diff --git a/src/test/uint256_tests.cpp b/src/test/uint256_tests.cpp index eafbfde516..575ab36b27 100644 --- a/src/test/uint256_tests.cpp +++ b/src/test/uint256_tests.cpp @@ -1,271 +1,260 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "uint256.h" #include "arith_uint256.h" #include "test/test_bitcoin.h" #include "version.h" #include #include #include #include #include #include #include #include BOOST_FIXTURE_TEST_SUITE(uint256_tests, BasicTestingSetup) const uint8_t R1Array[] = "\x9c\x52\x4a\xdb\xcf\x56\x11\x12\x2b\x29\x12\x5e\x5d\x35\xd2\xd2" "\x22\x81\xaa\xb5\x33\xf0\x08\x32\xd5\x56\xb1\xf9\xea\xe5\x1d\x7d"; const char R1ArrayHex[] = "7D1DE5EAF9B156D53208F033B5AA8122D2d2355d5e12292b121156cfdb4a529c"; const uint256 R1L = uint256(std::vector(R1Array, R1Array + 32)); const uint160 R1S = uint160(std::vector(R1Array, R1Array + 20)); const uint8_t R2Array[] = "\x70\x32\x1d\x7c\x47\xa5\x6b\x40\x26\x7e\x0a\xc3\xa6\x9c\xb6\xbf" "\x13\x30\x47\xa3\x19\x2d\xda\x71\x49\x13\x72\xf0\xb4\xca\x81\xd7"; const uint256 R2L = uint256(std::vector(R2Array, R2Array + 32)); const uint160 R2S = uint160(std::vector(R2Array, R2Array + 20)); const uint8_t ZeroArray[] = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"; const uint256 ZeroL = uint256(std::vector(ZeroArray, ZeroArray + 32)); const uint160 ZeroS = uint160(std::vector(ZeroArray, ZeroArray + 20)); const uint8_t OneArray[] = "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"; const uint256 OneL = uint256(std::vector(OneArray, OneArray + 32)); const uint160 OneS = uint160(std::vector(OneArray, OneArray + 20)); const uint8_t MaxArray[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"; const uint256 MaxL = uint256(std::vector(MaxArray, MaxArray + 32)); const uint160 MaxS = uint160(std::vector(MaxArray, MaxArray + 20)); std::string ArrayToString(const uint8_t A[], unsigned int width) { std::stringstream Stream; Stream << std::hex; for (unsigned int i = 0; i < width; ++i) { Stream << std::setw(2) << std::setfill('0') << (unsigned int)A[width - i - 1]; } return Stream.str(); } -inline uint160 uint160S(const char *str) { - uint160 rv; - rv.SetHex(str); - return rv; -} -inline uint160 uint160S(const std::string &str) { - uint160 rv; - rv.SetHex(str); - return rv; -} - // constructors, equality, inequality BOOST_AUTO_TEST_CASE(basics) { BOOST_CHECK(1 == 0 + 1); // constructor uint256(vector): BOOST_CHECK(R1L.ToString() == ArrayToString(R1Array, 32)); BOOST_CHECK(R1S.ToString() == ArrayToString(R1Array, 20)); BOOST_CHECK(R2L.ToString() == ArrayToString(R2Array, 32)); BOOST_CHECK(R2S.ToString() == ArrayToString(R2Array, 20)); BOOST_CHECK(ZeroL.ToString() == ArrayToString(ZeroArray, 32)); BOOST_CHECK(ZeroS.ToString() == ArrayToString(ZeroArray, 20)); BOOST_CHECK(OneL.ToString() == ArrayToString(OneArray, 32)); BOOST_CHECK(OneS.ToString() == ArrayToString(OneArray, 20)); BOOST_CHECK(MaxL.ToString() == ArrayToString(MaxArray, 32)); BOOST_CHECK(MaxS.ToString() == ArrayToString(MaxArray, 20)); BOOST_CHECK(OneL.ToString() != ArrayToString(ZeroArray, 32)); BOOST_CHECK(OneS.ToString() != ArrayToString(ZeroArray, 20)); // == and != BOOST_CHECK(R1L != R2L && R1S != R2S); BOOST_CHECK(ZeroL != OneL && ZeroS != OneS); BOOST_CHECK(OneL != ZeroL && OneS != ZeroS); BOOST_CHECK(MaxL != ZeroL && MaxS != ZeroS); // String Constructor and Copy Constructor BOOST_CHECK(uint256S("0x" + R1L.ToString()) == R1L); BOOST_CHECK(uint256S("0x" + R2L.ToString()) == R2L); BOOST_CHECK(uint256S("0x" + ZeroL.ToString()) == ZeroL); BOOST_CHECK(uint256S("0x" + OneL.ToString()) == OneL); BOOST_CHECK(uint256S("0x" + MaxL.ToString()) == MaxL); BOOST_CHECK(uint256S(R1L.ToString()) == R1L); BOOST_CHECK(uint256S(" 0x" + R1L.ToString() + " ") == R1L); BOOST_CHECK(uint256S("") == ZeroL); BOOST_CHECK(R1L == uint256S(R1ArrayHex)); BOOST_CHECK(uint256(R1L) == R1L); BOOST_CHECK(uint256(ZeroL) == ZeroL); BOOST_CHECK(uint256(OneL) == OneL); BOOST_CHECK(uint160S("0x" + R1S.ToString()) == R1S); BOOST_CHECK(uint160S("0x" + R2S.ToString()) == R2S); BOOST_CHECK(uint160S("0x" + ZeroS.ToString()) == ZeroS); BOOST_CHECK(uint160S("0x" + OneS.ToString()) == OneS); BOOST_CHECK(uint160S("0x" + MaxS.ToString()) == MaxS); BOOST_CHECK(uint160S(R1S.ToString()) == R1S); BOOST_CHECK(uint160S(" 0x" + R1S.ToString() + " ") == R1S); BOOST_CHECK(uint160S("") == ZeroS); BOOST_CHECK(R1S == uint160S(R1ArrayHex)); BOOST_CHECK(uint160(R1S) == R1S); BOOST_CHECK(uint160(ZeroS) == ZeroS); BOOST_CHECK(uint160(OneS) == OneS); } // <= >= < > BOOST_AUTO_TEST_CASE(comparison) { uint256 LastL; for (int i = 255; i >= 0; --i) { uint256 TmpL; *(TmpL.begin() + (i >> 3)) |= 1 << (7 - (i & 7)); BOOST_CHECK(LastL < TmpL); LastL = TmpL; } BOOST_CHECK(ZeroL < R1L); BOOST_CHECK(R2L < R1L); BOOST_CHECK(ZeroL < OneL); BOOST_CHECK(OneL < MaxL); BOOST_CHECK(R1L < MaxL); BOOST_CHECK(R2L < MaxL); uint160 LastS; for (int i = 159; i >= 0; --i) { uint160 TmpS; *(TmpS.begin() + (i >> 3)) |= 1 << (7 - (i & 7)); BOOST_CHECK(LastS < TmpS); LastS = TmpS; } BOOST_CHECK(ZeroS < R1S); BOOST_CHECK(R2S < R1S); BOOST_CHECK(ZeroS < OneS); BOOST_CHECK(OneS < MaxS); BOOST_CHECK(R1S < MaxS); BOOST_CHECK(R2S < MaxS); } // GetHex SetHex begin() end() size() GetLow64 GetSerializeSize, Serialize, // Unserialize BOOST_AUTO_TEST_CASE(methods) { BOOST_CHECK(R1L.GetHex() == R1L.ToString()); BOOST_CHECK(R2L.GetHex() == R2L.ToString()); BOOST_CHECK(OneL.GetHex() == OneL.ToString()); BOOST_CHECK(MaxL.GetHex() == MaxL.ToString()); uint256 TmpL(R1L); BOOST_CHECK(TmpL == R1L); TmpL.SetHex(R2L.ToString()); BOOST_CHECK(TmpL == R2L); TmpL.SetHex(ZeroL.ToString()); BOOST_CHECK(TmpL == uint256()); TmpL.SetHex(R1L.ToString()); BOOST_CHECK(memcmp(R1L.begin(), R1Array, 32) == 0); BOOST_CHECK(memcmp(TmpL.begin(), R1Array, 32) == 0); BOOST_CHECK(memcmp(R2L.begin(), R2Array, 32) == 0); BOOST_CHECK(memcmp(ZeroL.begin(), ZeroArray, 32) == 0); BOOST_CHECK(memcmp(OneL.begin(), OneArray, 32) == 0); BOOST_CHECK(R1L.size() == sizeof(R1L)); BOOST_CHECK(sizeof(R1L) == 32); BOOST_CHECK(R1L.size() == 32); BOOST_CHECK(R2L.size() == 32); BOOST_CHECK(ZeroL.size() == 32); BOOST_CHECK(MaxL.size() == 32); BOOST_CHECK(R1L.begin() + 32 == R1L.end()); BOOST_CHECK(R2L.begin() + 32 == R2L.end()); BOOST_CHECK(OneL.begin() + 32 == OneL.end()); BOOST_CHECK(MaxL.begin() + 32 == MaxL.end()); BOOST_CHECK(TmpL.begin() + 32 == TmpL.end()); BOOST_CHECK(GetSerializeSize(R1L, 0, PROTOCOL_VERSION) == 32); BOOST_CHECK(GetSerializeSize(ZeroL, 0, PROTOCOL_VERSION) == 32); CDataStream ss(0, PROTOCOL_VERSION); ss << R1L; BOOST_CHECK(ss.str() == std::string(R1Array, R1Array + 32)); ss >> TmpL; BOOST_CHECK(R1L == TmpL); ss.clear(); ss << ZeroL; BOOST_CHECK(ss.str() == std::string(ZeroArray, ZeroArray + 32)); ss >> TmpL; BOOST_CHECK(ZeroL == TmpL); ss.clear(); ss << MaxL; BOOST_CHECK(ss.str() == std::string(MaxArray, MaxArray + 32)); ss >> TmpL; BOOST_CHECK(MaxL == TmpL); ss.clear(); BOOST_CHECK(R1S.GetHex() == R1S.ToString()); BOOST_CHECK(R2S.GetHex() == R2S.ToString()); BOOST_CHECK(OneS.GetHex() == OneS.ToString()); BOOST_CHECK(MaxS.GetHex() == MaxS.ToString()); uint160 TmpS(R1S); BOOST_CHECK(TmpS == R1S); TmpS.SetHex(R2S.ToString()); BOOST_CHECK(TmpS == R2S); TmpS.SetHex(ZeroS.ToString()); BOOST_CHECK(TmpS == uint160()); TmpS.SetHex(R1S.ToString()); BOOST_CHECK(memcmp(R1S.begin(), R1Array, 20) == 0); BOOST_CHECK(memcmp(TmpS.begin(), R1Array, 20) == 0); BOOST_CHECK(memcmp(R2S.begin(), R2Array, 20) == 0); BOOST_CHECK(memcmp(ZeroS.begin(), ZeroArray, 20) == 0); BOOST_CHECK(memcmp(OneS.begin(), OneArray, 20) == 0); BOOST_CHECK(R1S.size() == sizeof(R1S)); BOOST_CHECK(sizeof(R1S) == 20); BOOST_CHECK(R1S.size() == 20); BOOST_CHECK(R2S.size() == 20); BOOST_CHECK(ZeroS.size() == 20); BOOST_CHECK(MaxS.size() == 20); BOOST_CHECK(R1S.begin() + 20 == R1S.end()); BOOST_CHECK(R2S.begin() + 20 == R2S.end()); BOOST_CHECK(OneS.begin() + 20 == OneS.end()); BOOST_CHECK(MaxS.begin() + 20 == MaxS.end()); BOOST_CHECK(TmpS.begin() + 20 == TmpS.end()); BOOST_CHECK(GetSerializeSize(R1S, 0, PROTOCOL_VERSION) == 20); BOOST_CHECK(GetSerializeSize(ZeroS, 0, PROTOCOL_VERSION) == 20); ss << R1S; BOOST_CHECK(ss.str() == std::string(R1Array, R1Array + 20)); ss >> TmpS; BOOST_CHECK(R1S == TmpS); ss.clear(); ss << ZeroS; BOOST_CHECK(ss.str() == std::string(ZeroArray, ZeroArray + 20)); ss >> TmpS; BOOST_CHECK(ZeroS == TmpS); ss.clear(); ss << MaxS; BOOST_CHECK(ss.str() == std::string(MaxArray, MaxArray + 20)); ss >> TmpS; BOOST_CHECK(MaxS == TmpS); ss.clear(); } BOOST_AUTO_TEST_CASE(conversion) { BOOST_CHECK(ArithToUint256(UintToArith256(ZeroL)) == ZeroL); BOOST_CHECK(ArithToUint256(UintToArith256(OneL)) == OneL); BOOST_CHECK(ArithToUint256(UintToArith256(R1L)) == R1L); BOOST_CHECK(ArithToUint256(UintToArith256(R2L)) == R2L); BOOST_CHECK(UintToArith256(ZeroL) == 0); BOOST_CHECK(UintToArith256(OneL) == 1); BOOST_CHECK(ArithToUint256(0) == ZeroL); BOOST_CHECK(ArithToUint256(1) == OneL); BOOST_CHECK(arith_uint256(R1L.GetHex()) == UintToArith256(R1L)); BOOST_CHECK(arith_uint256(R2L.GetHex()) == UintToArith256(R2L)); BOOST_CHECK(R1L.GetHex() == UintToArith256(R1L).GetHex()); BOOST_CHECK(R2L.GetHex() == UintToArith256(R2L).GetHex()); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/uint256.h b/src/uint256.h index aa42d538fb..a7376fe78a 100644 --- a/src/uint256.h +++ b/src/uint256.h @@ -1,139 +1,150 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_UINT256_H #define BITCOIN_UINT256_H #include "crypto/common.h" #include #include #include #include #include #include /** Template base class for fixed-sized opaque blobs. */ template class base_blob { protected: enum { WIDTH = BITS / 8 }; uint8_t data[WIDTH]; public: base_blob() { memset(data, 0, sizeof(data)); } explicit base_blob(const std::vector &vch); bool IsNull() const { for (int i = 0; i < WIDTH; i++) if (data[i] != 0) return false; return true; } void SetNull() { memset(data, 0, sizeof(data)); } inline int Compare(const base_blob &other) const { return memcmp(data, other.data, sizeof(data)); } friend inline bool operator==(const base_blob &a, const base_blob &b) { return a.Compare(b) == 0; } friend inline bool operator!=(const base_blob &a, const base_blob &b) { return a.Compare(b) != 0; } friend inline bool operator<(const base_blob &a, const base_blob &b) { return a.Compare(b) < 0; } std::string GetHex() const; void SetHex(const char *psz); void SetHex(const std::string &str); std::string ToString() const; uint8_t *begin() { return &data[0]; } uint8_t *end() { return &data[WIDTH]; } const uint8_t *begin() const { return &data[0]; } const uint8_t *end() const { return &data[WIDTH]; } unsigned int size() const { return sizeof(data); } uint64_t GetUint64(int pos) const { const uint8_t *ptr = data + pos * 8; return ((uint64_t)ptr[0]) | ((uint64_t)ptr[1]) << 8 | ((uint64_t)ptr[2]) << 16 | ((uint64_t)ptr[3]) << 24 | ((uint64_t)ptr[4]) << 32 | ((uint64_t)ptr[5]) << 40 | ((uint64_t)ptr[6]) << 48 | ((uint64_t)ptr[7]) << 56; } template void Serialize(Stream &s) const { s.write((char *)data, sizeof(data)); } template void Unserialize(Stream &s) { s.read((char *)data, sizeof(data)); } }; /** * 160-bit opaque blob. * @note This type is called uint160 for historical reasons only. It is an * opaque blob of 160 bits and has no integer operations. */ class uint160 : public base_blob<160> { public: uint160() {} uint160(const base_blob<160> &b) : base_blob<160>(b) {} explicit uint160(const std::vector &vch) : base_blob<160>(vch) {} }; /** * 256-bit opaque blob. * @note This type is called uint256 for historical reasons only. It is an * opaque blob of 256 bits and has no integer operations. Use arith_uint256 if * those are required. */ class uint256 : public base_blob<256> { public: uint256() {} uint256(const base_blob<256> &b) : base_blob<256>(b) {} explicit uint256(const std::vector &vch) : base_blob<256>(vch) {} /** * A cheap hash function that just returns 64 bits from the result, it can * be used when the contents are considered uniformly random. It is not * appropriate when the value can easily be influenced from outside as e.g. * a network adversary could provide values to trigger worst-case behavior. */ uint64_t GetCheapHash() const { return ReadLE64(data); } }; /** * uint256 from const char *. * This is a separate function because the constructor uint256(const char*) can * result in dangerously catching uint256(0). */ inline uint256 uint256S(const char *str) { uint256 rv; rv.SetHex(str); return rv; } /** * uint256 from std::string. * This is a separate function because the constructor uint256(const std::string * &str) can result in dangerously catching uint256(0) via std::string(const * char*). */ inline uint256 uint256S(const std::string &str) { uint256 rv; rv.SetHex(str); return rv; } +inline uint160 uint160S(const char *str) { + uint160 rv; + rv.SetHex(str); + return rv; +} +inline uint160 uint160S(const std::string &str) { + uint160 rv; + rv.SetHex(str); + return rv; +} + #endif // BITCOIN_UINT256_H