diff --git a/src/avalanche.cpp b/src/avalanche.cpp index e1d33a646b..7ac03a046d 100644 --- a/src/avalanche.cpp +++ b/src/avalanche.cpp @@ -1,313 +1,336 @@ // Copyright (c) 2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "avalanche.h" #include "chain.h" #include "netmessagemaker.h" #include "scheduler.h" #include "validation.h" #include static bool IsWorthPolling(const CBlockIndex *pindex) { AssertLockHeld(cs_main); if (pindex->nStatus.isInvalid()) { // No point polling invalid blocks. return false; } if (IsBlockFinalized(pindex)) { // There is no point polling finalized block. return false; } return true; } bool AvalancheProcessor::addBlockToReconcile(const CBlockIndex *pindex) { bool isAccepted; { LOCK(cs_main); if (!IsWorthPolling(pindex)) { // There is no point polling this block. return false; } isAccepted = chainActive.Contains(pindex); } return vote_records.getWriteView() ->insert(std::make_pair(pindex, VoteRecord(isAccepted))) .second; } static const VoteRecord * GetRecord(const RWCollection &vote_records, const CBlockIndex *pindex) { auto r = vote_records.getReadView(); auto it = r->find(pindex); if (it == r.end()) { return nullptr; } return &it->second; } bool AvalancheProcessor::isAccepted(const CBlockIndex *pindex) const { if (auto vr = GetRecord(vote_records, pindex)) { return vr->isAccepted(); } return false; } bool AvalancheProcessor::registerVotes( NodeId nodeid, const AvalancheResponse &response, std::vector &updates) { + // Save the time at which we can query again. + auto cooldown_end = std::chrono::steady_clock::now() + + std::chrono::milliseconds(response.getCooldown()); + RequestRecord r; { // Check that the query exists. auto w = queries.getWriteView(); auto it = w->find(nodeid); if (it == w.end()) { // NB: The request may be old, so we don't increase banscore. return false; } r = std::move(it->second); w->erase(it); } // Verify that the request and the vote are consistent. const std::vector &invs = r.GetInvs(); const std::vector &votes = response.GetVotes(); size_t size = invs.size(); if (votes.size() != size) { // TODO: increase banscore for inconsistent response. // NB: This isn't timeout but actually node misbehaving. return false; } for (size_t i = 0; i < size; i++) { if (invs[i].hash != votes[i].GetHash()) { // TODO: increase banscore for inconsistent response. // NB: This isn't timeout but actually node misbehaving. return false; } } std::map responseIndex; { LOCK(cs_main); for (auto &v : votes) { BlockMap::iterator mi = mapBlockIndex.find(v.GetHash()); if (mi == mapBlockIndex.end()) { // This should not happen, but just in case... continue; } CBlockIndex *pindex = mi->second; if (!IsWorthPolling(pindex)) { // There is no point polling this block. continue; } responseIndex.insert(std::make_pair(pindex, v)); } } { // Register votes. auto w = vote_records.getWriteView(); for (auto &p : responseIndex) { CBlockIndex *pindex = p.first; const AvalancheVote &v = p.second; auto it = w->find(pindex); if (it == w.end()) { // We are not voting on that item anymore. continue; } auto &vr = it->second; if (!vr.registerVote(v.IsValid())) { // This vote did not provide any extra information, move on. continue; } if (!vr.hasFinalized()) { // This item has note been finalized, so we have nothing more to // do. updates.emplace_back( pindex, vr.isAccepted() ? AvalancheBlockUpdate::Status::Accepted : AvalancheBlockUpdate::Status::Rejected); continue; } // We just finalized a vote. If it is valid, then let the caller // know. Either way, remove the item from the map. updates.emplace_back(pindex, vr.isAccepted() ? AvalancheBlockUpdate::Status::Finalized : AvalancheBlockUpdate::Status::Invalid); w->erase(it); } } // Put the node back in the list of queriable nodes. - auto w = nodeids.getWriteView(); - w->insert(nodeid); + auto w = nodecooldown.getWriteView(); + w->insert(std::make_pair(cooldown_end, nodeid)); return true; } namespace { /** * Run the avalanche event loop every 10ms. */ static int64_t AVALANCHE_TIME_STEP_MILLISECONDS = 10; /** * Maximum item that can be polled at once. */ static size_t AVALANCHE_MAX_ELEMENT_POLL = 4096; } bool AvalancheProcessor::startEventLoop(CScheduler &scheduler) { LOCK(cs_running); if (running) { // Do not start the event loop twice. return false; } running = true; // Start the event loop. scheduler.scheduleEvery( [this]() -> bool { runEventLoop(); if (!stopRequest) { return true; } LOCK(cs_running); running = false; cond_running.notify_all(); // A stop request was made. return false; }, AVALANCHE_TIME_STEP_MILLISECONDS); return true; } bool AvalancheProcessor::stopEventLoop() { WAIT_LOCK(cs_running, lock); if (!running) { return false; } // Request avalanche to stop. stopRequest = true; // Wait for avalanche to stop. cond_running.wait(lock, [this] { return !running; }); stopRequest = false; return true; } std::vector AvalancheProcessor::getInvsForNextPoll() const { std::vector invs; auto r = vote_records.getReadView(); for (const std::pair &p : boost::adaptors::reverse(r)) { const CBlockIndex *pindex = p.first; if (!IsWorthPolling(pindex)) { // Obviously do not poll if the block is not worth polling. continue; } // We don't have a decision, we need more votes. invs.emplace_back(MSG_BLOCK, p.first->GetBlockHash()); if (invs.size() >= AVALANCHE_MAX_ELEMENT_POLL) { // Make sure we do not produce more invs than specified by the // protocol. return invs; } } return invs; } NodeId AvalancheProcessor::getSuitableNodeToQuery() { auto w = nodeids.getWriteView(); - if (w->empty()) { + bool isCooldownMapEmpty; + + { + // Recover nodes for which cooldown is over. + auto now = std::chrono::steady_clock::now(); + auto wcooldown = nodecooldown.getWriteView(); + for (auto it = wcooldown.begin(); + it != wcooldown.end() && it->first < now;) { + w->insert(it->second); + wcooldown->erase(it++); + } + + isCooldownMapEmpty = wcooldown->empty(); + } + + // If the cooldown map is empty and we don't have any nodes, it's time to + // fish for new ones. + // FIXME: Clearly, we need a better way to fish for new nodes, but this is + // out of scope for now. + if (isCooldownMapEmpty && w->empty()) { auto r = queries.getReadView(); // We don't have any candidate node, so let's try to find some. connman->ForEachNode([&w, &r](CNode *pnode) { // If this node doesn't support avalanche, we remove. if (!(pnode->nServices & NODE_AVALANCHE)) { return; } // if we have a request in flight for that node. if (r->find(pnode->GetId()) != r.end()) { return; } w->insert(pnode->GetId()); }); } // We don't have any suitable candidate. if (w->empty()) { return -1; } auto it = w.begin(); NodeId nodeid = *it; w->erase(it); return nodeid; } void AvalancheProcessor::runEventLoop() { std::vector invs = getInvsForNextPoll(); if (invs.empty()) { // If there are no invs to poll, we are done. return; } NodeId nodeid = getSuitableNodeToQuery(); /** * If we lost contact to that node, then we remove it from nodeids, but * never add the request to queries, which ensures bad nodes get cleaned up * over time. */ connman->ForNode(nodeid, [this, &invs](CNode *pnode) { { // Register the query. queries.getWriteView()->emplace( pnode->GetId(), RequestRecord(GetAdjustedTime(), invs)); } // Send the query to the node. connman->PushMessage( pnode, CNetMsgMaker(pnode->GetSendVersion()) .Make(NetMsgType::AVAPOLL, AvalanchePoll(round++, std::move(invs)))); return true; }); } diff --git a/src/avalanche.h b/src/avalanche.h index 01e622d730..cfed897acc 100644 --- a/src/avalanche.h +++ b/src/avalanche.h @@ -1,256 +1,261 @@ // Copyright (c) 2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_AVALANCHE_H #define BITCOIN_AVALANCHE_H #include "blockindexworkcomparator.h" #include "net.h" #include "protocol.h" // for CInv #include "rwcollection.h" #include "serialize.h" #include "uint256.h" #include +#include #include #include #include class Config; class CBlockIndex; class CScheduler; namespace { /** * Finalization score. */ static int AVALANCHE_FINALIZATION_SCORE = 128; } /** * Vote history. */ struct VoteRecord { private: // Historical record of votes. uint16_t votes; // confidence's LSB bit is the result. Higher bits are actual confidence // score. uint16_t confidence; /** * Return the number of bits set in an integer value. * TODO: There are compiler intrinsics to do that, but we'd need to get them * detected so this will do for now. */ static uint32_t countBits(uint32_t value) { uint32_t count = 0; while (value) { // If the value is non zero, then at least one bit is set. count++; // Clear the rightmost bit set. value &= (value - 1); } return count; } public: VoteRecord(bool accepted) : votes(0xaaaa), confidence(accepted) {} bool isAccepted() const { return confidence & 0x01; } uint16_t getConfidence() const { return confidence >> 1; } bool hasFinalized() const { return getConfidence() >= AVALANCHE_FINALIZATION_SCORE; } /** * Register a new vote for an item and update confidence accordingly. * Returns true if the acceptance or finalization state changed. */ bool registerVote(bool vote) { votes = (votes << 1) | vote; auto bits = countBits(votes & 0xff); bool yes = bits > 6; bool no = bits < 2; if (!yes && !no) { // The vote is inconclusive. return false; } if (isAccepted() == yes) { // If the vote is in agreement with our internal status, increase // confidence. confidence += 2; return getConfidence() == AVALANCHE_FINALIZATION_SCORE; } // The vote did not agree with our internal state, in that case, reset // confidence. confidence = yes; return true; } }; class AvalancheVote { uint32_t error; uint256 hash; public: AvalancheVote() : error(-1), hash() {} AvalancheVote(uint32_t errorIn, uint256 hashIn) : error(errorIn), hash(hashIn) {} const uint256 &GetHash() const { return hash; } bool IsValid() const { return error == 0; } // serialization support ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(error); READWRITE(hash); } }; class AvalancheResponse { uint32_t cooldown; std::vector votes; public: AvalancheResponse(uint32_t cooldownIn, std::vector votesIn) : cooldown(cooldownIn), votes(votesIn) {} + uint32_t getCooldown() const { return cooldown; } const std::vector &GetVotes() const { return votes; } // serialization support ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(cooldown); READWRITE(votes); } }; class AvalanchePoll { uint32_t round; std::vector invs; public: AvalanchePoll(uint32_t roundIn, std::vector invsIn) : round(roundIn), invs(invsIn) {} const std::vector &GetInvs() const { return invs; } // serialization support ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(round); READWRITE(invs); } }; class AvalancheBlockUpdate { union { CBlockIndex *pindex; size_t raw; }; public: enum Status : uint8_t { Invalid, Rejected, Accepted, Finalized, }; AvalancheBlockUpdate(CBlockIndex *pindexIn, Status statusIn) : pindex(pindexIn) { raw |= statusIn; } Status getStatus() const { return Status(raw & 0x03); } CBlockIndex *getBlockIndex() { return reinterpret_cast(raw & -size_t(0x04)); } const CBlockIndex *getBlockIndex() const { return const_cast(this)->getBlockIndex(); } }; typedef std::map BlockVoteMap; +typedef std::map, NodeId> + NodeCooldownMap; class AvalancheProcessor { private: CConnman *connman; /** * Blocks to run avalanche on. */ RWCollection vote_records; /** * Keep track of peers and queries sent. */ struct RequestRecord { private: int64_t timestamp; std::vector invs; public: RequestRecord() : timestamp(0), invs() {} RequestRecord(int64_t timestampIn, std::vector invIn) : timestamp(timestampIn), invs(std::move(invIn)) {} int64_t GetTimestamp() const { return timestamp; } const std::vector &GetInvs() const { return invs; } }; std::atomic round; RWCollection> nodeids; RWCollection> queries; + RWCollection nodecooldown; /** * Start stop machinery. */ std::atomic stopRequest; bool running GUARDED_BY(cs_running); CWaitableCriticalSection cs_running; std::condition_variable cond_running; public: AvalancheProcessor(CConnman *connmanIn) : connman(connmanIn), stopRequest(false), running(false) {} ~AvalancheProcessor() { stopEventLoop(); } bool addBlockToReconcile(const CBlockIndex *pindex); bool isAccepted(const CBlockIndex *pindex) const; bool registerVotes(NodeId nodeid, const AvalancheResponse &response, std::vector &updates); bool startEventLoop(CScheduler &scheduler); bool stopEventLoop(); private: void runEventLoop(); std::vector getInvsForNextPoll() const; NodeId getSuitableNodeToQuery(); friend struct AvalancheTest; }; #endif // BITCOIN_AVALANCHE_H diff --git a/src/test/avalanche_tests.cpp b/src/test/avalanche_tests.cpp index 4a5ecfaab8..d61912e682 100644 --- a/src/test/avalanche_tests.cpp +++ b/src/test/avalanche_tests.cpp @@ -1,548 +1,569 @@ // Copyright (c) 2010 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "avalanche.h" #include "config.h" #include "net_processing.h" // For PeerLogicValidation #include "test/test_bitcoin.h" #include struct AvalancheTest { static void runEventLoop(AvalancheProcessor &p) { p.runEventLoop(); } static std::vector getInvsForNextPoll(const AvalancheProcessor &p) { return p.getInvsForNextPoll(); } static NodeId getSuitableNodeToQuery(AvalancheProcessor &p) { return p.getSuitableNodeToQuery(); } + + static uint32_t getRound(const AvalancheProcessor &p) { return p.round; } }; BOOST_FIXTURE_TEST_SUITE(avalanche_tests, TestChain100Setup) #define REGISTER_VOTE_AND_CHECK(vr, vote, state, finalized, confidence) \ vr.registerVote(vote); \ BOOST_CHECK_EQUAL(vr.isAccepted(), state); \ BOOST_CHECK_EQUAL(vr.hasFinalized(), finalized); \ BOOST_CHECK_EQUAL(vr.getConfidence(), confidence); BOOST_AUTO_TEST_CASE(vote_record) { VoteRecord vraccepted(true); // Check initial state. BOOST_CHECK_EQUAL(vraccepted.isAccepted(), true); BOOST_CHECK_EQUAL(vraccepted.hasFinalized(), false); BOOST_CHECK_EQUAL(vraccepted.getConfidence(), 0); VoteRecord vr(false); // Check initial state. BOOST_CHECK_EQUAL(vr.isAccepted(), false); BOOST_CHECK_EQUAL(vr.hasFinalized(), false); BOOST_CHECK_EQUAL(vr.getConfidence(), 0); // We register one vote for, which keep things at 4/4. REGISTER_VOTE_AND_CHECK(vr, true, false, false, 0); // One more and we are at 5/3. REGISTER_VOTE_AND_CHECK(vr, true, false, false, 0); // One more and we are at 5/3. REGISTER_VOTE_AND_CHECK(vr, true, false, false, 0); // One more and we are at 6/2. REGISTER_VOTE_AND_CHECK(vr, true, false, false, 0); // One more and we are at 6/2. REGISTER_VOTE_AND_CHECK(vr, true, false, false, 0); // Next vote will flip state, and confidence will increase as long as we // vote yes. for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) { REGISTER_VOTE_AND_CHECK(vr, true, true, false, i); } // The next vote will finalize the decision. REGISTER_VOTE_AND_CHECK(vr, false, true, true, AVALANCHE_FINALIZATION_SCORE); // Now that we have two no votes, confidence stop increasing. for (int i = 0; i < 5; i++) { REGISTER_VOTE_AND_CHECK(vr, false, true, true, AVALANCHE_FINALIZATION_SCORE); } // Next vote will flip state, and confidence will increase as long as we // vote no. for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) { REGISTER_VOTE_AND_CHECK(vr, false, false, false, i); } // The next vote will finalize the decision. REGISTER_VOTE_AND_CHECK(vr, true, false, true, AVALANCHE_FINALIZATION_SCORE); } BOOST_AUTO_TEST_CASE(block_update) { CBlockIndex index; CBlockIndex *pindex = &index; std::set status{ AvalancheBlockUpdate::Status::Invalid, AvalancheBlockUpdate::Status::Rejected, AvalancheBlockUpdate::Status::Accepted, AvalancheBlockUpdate::Status::Finalized, }; for (auto s : status) { AvalancheBlockUpdate abu(pindex, s); BOOST_CHECK(abu.getBlockIndex() == pindex); BOOST_CHECK_EQUAL(abu.getStatus(), s); } } CService ip(uint32_t i) { struct in_addr s; s.s_addr = i; return CService(CNetAddr(s), Params().GetDefaultPort()); } std::unique_ptr ConnectNode(const Config &config, ServiceFlags nServices, PeerLogicValidation &peerLogic) { static NodeId id = 0; CAddress addr(ip(GetRandInt(0xffffffff)), NODE_NONE); std::unique_ptr nodeptr(new CNode(id++, ServiceFlags(NODE_NETWORK), 0, INVALID_SOCKET, addr, 0, 0, CAddress(), "", /*fInboundIn=*/false)); CNode &node = *nodeptr; node.SetSendVersion(PROTOCOL_VERSION); node.nServices = nServices; peerLogic.InitializeNode(config, &node); node.nVersion = 1; node.fSuccessfullyConnected = true; CConnmanTest::AddNode(node); return nodeptr; } BOOST_AUTO_TEST_CASE(block_register) { AvalancheProcessor p(g_connman.get()); std::vector updates; CBlock block = CreateAndProcessBlock({}, CScript()); const uint256 blockHash = block.GetHash(); const CBlockIndex *pindex = mapBlockIndex[blockHash]; const Config &config = GetConfig(); // Create a node that supports avalanche. auto avanode = ConnectNode(config, NODE_AVALANCHE, *peerLogic); NodeId nodeid = avanode->GetId(); // Querying for random block returns false. BOOST_CHECK(!p.isAccepted(pindex)); // Add a new block. Check it is added to the polls. BOOST_CHECK(p.addBlockToReconcile(pindex)); auto invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHash); // Newly added blocks' state reflect the blockchain. BOOST_CHECK(p.isAccepted(pindex)); // Let's vote for this block a few times. AvalancheResponse resp{0, {AvalancheVote(0, blockHash)}}; for (int i = 0; i < 4; i++) { AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(nodeid, resp, updates)); BOOST_CHECK(p.isAccepted(pindex)); BOOST_CHECK_EQUAL(updates.size(), 0); } // We vote for it numerous times to finalize it. for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) { AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(nodeid, resp, updates)); BOOST_CHECK(p.isAccepted(pindex)); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not finalized, we poll. invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHash); // Now finalize the decision. AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(nodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getBlockIndex() == pindex); BOOST_CHECK_EQUAL(updates[0].getStatus(), AvalancheBlockUpdate::Status::Finalized); updates = {}; // Once the decision is finalized, there is no poll for it. invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 0); // Now let's undo this and finalize rejection. BOOST_CHECK(p.addBlockToReconcile(pindex)); invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHash); resp = {0, {AvalancheVote(1, blockHash)}}; for (int i = 0; i < 4; i++) { AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(nodeid, resp, updates)); BOOST_CHECK(p.isAccepted(pindex)); BOOST_CHECK_EQUAL(updates.size(), 0); } // Now the state will flip. AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(nodeid, resp, updates)); BOOST_CHECK(!p.isAccepted(pindex)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getBlockIndex() == pindex); BOOST_CHECK_EQUAL(updates[0].getStatus(), AvalancheBlockUpdate::Status::Rejected); updates = {}; // Now it is rejected, but we can vote for it numerous times. for (int i = 1; i < AVALANCHE_FINALIZATION_SCORE; i++) { AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(nodeid, resp, updates)); BOOST_CHECK(!p.isAccepted(pindex)); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not finalized, we poll. invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHash); // Now finalize the decision. AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(nodeid, resp, updates)); BOOST_CHECK(!p.isAccepted(pindex)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getBlockIndex() == pindex); BOOST_CHECK_EQUAL(updates[0].getStatus(), AvalancheBlockUpdate::Status::Invalid); updates = {}; // Once the decision is finalized, there is no poll for it. invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 0); // Adding the block twice does nothing. BOOST_CHECK(p.addBlockToReconcile(pindex)); BOOST_CHECK(!p.addBlockToReconcile(pindex)); BOOST_CHECK(p.isAccepted(pindex)); CConnmanTest::ClearNodes(); } BOOST_AUTO_TEST_CASE(multi_block_register) { AvalancheProcessor p(g_connman.get()); CBlockIndex indexA, indexB; std::vector updates; const Config &config = GetConfig(); // Create a node that supports avalanche. auto node0 = ConnectNode(config, NODE_AVALANCHE, *peerLogic); auto node1 = ConnectNode(config, NODE_AVALANCHE, *peerLogic); // Make sure the block has a hash. CBlock blockA = CreateAndProcessBlock({}, CScript()); const uint256 blockHashA = blockA.GetHash(); const CBlockIndex *pindexA = mapBlockIndex[blockHashA]; CBlock blockB = CreateAndProcessBlock({}, CScript()); const uint256 blockHashB = blockB.GetHash(); const CBlockIndex *pindexB = mapBlockIndex[blockHashB]; // Querying for random block returns false. BOOST_CHECK(!p.isAccepted(pindexA)); BOOST_CHECK(!p.isAccepted(pindexB)); // Start voting on block A. BOOST_CHECK(p.addBlockToReconcile(pindexA)); auto invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHashA); AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(node0->GetId(), {0, {AvalancheVote(0, blockHashA)}}, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); // Start voting on block B after one vote. AvalancheResponse resp{ 0, {AvalancheVote(0, blockHashB), AvalancheVote(0, blockHashA)}}; BOOST_CHECK(p.addBlockToReconcile(pindexB)); invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 2); // Ensure B comes before A because it has accumulated more PoW. BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHashB); BOOST_CHECK_EQUAL(invs[1].type, MSG_BLOCK); BOOST_CHECK(invs[1].hash == blockHashA); // Let's vote for these blocks a few times. for (int i = 0; i < 3; i++) { AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(node0->GetId(), resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); } // Now it is accepted, but we can vote for it numerous times. for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) { AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(node0->GetId(), resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); } // Running two iterration of the event loop so that vote gets triggerd on A // and B. AvalancheTest::runEventLoop(p); AvalancheTest::runEventLoop(p); // Next vote will finalize block A. BOOST_CHECK(p.registerVotes(node1->GetId(), resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getBlockIndex() == pindexA); BOOST_CHECK_EQUAL(updates[0].getStatus(), AvalancheBlockUpdate::Status::Finalized); updates = {}; // We do not vote on A anymore. invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHashB); // Next vote will finalize block B. BOOST_CHECK(p.registerVotes(node0->GetId(), resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getBlockIndex() == pindexB); BOOST_CHECK_EQUAL(updates[0].getStatus(), AvalancheBlockUpdate::Status::Finalized); updates = {}; // There is nothing left to vote on. invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 0); CConnmanTest::ClearNodes(); } BOOST_AUTO_TEST_CASE(poll_and_response) { AvalancheProcessor p(g_connman.get()); std::vector updates; CBlock block = CreateAndProcessBlock({}, CScript()); const uint256 blockHash = block.GetHash(); const CBlockIndex *pindex = mapBlockIndex[blockHash]; const Config &config = GetConfig(); // There is no node to query. BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), -1); // Create a node that supports avalanche and one that doesn't. auto oldnode = ConnectNode(config, NODE_NONE, *peerLogic); auto avanode = ConnectNode(config, NODE_AVALANCHE, *peerLogic); NodeId avanodeid = avanode->GetId(); // It returns the avalanche peer. BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); // Register a block and check it is added to the list of elements to poll. BOOST_CHECK(p.addBlockToReconcile(pindex)); auto invs = AvalancheTest::getInvsForNextPoll(p); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK); BOOST_CHECK(invs[0].hash == blockHash); // Trigger a poll on avanode. AvalancheTest::runEventLoop(p); // There is no more suitable peer available, so return nothing. BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), -1); // Respond to the request. AvalancheResponse resp = {0, {AvalancheVote(0, blockHash)}}; BOOST_CHECK(p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); // Now that avanode fullfilled his request, it is added back to the list of // queriable nodes. BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); // Sending a response when not polled fails. BOOST_CHECK(!p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); // Trigger a poll on avanode. AvalancheTest::runEventLoop(p); BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), -1); // Sending responses that do not match the request also fails. // 1. Too many results. resp = {0, {AvalancheVote(0, blockHash), AvalancheVote(0, blockHash)}}; AvalancheTest::runEventLoop(p); BOOST_CHECK(!p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); // 2. Not enough results. resp = {0, {}}; AvalancheTest::runEventLoop(p); BOOST_CHECK(!p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); // 3. Do not match the poll. resp = {0, {AvalancheVote()}}; AvalancheTest::runEventLoop(p); BOOST_CHECK(!p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); // Proper response gets processed and avanode is available again. resp = {0, {AvalancheVote(0, blockHash)}}; AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); // Making request for invalid nodes do not work. BOOST_CHECK(!p.registerVotes(avanodeid + 1234, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); // Out of order response are rejected. CBlock block2 = CreateAndProcessBlock({}, CScript()); const uint256 blockHash2 = block2.GetHash(); CBlockIndex *pindex2 = mapBlockIndex[blockHash2]; BOOST_CHECK(p.addBlockToReconcile(pindex2)); resp = {0, {AvalancheVote(0, blockHash), AvalancheVote(0, blockHash2)}}; AvalancheTest::runEventLoop(p); BOOST_CHECK(!p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); // When a block is marked invalid, stop polling. pindex2->nStatus = pindex2->nStatus.withFailed(); resp = {0, {AvalancheVote(0, blockHash)}}; AvalancheTest::runEventLoop(p); BOOST_CHECK(p.registerVotes(avanodeid, resp, updates)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), avanodeid); CConnmanTest::ClearNodes(); } BOOST_AUTO_TEST_CASE(event_loop) { AvalancheProcessor p(g_connman.get()); CScheduler s; CBlock block = CreateAndProcessBlock({}, CScript()); const uint256 blockHash = block.GetHash(); const CBlockIndex *pindex = mapBlockIndex[blockHash]; // Starting the event loop. BOOST_CHECK(p.startEventLoop(s)); // There is one task planned in the next hour (our event loop). boost::chrono::system_clock::time_point start, stop; BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1); // Starting twice doesn't start it twice. BOOST_CHECK(!p.startEventLoop(s)); // Start the scheduler thread. std::thread schedulerThread(std::bind(&CScheduler::serviceQueue, &s)); // Create a node and a block to query. const Config &config = GetConfig(); // Create a node that supports avalanche. auto avanode = ConnectNode(config, NODE_AVALANCHE, *peerLogic); NodeId nodeid = avanode->GetId(); // There is no query in flight at the moment. BOOST_CHECK_EQUAL(AvalancheTest::getSuitableNodeToQuery(p), nodeid); // Add a new block. Check it is added to the polls. BOOST_CHECK(p.addBlockToReconcile(pindex)); - bool hasQueried = false; + uint32_t round = AvalancheTest::getRound(p); for (int i = 0; i < 1000; i++) { // Technically, this is a race condition, but this should do just fine // as we wait up to 1s for an event that should take 10ms. boost::this_thread::sleep_for(boost::chrono::milliseconds(1)); - if (AvalancheTest::getSuitableNodeToQuery(p) == -1) { - hasQueried = true; + if (AvalancheTest::getRound(p) != round) { + break; + } + } + + // Check that we effectively got a request and not timed out. + BOOST_CHECK(AvalancheTest::getRound(p) > round); + + // Respond and check the cooldown time is respected. + round = AvalancheTest::getRound(p); + auto queryTime = + std::chrono::steady_clock::now() + std::chrono::milliseconds(100); + + std::vector updates; + p.registerVotes(nodeid, {100, {AvalancheVote(0, blockHash)}}, updates); + for (int i = 0; i < 1000; i++) { + // We make sure that we do not get a request before queryTime. + boost::this_thread::sleep_for(boost::chrono::milliseconds(1)); + if (AvalancheTest::getRound(p) != round) { + BOOST_CHECK(std::chrono::steady_clock::now() > queryTime); break; } } - BOOST_CHECK(hasQueried); + // But we eventually get one. + BOOST_CHECK(AvalancheTest::getRound(p) > round); // Stop event loop. BOOST_CHECK(p.stopEventLoop()); // We don't have any task scheduled anymore. BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0); // Can't stop the event loop twice. BOOST_CHECK(!p.stopEventLoop()); // Wait for the scheduler to stop. s.stop(true); schedulerThread.join(); CConnmanTest::ClearNodes(); } BOOST_AUTO_TEST_CASE(destructor) { CScheduler s; boost::chrono::system_clock::time_point start, stop; // Start the scheduler thread. std::thread schedulerThread(std::bind(&CScheduler::serviceQueue, &s)); { AvalancheProcessor p(g_connman.get()); BOOST_CHECK(p.startEventLoop(s)); BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1); } // Now that avalanche is destroyed, there is no more scheduled tasks. BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0); // Wait for the scheduler to stop. s.stop(true); schedulerThread.join(); } BOOST_AUTO_TEST_SUITE_END()