 2) == this->size()) {
         version = DecodeOP_N((opcodetype)(*this)[0]);
         program = std::vector<uint8_t>(this->begin() + 2, this->end());
         return true;
     }
     return false;
 }
 
 bool CScript::IsPushOnly(const_iterator pc) const {
     while (pc < end()) {
         opcodetype opcode;
         if (!GetOp(pc, opcode)) return false;
         // Note that IsPushOnly() *does* consider OP_RESERVED to be a push-type
         // opcode, however execution of OP_RESERVED fails, so it's not relevant
         // to P2SH/BIP62 as the scriptSig would fail prior to the P2SH special
         // validation code being executed.
         if (opcode > OP_16) return false;
     }
     return true;
 }
 
 bool CScript::IsPushOnly() const {
     return this->IsPushOnly(begin());
 }
 
 std::string CScriptWitness::ToString() const {
     std::string ret = "CScriptWitness(";
     for (unsigned int i = 0; i < stack.size(); i++) {
         if (i) {
             ret += ", ";
         }
         ret += HexStr(stack[i]);
     }
     return ret + ")";
 }
diff --git a/src/script/script.h b/src/script/script.h
index 81cc93c973..120bad13a0 100644
--- a/src/script/script.h
+++ b/src/script/script.h
@@ -1,650 +1,649 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2016 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #ifndef BITCOIN_SCRIPT_SCRIPT_H
 #define BITCOIN_SCRIPT_SCRIPT_H
 
 #include "crypto/common.h"
 #include "prevector.h"
 #include "serialize.h"
 
 #include <cassert>
 #include <climits>
 #include <cstdint>
 #include <cstring>
 #include <limits>
 #include <stdexcept>
 #include <string>
 #include <vector>
 
 // Maximum number of bytes pushable to the stack
 static const unsigned int MAX_SCRIPT_ELEMENT_SIZE = 520;
 
 // Maximum number of non-push operations per script
 static const int MAX_OPS_PER_SCRIPT = 201;
 
 // Maximum number of public keys per multisig
 static const int MAX_PUBKEYS_PER_MULTISIG = 20;
 
 // Maximum script length in bytes
 static const int MAX_SCRIPT_SIZE = 10000;
 
 // Threshold for nLockTime: below this value it is interpreted as block number,
 // otherwise as UNIX timestamp. Thresold is Tue Nov 5 00:53:20 1985 UTC
 static const unsigned int LOCKTIME_THRESHOLD = 500000000;
 
 template <typename T> std::vector<uint8_t> ToByteVector(const T &in) {
     return std::vector<uint8_t>(in.begin(), in.end());
 }
 
 /** Script opcodes */
 enum opcodetype {
     // push value
     OP_0 = 0x00,
     OP_FALSE = OP_0,
     OP_PUSHDATA1 = 0x4c,
     OP_PUSHDATA2 = 0x4d,
     OP_PUSHDATA4 = 0x4e,
     OP_1NEGATE = 0x4f,
     OP_RESERVED = 0x50,
     OP_1 = 0x51,
     OP_TRUE = OP_1,
     OP_2 = 0x52,
     OP_3 = 0x53,
     OP_4 = 0x54,
     OP_5 = 0x55,
     OP_6 = 0x56,
     OP_7 = 0x57,
     OP_8 = 0x58,
     OP_9 = 0x59,
     OP_10 = 0x5a,
     OP_11 = 0x5b,
     OP_12 = 0x5c,
     OP_13 = 0x5d,
     OP_14 = 0x5e,
     OP_15 = 0x5f,
     OP_16 = 0x60,
 
     // control
     OP_NOP = 0x61,
     OP_VER = 0x62,
     OP_IF = 0x63,
     OP_NOTIF = 0x64,
     OP_VERIF = 0x65,
     OP_VERNOTIF = 0x66,
     OP_ELSE = 0x67,
     OP_ENDIF = 0x68,
     OP_VERIFY = 0x69,
     OP_RETURN = 0x6a,
 
     // stack ops
     OP_TOALTSTACK = 0x6b,
     OP_FROMALTSTACK = 0x6c,
     OP_2DROP = 0x6d,
     OP_2DUP = 0x6e,
     OP_3DUP = 0x6f,
     OP_2OVER = 0x70,
     OP_2ROT = 0x71,
     OP_2SWAP = 0x72,
     OP_IFDUP = 0x73,
     OP_DEPTH = 0x74,
     OP_DROP = 0x75,
     OP_DUP = 0x76,
     OP_NIP = 0x77,
     OP_OVER = 0x78,
     OP_PICK = 0x79,
     OP_ROLL = 0x7a,
     OP_ROT = 0x7b,
     OP_SWAP = 0x7c,
     OP_TUCK = 0x7d,
 
     // splice ops
     OP_CAT = 0x7e,
     OP_SUBSTR = 0x7f,
     OP_LEFT = 0x80,
     OP_RIGHT = 0x81,
     OP_SIZE = 0x82,
 
     // bit logic
     OP_INVERT = 0x83,
     OP_AND = 0x84,
     OP_OR = 0x85,
     OP_XOR = 0x86,
     OP_EQUAL = 0x87,
     OP_EQUALVERIFY = 0x88,
     OP_RESERVED1 = 0x89,
     OP_RESERVED2 = 0x8a,
 
     // numeric
     OP_1ADD = 0x8b,
     OP_1SUB = 0x8c,
     OP_2MUL = 0x8d,
     OP_2DIV = 0x8e,
     OP_NEGATE = 0x8f,
     OP_ABS = 0x90,
     OP_NOT = 0x91,
     OP_0NOTEQUAL = 0x92,
 
     OP_ADD = 0x93,
     OP_SUB = 0x94,
     OP_MUL = 0x95,
     OP_DIV = 0x96,
     OP_MOD = 0x97,
     OP_LSHIFT = 0x98,
     OP_RSHIFT = 0x99,
 
     OP_BOOLAND = 0x9a,
     OP_BOOLOR = 0x9b,
     OP_NUMEQUAL = 0x9c,
     OP_NUMEQUALVERIFY = 0x9d,
     OP_NUMNOTEQUAL = 0x9e,
     OP_LESSTHAN = 0x9f,
     OP_GREATERTHAN = 0xa0,
     OP_LESSTHANOREQUAL = 0xa1,
     OP_GREATERTHANOREQUAL = 0xa2,
     OP_MIN = 0xa3,
     OP_MAX = 0xa4,
 
     OP_WITHIN = 0xa5,
 
     // crypto
     OP_RIPEMD160 = 0xa6,
     OP_SHA1 = 0xa7,
     OP_SHA256 = 0xa8,
     OP_HASH160 = 0xa9,
     OP_HASH256 = 0xaa,
     OP_CODESEPARATOR = 0xab,
     OP_CHECKSIG = 0xac,
     OP_CHECKSIGVERIFY = 0xad,
     OP_CHECKMULTISIG = 0xae,
     OP_CHECKMULTISIGVERIFY = 0xaf,
 
     // expansion
     OP_NOP1 = 0xb0,
     OP_CHECKLOCKTIMEVERIFY = 0xb1,
     OP_NOP2 = OP_CHECKLOCKTIMEVERIFY,
     OP_CHECKSEQUENCEVERIFY = 0xb2,
     OP_NOP3 = OP_CHECKSEQUENCEVERIFY,
     OP_NOP4 = 0xb3,
     OP_NOP5 = 0xb4,
     OP_NOP6 = 0xb5,
     OP_NOP7 = 0xb6,
     OP_NOP8 = 0xb7,
     OP_NOP9 = 0xb8,
     OP_NOP10 = 0xb9,
 
     // template matching params
     OP_SMALLINTEGER = 0xfa,
     OP_PUBKEYS = 0xfb,
     OP_PUBKEYHASH = 0xfd,
     OP_PUBKEY = 0xfe,
 
     OP_INVALIDOPCODE = 0xff,
 };
 
 const char *GetOpName(opcodetype opcode);
 
 class scriptnum_error : public std::runtime_error {
 public:
     explicit scriptnum_error(const std::string &str)
         : std::runtime_error(str) {}
 };
 
 class CScriptNum {
     /**
      * Numeric opcodes (OP_1ADD, etc) are restricted to operating on 4-byte
      * integers. The semantics are subtle, though: operands must be in the range
      * [-2^31 +1...2^31 -1], but results may overflow (and are valid as long as
      * they are not used in a subsequent numeric operation). CScriptNum enforces
      * those semantics by storing results as an int64 and allowing out-of-range
      * values to be returned as a vector of bytes but throwing an exception if
      * arithmetic is done or the result is interpreted as an integer.
      */
 public:
     explicit CScriptNum(const int64_t &n) { m_value = n; }
 
     static const size_t nDefaultMaxNumSize = 4;
 
     explicit CScriptNum(const std::vector<uint8_t> &vch, bool fRequireMinimal,
                         const size_t nMaxNumSize = nDefaultMaxNumSize) {
         if (vch.size() > nMaxNumSize) {
             throw scriptnum_error("script number overflow");
         }
         if (fRequireMinimal && vch.size() > 0) {
             // Check that the number is encoded with the minimum possible number
             // of bytes.
             //
             // If the most-significant-byte - excluding the sign bit - is zero
             // then we're not minimal. Note how this test also rejects the
             // negative-zero encoding, 0x80.
             if ((vch.back() & 0x7f) == 0) {
                 // One exception: if there's more than one byte and the most
                 // significant bit of the second-most-significant-byte is set it
                 // would conflict with the sign bit. An example of this case is
                 // +-255, which encode to 0xff00 and 0xff80 respectively.
                 // (big-endian).
                 if (vch.size() <= 1 || (vch[vch.size() - 2] & 0x80) == 0) {
                     throw scriptnum_error(
                         "non-minimally encoded script number");
                 }
             }
         }
         m_value = set_vch(vch);
     }
 
     inline bool operator==(const int64_t &rhs) const { return m_value == rhs; }
     inline bool operator!=(const int64_t &rhs) const { return m_value != rhs; }
     inline bool operator<=(const int64_t &rhs) const { return m_value <= rhs; }
     inline bool operator<(const int64_t &rhs) const { return m_value < rhs; }
     inline bool operator>=(const int64_t &rhs) const { return m_value >= rhs; }
     inline bool operator>(const int64_t &rhs) const { return m_value > rhs; }
 
     inline bool operator==(const CScriptNum &rhs) const {
         return operator==(rhs.m_value);
     }
     inline bool operator!=(const CScriptNum &rhs) const {
         return operator!=(rhs.m_value);
     }
     inline bool operator<=(const CScriptNum &rhs) const {
         return operator<=(rhs.m_value);
     }
     inline bool operator<(const CScriptNum &rhs) const {
         return operator<(rhs.m_value);
     }
     inline bool operator>=(const CScriptNum &rhs) const {
         return operator>=(rhs.m_value);
     }
     inline bool operator>(const CScriptNum &rhs) const {
         return operator>(rhs.m_value);
     }
 
     inline CScriptNum operator+(const int64_t &rhs) const {
         return CScriptNum(m_value + rhs);
     }
     inline CScriptNum operator-(const int64_t &rhs) const {
         return CScriptNum(m_value - rhs);
     }
     inline CScriptNum operator+(const CScriptNum &rhs) const {
         return operator+(rhs.m_value);
     }
     inline CScriptNum operator-(const CScriptNum &rhs) const {
         return operator-(rhs.m_value);
     }
 
     inline CScriptNum &operator+=(const CScriptNum &rhs) {
         return operator+=(rhs.m_value);
     }
     inline CScriptNum &operator-=(const CScriptNum &rhs) {
         return operator-=(rhs.m_value);
     }
 
     inline CScriptNum operator&(const int64_t &rhs) const {
         return CScriptNum(m_value & rhs);
     }
     inline CScriptNum operator&(const CScriptNum &rhs) const {
         return operator&(rhs.m_value);
     }
 
     inline CScriptNum &operator&=(const CScriptNum &rhs) {
         return operator&=(rhs.m_value);
     }
 
     inline CScriptNum operator-() const {
         assert(m_value != std::numeric_limits<int64_t>::min());
         return CScriptNum(-m_value);
     }
 
     inline CScriptNum &operator=(const int64_t &rhs) {
         m_value = rhs;
         return *this;
     }
 
     inline CScriptNum &operator+=(const int64_t &rhs) {
         assert(
             rhs == 0 ||
             (rhs > 0 && m_value <= std::numeric_limits<int64_t>::max() - rhs) ||
             (rhs < 0 && m_value >= std::numeric_limits<int64_t>::min() - rhs));
         m_value += rhs;
         return *this;
     }
 
     inline CScriptNum &operator-=(const int64_t &rhs) {
         assert(
             rhs == 0 ||
             (rhs > 0 && m_value >= std::numeric_limits<int64_t>::min() + rhs) ||
             (rhs < 0 && m_value <= std::numeric_limits<int64_t>::max() + rhs));
         m_value -= rhs;
         return *this;
     }
 
     inline CScriptNum &operator&=(const int64_t &rhs) {
         m_value &= rhs;
         return *this;
     }
 
     int getint() const {
         if (m_value > std::numeric_limits<int>::max())
             return std::numeric_limits<int>::max();
         else if (m_value < std::numeric_limits<int>::min())
             return std::numeric_limits<int>::min();
         return m_value;
     }
 
     std::vector<uint8_t> getvch() const { return serialize(m_value); }
 
     static std::vector<uint8_t> serialize(const int64_t &value) {
         if (value == 0) return std::vector<uint8_t>();
 
         std::vector<uint8_t> result;
         const bool neg = value < 0;
         uint64_t absvalue = neg ? -value : value;
 
         while (absvalue) {
             result.push_back(absvalue & 0xff);
             absvalue >>= 8;
         }
 
         // - If the most significant byte is >= 0x80 and the value is positive,
         // push a new zero-byte to make the significant byte < 0x80 again.
         // - If the most significant byte is >= 0x80 and the value is negative,
         // push a new 0x80 byte that will be popped off when converting to an
         // integral.
         // - If the most significant byte is < 0x80 and the value is negative,
         // add 0x80 to it, since it will be subtracted and interpreted as a
         // negative when converting to an integral.
         if (result.back() & 0x80) {
             result.push_back(neg ? 0x80 : 0);
         } else if (neg) {
             result.back() |= 0x80;
         }
 
         return result;
     }
 
 private:
     static int64_t set_vch(const std::vector<uint8_t> &vch) {
         if (vch.empty()) return 0;
 
         int64_t result = 0;
         for (size_t i = 0; i != vch.size(); ++i)
             result |= static_cast<int64_t>(vch[i]) << 8 * i;
 
         // If the input vector's most significant byte is 0x80, remove it from
         // the result's msb and return a negative.
         if (vch.back() & 0x80)
             return -((int64_t)(result & ~(0x80ULL << (8 * (vch.size() - 1)))));
 
         return result;
     }
 
     int64_t m_value;
 };
 
 typedef prevector<28, uint8_t> CScriptBase;
 
 /** Serialized script, used inside transaction inputs and outputs */
 class CScript : public CScriptBase {
 protected:
     CScript &push_int64(int64_t n) {
         if (n == -1 || (n >= 1 && n <= 16)) {
             push_back(n + (OP_1 - 1));
         } else if (n == 0) {
             push_back(OP_0);
         } else {
             *this << CScriptNum::serialize(n);
         }
         return *this;
     }
 
 public:
     CScript() {}
     CScript(const_iterator pbegin, const_iterator pend)
         : CScriptBase(pbegin, pend) {}
     CScript(std::vector<uint8_t>::const_iterator pbegin,
             std::vector<uint8_t>::const_iterator pend)
         : CScriptBase(pbegin, pend) {}
     CScript(const uint8_t *pbegin, const uint8_t *pend)
         : CScriptBase(pbegin, pend) {}
 
     ADD_SERIALIZE_METHODS;
 
     template <typename Stream, typename Operation>
     inline void SerializationOp(Stream &s, Operation ser_action) {
         READWRITE(static_cast<CScriptBase &>(*this));
     }
 
     CScript &operator+=(const CScript &b) {
         insert(end(), b.begin(), b.end());
         return *this;
     }
 
     friend CScript operator+(const CScript &a, const CScript &b) {
         CScript ret = a;
         ret += b;
         return ret;
     }
 
     CScript(int64_t b) { operator<<(b); }
 
     explicit CScript(opcodetype b) { operator<<(b); }
     explicit CScript(const CScriptNum &b) { operator<<(b); }
     explicit CScript(const std::vector<uint8_t> &b) { operator<<(b); }
 
     CScript &operator<<(int64_t b) { return push_int64(b); }
 
     CScript &operator<<(opcodetype opcode) {
         if (opcode < 0 || opcode > 0xff)
             throw std::runtime_error("CScript::operator<<(): invalid opcode");
         insert(end(), uint8_t(opcode));
         return *this;
     }
 
     CScript &operator<<(const CScriptNum &b) {
         *this << b.getvch();
         return *this;
     }
 
     CScript &operator<<(const std::vector<uint8_t> &b) {
         if (b.size() < OP_PUSHDATA1) {
             insert(end(), uint8_t(b.size()));
         } else if (b.size() <= 0xff) {
             insert(end(), OP_PUSHDATA1);
             insert(end(), uint8_t(b.size()));
         } else if (b.size() <= 0xffff) {
             insert(end(), OP_PUSHDATA2);
             uint8_t data[2];
             WriteLE16(data, b.size());
             insert(end(), data, data + sizeof(data));
         } else {
             insert(end(), OP_PUSHDATA4);
             uint8_t data[4];
             WriteLE32(data, b.size());
             insert(end(), data, data + sizeof(data));
         }
         insert(end(), b.begin(), b.end());
         return *this;
     }
 
     CScript &operator<<(const CScript &b) {
         // I'm not sure if this should push the script or concatenate scripts.
         // If there's ever a use for pushing a script onto a script, delete this
         // member fn.
         assert(!"Warning: Pushing a CScript onto a CScript with << is probably "
                 "not intended, use + to concatenate!");
         return *this;
     }
 
     bool GetOp(iterator &pc, opcodetype &opcodeRet,
                std::vector<uint8_t> &vchRet) {
         // Wrapper so it can be called with either iterator or const_iterator.
         const_iterator pc2 = pc;
         bool fRet = GetOp2(pc2, opcodeRet, &vchRet);
         pc = begin() + (pc2 - begin());
         return fRet;
     }
 
     bool GetOp(iterator &pc, opcodetype &opcodeRet) {
         const_iterator pc2 = pc;
         bool fRet = GetOp2(pc2, opcodeRet, nullptr);
         pc = begin() + (pc2 - begin());
         return fRet;
     }
 
     bool GetOp(const_iterator &pc, opcodetype &opcodeRet,
                std::vector<uint8_t> &vchRet) const {
         return GetOp2(pc, opcodeRet, &vchRet);
     }
 
     bool GetOp(const_iterator &pc, opcodetype &opcodeRet) const {
         return GetOp2(pc, opcodeRet, nullptr);
     }
 
     bool GetOp2(const_iterator &pc, opcodetype &opcodeRet,
                 std::vector<uint8_t> *pvchRet) const {
         opcodeRet = OP_INVALIDOPCODE;
         if (pvchRet) pvchRet->clear();
         if (pc >= end()) return false;
 
         // Read instruction
         if (end() - pc < 1) return false;
         unsigned int opcode = *pc++;
 
         // Immediate operand
         if (opcode <= OP_PUSHDATA4) {
             unsigned int nSize = 0;
             if (opcode < OP_PUSHDATA1) {
                 nSize = opcode;
             } else if (opcode == OP_PUSHDATA1) {
                 if (end() - pc < 1) return false;
                 nSize = *pc++;
             } else if (opcode == OP_PUSHDATA2) {
                 if (end() - pc < 2) return false;
                 nSize = ReadLE16(&pc[0]);
                 pc += 2;
             } else if (opcode == OP_PUSHDATA4) {
                 if (end() - pc < 4) return false;
                 nSize = ReadLE32(&pc[0]);
                 pc += 4;
             }
             if (end() - pc < 0 || (unsigned int)(end() - pc) < nSize)
                 return false;
             if (pvchRet) pvchRet->assign(pc, pc + nSize);
             pc += nSize;
         }
 
         opcodeRet = (opcodetype)opcode;
         return true;
     }
 
     /** Encode/decode small integers: */
     static int DecodeOP_N(opcodetype opcode) {
         if (opcode == OP_0) return 0;
         assert(opcode >= OP_1 && opcode <= OP_16);
         return (int)opcode - (int)(OP_1 - 1);
     }
     static opcodetype EncodeOP_N(int n) {
         assert(n >= 0 && n <= 16);
         if (n == 0) return OP_0;
         return (opcodetype)(OP_1 + n - 1);
     }
 
     int FindAndDelete(const CScript &b) {
         int nFound = 0;
         if (b.empty()) return nFound;
         CScript result;
         iterator pc = begin(), pc2 = begin();
         opcodetype opcode;
         do {
             result.insert(result.end(), pc2, pc);
             while (static_cast<size_t>(end() - pc) >= b.size() &&
                    std::equal(b.begin(), b.end(), pc)) {
                 pc = pc + b.size();
                 ++nFound;
             }
             pc2 = pc;
         } while (GetOp(pc, opcode));
 
         if (nFound > 0) {
             result.insert(result.end(), pc2, end());
             *this = result;
         }
 
         return nFound;
     }
     int Find(opcodetype op) const {
         int nFound = 0;
         opcodetype opcode;
         for (const_iterator pc = begin(); pc != end() && GetOp(pc, opcode);)
             if (opcode == op) ++nFound;
         return nFound;
     }
 
     /**
      * Pre-version-0.6, Bitcoin always counted CHECKMULTISIGs as 20 sigops. With
      * pay-to-script-hash, that changed: CHECKMULTISIGs serialized in scriptSigs
      * are counted more accurately, assuming they are of the form
      *  ... OP_N CHECKMULTISIG ...
      */
     unsigned int GetSigOpCount(bool fAccurate) const;
 
     /**
      * Accurately count sigOps, including sigOps in pay-to-script-hash
      * transactions:
      */
     unsigned int GetSigOpCount(const CScript &scriptSig) const;
 
     bool IsPayToScriptHash() const;
-    bool IsPayToWitnessScriptHash() const;
     bool IsCommitment(const std::vector<uint8_t> &data) const;
     bool IsWitnessProgram(int &version, std::vector<uint8_t> &program) const;
 
     /** Called by IsStandardTx and P2SH/BIP62 VerifyScript (which makes it
      * consensus-critical). */
     bool IsPushOnly(const_iterator pc) const;
     bool IsPushOnly() const;
 
     /**
      * Returns whether the script is guaranteed to fail at execution, regardless
      * of the initial stack. This allows outputs to be pruned instantly when
      * entering the UTXO set.
      */
     bool IsUnspendable() const {
         return (size() > 0 && *begin() == OP_RETURN) ||
                (size() > MAX_SCRIPT_SIZE);
     }
 
     void clear() {
         // The default std::vector::clear() does not release memory.
         CScriptBase().swap(*this);
     }
 };
 
 struct CScriptWitness {
     // Note that this encodes the data elements being pushed, rather than
     // encoding them as a CScript that pushes them.
     std::vector<std::vector<uint8_t>> stack;
 
     // Some compilers complain without a default constructor
     CScriptWitness() {}
 
     bool IsNull() const { return stack.empty(); }
 
     void SetNull() {
         stack.clear();
         stack.shrink_to_fit();
     }
 
     std::string ToString() const;
 };
 
 class CReserveScript {
 public:
     CScript reserveScript;
     virtual void KeepScript() {}
     CReserveScript() {}
     virtual ~CReserveScript() {}
 };
 
 #endif // BITCOIN_SCRIPT_SCRIPT_H