diff --git a/src/serialize.h b/src/serialize.h index 1b865bd875..b1c99983af 100644 --- a/src/serialize.h +++ b/src/serialize.h @@ -1,894 +1,919 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SERIALIZE_H #define BITCOIN_SERIALIZE_H #include "compat/endian.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "prevector.h" static const uint64_t MAX_SIZE = 0x02000000; /** * Dummy data type to identify deserializing constructors. * * By convention, a constructor of a type T with signature * * template T::T(deserialize_type, Stream& s) * * is a deserializing constructor, which builds the type by deserializing it * from s. If T contains const fields, this is likely the only way to do so. */ struct deserialize_type {}; constexpr deserialize_type deserialize{}; /** * Used to bypass the rule against non-const reference to temporary where it * makes sense with wrappers such as CFlatData or CTxDB */ template inline T &REF(const T &val) { return const_cast(val); } /** * Used to acquire a non-const pointer "this" to generate bodies of const * serialization operations from a template */ template inline T *NCONST_PTR(const T *val) { return const_cast(val); } /* * Lowest-level serialization and conversion. * @note Sizes of these types are verified in the tests */ template inline void ser_writedata8(Stream &s, uint8_t obj) { s.write((char *)&obj, 1); } template inline void ser_writedata16(Stream &s, uint16_t obj) { obj = htole16(obj); s.write((char *)&obj, 2); } template inline void ser_writedata32(Stream &s, uint32_t obj) { obj = htole32(obj); s.write((char *)&obj, 4); } template inline void ser_writedata64(Stream &s, uint64_t obj) { obj = htole64(obj); s.write((char *)&obj, 8); } template inline uint8_t ser_readdata8(Stream &s) { uint8_t obj; s.read((char *)&obj, 1); return obj; } template inline uint16_t ser_readdata16(Stream &s) { uint16_t obj; s.read((char *)&obj, 2); return le16toh(obj); } template inline uint32_t ser_readdata32(Stream &s) { uint32_t obj; s.read((char *)&obj, 4); return le32toh(obj); } template inline uint64_t ser_readdata64(Stream &s) { uint64_t obj; s.read((char *)&obj, 8); return le64toh(obj); } inline uint64_t ser_double_to_uint64(double x) { union { double x; uint64_t y; } tmp; tmp.x = x; return tmp.y; } inline uint32_t ser_float_to_uint32(float x) { union { float x; uint32_t y; } tmp; tmp.x = x; return tmp.y; } inline double ser_uint64_to_double(uint64_t y) { union { double x; uint64_t y; } tmp; tmp.y = y; return tmp.x; } inline float ser_uint32_to_float(uint32_t y) { union { float x; uint32_t y; } tmp; tmp.y = y; return tmp.x; } ///////////////////////////////////////////////////////////////// // // Templates for serializing to anything that looks like a stream, // i.e. anything that supports .read(char*, size_t) and .write(char*, size_t) // class CSizeComputer; enum { // primary actions SER_NETWORK = (1 << 0), SER_DISK = (1 << 1), SER_GETHASH = (1 << 2), }; #define READWRITE(obj) (::SerReadWrite(s, (obj), ser_action)) #define READWRITEMANY(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__)) /** * Implement three methods for serializable objects. These are actually wrappers * over "SerializationOp" template, which implements the body of each class' * serialization code. Adding "ADD_SERIALIZE_METHODS" in the body of the class * causes these wrappers to be added as members. */ #define ADD_SERIALIZE_METHODS \ template void Serialize(Stream &s) const { \ NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize()); \ } \ template void Unserialize(Stream &s) { \ SerializationOp(s, CSerActionUnserialize()); \ } template inline void Serialize(Stream &s, char a) { ser_writedata8(s, a); } // TODO Get rid of bare char template inline void Serialize(Stream &s, int8_t a) { ser_writedata8(s, a); } template inline void Serialize(Stream &s, uint8_t a) { ser_writedata8(s, a); } template inline void Serialize(Stream &s, int16_t a) { ser_writedata16(s, a); } template inline void Serialize(Stream &s, uint16_t a) { ser_writedata16(s, a); } template inline void Serialize(Stream &s, int32_t a) { ser_writedata32(s, a); } template inline void Serialize(Stream &s, uint32_t a) { ser_writedata32(s, a); } template inline void Serialize(Stream &s, int64_t a) { ser_writedata64(s, a); } template inline void Serialize(Stream &s, uint64_t a) { ser_writedata64(s, a); } template inline void Serialize(Stream &s, float a) { ser_writedata32(s, ser_float_to_uint32(a)); } template inline void Serialize(Stream &s, double a) { ser_writedata64(s, ser_double_to_uint64(a)); } // TODO Get rid of bare char template inline void Unserialize(Stream &s, char &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, int8_t &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, uint8_t &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, int16_t &a) { a = ser_readdata16(s); } template inline void Unserialize(Stream &s, uint16_t &a) { a = ser_readdata16(s); } template inline void Unserialize(Stream &s, int32_t &a) { a = ser_readdata32(s); } template inline void Unserialize(Stream &s, uint32_t &a) { a = ser_readdata32(s); } template inline void Unserialize(Stream &s, int64_t &a) { a = ser_readdata64(s); } template inline void Unserialize(Stream &s, uint64_t &a) { a = ser_readdata64(s); } template inline void Unserialize(Stream &s, float &a) { a = ser_uint32_to_float(ser_readdata32(s)); } template inline void Unserialize(Stream &s, double &a) { a = ser_uint64_to_double(ser_readdata64(s)); } template inline void Serialize(Stream &s, bool a) { char f = a; ser_writedata8(s, f); } template inline void Unserialize(Stream &s, bool &a) { char f = ser_readdata8(s); a = f; } /** * Compact Size * size < 253 -- 1 byte * size <= USHRT_MAX -- 3 bytes (253 + 2 bytes) * size <= UINT_MAX -- 5 bytes (254 + 4 bytes) * size > UINT_MAX -- 9 bytes (255 + 8 bytes) */ -inline unsigned int GetSizeOfCompactSize(uint64_t nSize) { - if (nSize < 253) +inline uint32_t GetSizeOfCompactSize(uint64_t nSize) { + if (nSize < 253) { return sizeof(uint8_t); - else if (nSize <= std::numeric_limits::max()) - return sizeof(uint8_t) + sizeof(unsigned short); - else if (nSize <= std::numeric_limits::max()) - return sizeof(uint8_t) + sizeof(unsigned int); - else - return sizeof(uint8_t) + sizeof(uint64_t); + } + if (nSize <= std::numeric_limits::max()) { + return sizeof(uint8_t) + sizeof(uint16_t); + } + if (nSize <= std::numeric_limits::max()) { + return sizeof(uint8_t) + sizeof(uint32_t); + } + + return sizeof(uint8_t) + sizeof(uint64_t); } inline void WriteCompactSize(CSizeComputer &os, uint64_t nSize); template void WriteCompactSize(Stream &os, uint64_t nSize) { if (nSize < 253) { ser_writedata8(os, nSize); - } else if (nSize <= std::numeric_limits::max()) { + } else if (nSize <= std::numeric_limits::max()) { ser_writedata8(os, 253); ser_writedata16(os, nSize); - } else if (nSize <= std::numeric_limits::max()) { + } else if (nSize <= std::numeric_limits::max()) { ser_writedata8(os, 254); ser_writedata32(os, nSize); } else { ser_writedata8(os, 255); ser_writedata64(os, nSize); } return; } template uint64_t ReadCompactSize(Stream &is) { uint8_t chSize = ser_readdata8(is); uint64_t nSizeRet = 0; if (chSize < 253) { nSizeRet = chSize; } else if (chSize == 253) { nSizeRet = ser_readdata16(is); - if (nSizeRet < 253) + if (nSizeRet < 253) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); + } } else if (chSize == 254) { nSizeRet = ser_readdata32(is); - if (nSizeRet < 0x10000u) + if (nSizeRet < 0x10000u) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); + } } else { nSizeRet = ser_readdata64(is); - if (nSizeRet < 0x100000000ULL) + if (nSizeRet < 0x100000000ULL) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); + } } if (nSizeRet > MAX_SIZE) { throw std::ios_base::failure("ReadCompactSize(): size too large"); } return nSizeRet; } /** * Variable-length integers: bytes are a MSB base-128 encoding of the number. * The high bit in each byte signifies whether another digit follows. To make * sure the encoding is one-to-one, one is subtracted from all but the last * digit. Thus, the byte sequence a[] with length len, where all but the last * byte has bit 128 set, encodes the number: * * (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1)) * * Properties: * * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes) * * Every integer has exactly one encoding * * Encoding does not depend on size of original integer type * * No redundancy: every (infinite) byte sequence corresponds to a list * of encoded integers. * * 0: [0x00] 256: [0x81 0x00] * 1: [0x01] 16383: [0xFE 0x7F] * 127: [0x7F] 16384: [0xFF 0x00] * 128: [0x80 0x00] 16511: [0xFF 0x7F] * 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F] * 2^32: [0x8E 0xFE 0xFE 0xFF 0x00] */ template inline unsigned int GetSizeOfVarInt(I n) { int nRet = 0; while (true) { nRet++; - if (n <= 0x7F) break; + if (n <= 0x7F) { + return nRet; + } n = (n >> 7) - 1; } - return nRet; } template inline void WriteVarInt(CSizeComputer &os, I n); template void WriteVarInt(Stream &os, I n) { uint8_t tmp[(sizeof(n) * 8 + 6) / 7]; int len = 0; while (true) { tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00); - if (n <= 0x7F) break; + if (n <= 0x7F) { + break; + } n = (n >> 7) - 1; len++; } do { ser_writedata8(os, tmp[len]); } while (len--); } template I ReadVarInt(Stream &is) { I n = 0; while (true) { uint8_t chData = ser_readdata8(is); n = (n << 7) | (chData & 0x7F); - if (chData & 0x80) - n++; - else + if ((chData & 0x80) == 0) { return n; + } + n++; } } #define FLATDATA(obj) \ REF(CFlatData((char *)&(obj), (char *)&(obj) + sizeof(obj))) #define VARINT(obj) REF(WrapVarInt(REF(obj))) #define COMPACTSIZE(obj) REF(CCompactSize(REF(obj))) #define LIMITED_STRING(obj, n) REF(LimitedString(REF(obj))) /** * Wrapper for serializing arrays and POD. */ class CFlatData { protected: char *pbegin; char *pend; public: CFlatData(void *pbeginIn, void *pendIn) : pbegin((char *)pbeginIn), pend((char *)pendIn) {} template explicit CFlatData(std::vector &v) { pbegin = (char *)v.data(); pend = (char *)(v.data() + v.size()); } template explicit CFlatData(prevector &v) { pbegin = (char *)v.data(); pend = (char *)(v.data() + v.size()); } char *begin() { return pbegin; } const char *begin() const { return pbegin; } char *end() { return pend; } const char *end() const { return pend; } template void Serialize(Stream &s) const { s.write(pbegin, pend - pbegin); } template void Unserialize(Stream &s) { s.read(pbegin, pend - pbegin); } }; template class CVarInt { protected: I &n; public: CVarInt(I &nIn) : n(nIn) {} template void Serialize(Stream &s) const { WriteVarInt(s, n); } template void Unserialize(Stream &s) { n = ReadVarInt(s); } }; class CCompactSize { protected: uint64_t &n; public: CCompactSize(uint64_t &nIn) : n(nIn) {} template void Serialize(Stream &s) const { WriteCompactSize(s, n); } template void Unserialize(Stream &s) { n = ReadCompactSize(s); } }; template class LimitedString { protected: std::string &string; public: LimitedString(std::string &_string) : string(_string) {} template void Unserialize(Stream &s) { size_t size = ReadCompactSize(s); if (size > Limit) { throw std::ios_base::failure("String length limit exceeded"); } string.resize(size); - if (size != 0) s.read((char *)&string[0], size); + if (size != 0) { + s.read((char *)&string[0], size); + } } template void Serialize(Stream &s) const { WriteCompactSize(s, string.size()); - if (!string.empty()) s.write((char *)&string[0], string.size()); + if (!string.empty()) { + s.write((char *)&string[0], string.size()); + } } }; template CVarInt WrapVarInt(I &n) { return CVarInt(n); } /** * Forward declarations */ /** * string */ template void Serialize(Stream &os, const std::basic_string &str); template void Unserialize(Stream &is, std::basic_string &str); /** * prevector * prevectors of uint8_t are a special case and are intended to be serialized as * a single opaque blob. */ template void Serialize_impl(Stream &os, const prevector &v, const uint8_t &); template void Serialize_impl(Stream &os, const prevector &v, const V &); template inline void Serialize(Stream &os, const prevector &v); template void Unserialize_impl(Stream &is, prevector &v, const uint8_t &); template void Unserialize_impl(Stream &is, prevector &v, const V &); template inline void Unserialize(Stream &is, prevector &v); /** * vector * vectors of uint8_t are a special case and are intended to be serialized as a * single opaque blob. */ template void Serialize_impl(Stream &os, const std::vector &v, const uint8_t &); template void Serialize_impl(Stream &os, const std::vector &v, const V &); template inline void Serialize(Stream &os, const std::vector &v); template void Unserialize_impl(Stream &is, std::vector &v, const uint8_t &); template void Unserialize_impl(Stream &is, std::vector &v, const V &); template inline void Unserialize(Stream &is, std::vector &v); /** * pair */ template void Serialize(Stream &os, const std::pair &item); template void Unserialize(Stream &is, std::pair &item); /** * map */ template void Serialize(Stream &os, const std::map &m); template void Unserialize(Stream &is, std::map &m); /** * set */ template void Serialize(Stream &os, const std::set &m); template void Unserialize(Stream &is, std::set &m); /** * shared_ptr */ template void Serialize(Stream &os, const std::shared_ptr &p); template void Unserialize(Stream &os, std::shared_ptr &p); /** * unique_ptr */ template void Serialize(Stream &os, const std::unique_ptr &p); template void Unserialize(Stream &os, std::unique_ptr &p); /** * If none of the specialized versions above matched, default to calling member * function. */ template inline void Serialize(Stream &os, const T &a) { a.Serialize(os); } template inline void Unserialize(Stream &is, T &a) { a.Unserialize(is); } /** * string */ template void Serialize(Stream &os, const std::basic_string &str) { WriteCompactSize(os, str.size()); - if (!str.empty()) os.write((char *)&str[0], str.size() * sizeof(str[0])); + if (!str.empty()) { + os.write((char *)&str[0], str.size() * sizeof(str[0])); + } } template void Unserialize(Stream &is, std::basic_string &str) { - unsigned int nSize = ReadCompactSize(is); + size_t nSize = ReadCompactSize(is); str.resize(nSize); - if (nSize != 0) is.read((char *)&str[0], nSize * sizeof(str[0])); + if (nSize != 0) { + is.read((char *)&str[0], nSize * sizeof(str[0])); + } } /** * prevector */ template void Serialize_impl(Stream &os, const prevector &v, const uint8_t &) { WriteCompactSize(os, v.size()); - if (!v.empty()) os.write((char *)&v[0], v.size() * sizeof(T)); + if (!v.empty()) { + os.write((char *)&v[0], v.size() * sizeof(T)); + } } template void Serialize_impl(Stream &os, const prevector &v, const V &) { WriteCompactSize(os, v.size()); - for (typename prevector::const_iterator vi = v.begin(); vi != v.end(); - ++vi) - ::Serialize(os, (*vi)); + for (const T &i : v) { + ::Serialize(os, i); + } } template inline void Serialize(Stream &os, const prevector &v) { Serialize_impl(os, v, T()); } template void Unserialize_impl(Stream &is, prevector &v, const uint8_t &) { // Limit size per read so bogus size value won't cause out of memory v.clear(); - unsigned int nSize = ReadCompactSize(is); - unsigned int i = 0; + size_t nSize = ReadCompactSize(is); + size_t i = 0; while (i < nSize) { - unsigned int blk = - std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T))); + size_t blk = std::min(nSize - i, size_t(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char *)&v[i], blk * sizeof(T)); i += blk; } } template void Unserialize_impl(Stream &is, prevector &v, const V &) { v.clear(); - unsigned int nSize = ReadCompactSize(is); - unsigned int i = 0; - unsigned int nMid = 0; + size_t nSize = ReadCompactSize(is); + size_t i = 0; + size_t nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); - if (nMid > nSize) nMid = nSize; + if (nMid > nSize) { + nMid = nSize; + } v.resize(nMid); - for (; i < nMid; i++) + for (; i < nMid; i++) { Unserialize(is, v[i]); + } } } template inline void Unserialize(Stream &is, prevector &v) { Unserialize_impl(is, v, T()); } /** * vector */ template void Serialize_impl(Stream &os, const std::vector &v, const uint8_t &) { WriteCompactSize(os, v.size()); - if (!v.empty()) os.write((char *)&v[0], v.size() * sizeof(T)); + if (!v.empty()) { + os.write((char *)&v[0], v.size() * sizeof(T)); + } } template void Serialize_impl(Stream &os, const std::vector &v, const V &) { WriteCompactSize(os, v.size()); - for (typename std::vector::const_iterator vi = v.begin(); - vi != v.end(); ++vi) - ::Serialize(os, (*vi)); + for (const T &i : v) { + ::Serialize(os, i); + } } template inline void Serialize(Stream &os, const std::vector &v) { Serialize_impl(os, v, T()); } template void Unserialize_impl(Stream &is, std::vector &v, const uint8_t &) { // Limit size per read so bogus size value won't cause out of memory v.clear(); - unsigned int nSize = ReadCompactSize(is); - unsigned int i = 0; + size_t nSize = ReadCompactSize(is); + size_t i = 0; while (i < nSize) { - unsigned int blk = - std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T))); + size_t blk = std::min(nSize - i, size_t(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char *)&v[i], blk * sizeof(T)); i += blk; } } template void Unserialize_impl(Stream &is, std::vector &v, const V &) { v.clear(); - unsigned int nSize = ReadCompactSize(is); - unsigned int i = 0; - unsigned int nMid = 0; + size_t nSize = ReadCompactSize(is); + size_t i = 0; + size_t nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); - if (nMid > nSize) nMid = nSize; + if (nMid > nSize) { + nMid = nSize; + } v.resize(nMid); - for (; i < nMid; i++) + for (; i < nMid; i++) { Unserialize(is, v[i]); + } } } template inline void Unserialize(Stream &is, std::vector &v) { Unserialize_impl(is, v, T()); } /** * pair */ template void Serialize(Stream &os, const std::pair &item) { Serialize(os, item.first); Serialize(os, item.second); } template void Unserialize(Stream &is, std::pair &item) { Unserialize(is, item.first); Unserialize(is, item.second); } /** * map */ template void Serialize(Stream &os, const std::map &m) { WriteCompactSize(os, m.size()); - for (typename std::map::const_iterator mi = m.begin(); - mi != m.end(); ++mi) - Serialize(os, (*mi)); + for (const std::pair &p : m) { + Serialize(os, p); + } } template void Unserialize(Stream &is, std::map &m) { m.clear(); - unsigned int nSize = ReadCompactSize(is); + size_t nSize = ReadCompactSize(is); typename std::map::iterator mi = m.begin(); - for (unsigned int i = 0; i < nSize; i++) { + for (size_t i = 0; i < nSize; i++) { std::pair item; Unserialize(is, item); mi = m.insert(mi, item); } } /** * set */ template void Serialize(Stream &os, const std::set &m) { WriteCompactSize(os, m.size()); - for (typename std::set::const_iterator it = m.begin(); - it != m.end(); ++it) - Serialize(os, (*it)); + for (const K &i : m) { + Serialize(os, i); + } } template void Unserialize(Stream &is, std::set &m) { m.clear(); - unsigned int nSize = ReadCompactSize(is); + size_t nSize = ReadCompactSize(is); typename std::set::iterator it = m.begin(); - for (unsigned int i = 0; i < nSize; i++) { + for (size_t i = 0; i < nSize; i++) { K key; Unserialize(is, key); it = m.insert(it, key); } } /** * unique_ptr */ template void Serialize(Stream &os, const std::unique_ptr &p) { Serialize(os, *p); } template void Unserialize(Stream &is, std::unique_ptr &p) { p.reset(new T(deserialize, is)); } /** * shared_ptr */ template void Serialize(Stream &os, const std::shared_ptr &p) { Serialize(os, *p); } template void Unserialize(Stream &is, std::shared_ptr &p) { p = std::make_shared(deserialize, is); } /** * Support for ADD_SERIALIZE_METHODS and READWRITE macro */ struct CSerActionSerialize { constexpr bool ForRead() const { return false; } }; struct CSerActionUnserialize { constexpr bool ForRead() const { return true; } }; template inline void SerReadWrite(Stream &s, const T &obj, CSerActionSerialize ser_action) { ::Serialize(s, obj); } template inline void SerReadWrite(Stream &s, T &obj, CSerActionUnserialize ser_action) { ::Unserialize(s, obj); } /** * ::GetSerializeSize implementations * * Computing the serialized size of objects is done through a special stream * object of type CSizeComputer, which only records the number of bytes written * to it. * * If your Serialize or SerializationOp method has non-trivial overhead for * serialization, it may be worthwhile to implement a specialized version for * CSizeComputer, which uses the s.seek() method to record bytes that would * be written instead. */ class CSizeComputer { protected: size_t nSize; const int nType; const int nVersion; public: CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {} void write(const char *psz, size_t _nSize) { this->nSize += _nSize; } /** Pretend _nSize bytes are written, without specifying them. */ void seek(size_t _nSize) { this->nSize += _nSize; } template CSizeComputer &operator<<(const T &obj) { ::Serialize(*this, obj); return (*this); } size_t size() const { return nSize; } int GetVersion() const { return nVersion; } int GetType() const { return nType; } }; template void SerializeMany(Stream &s) {} template void SerializeMany(Stream &s, Arg &&arg) { ::Serialize(s, std::forward(arg)); } template void SerializeMany(Stream &s, Arg &&arg, Args &&... args) { ::Serialize(s, std::forward(arg)); ::SerializeMany(s, std::forward(args)...); } template inline void UnserializeMany(Stream &s) {} template inline void UnserializeMany(Stream &s, Arg &arg) { ::Unserialize(s, arg); } template inline void UnserializeMany(Stream &s, Arg &arg, Args &... args) { ::Unserialize(s, arg); ::UnserializeMany(s, args...); } template inline void SerReadWriteMany(Stream &s, CSerActionSerialize ser_action, Args &&... args) { ::SerializeMany(s, std::forward(args)...); } template inline void SerReadWriteMany(Stream &s, CSerActionUnserialize ser_action, Args &... args) { ::UnserializeMany(s, args...); } template inline void WriteVarInt(CSizeComputer &s, I n) { s.seek(GetSizeOfVarInt(n)); } inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize) { s.seek(GetSizeOfCompactSize(nSize)); } template size_t GetSerializeSize(const T &t, int nType, int nVersion = 0) { return (CSizeComputer(nType, nVersion) << t).size(); } template size_t GetSerializeSize(const S &s, const T &t) { return (CSizeComputer(s.GetType(), s.GetVersion()) << t).size(); } #endif // BITCOIN_SERIALIZE_H