diff --git a/src/bench/mempool_eviction.cpp b/src/bench/mempool_eviction.cpp index b5ebfde8bb..bb8024dbcf 100644 --- a/src/bench/mempool_eviction.cpp +++ b/src/bench/mempool_eviction.cpp @@ -1,123 +1,123 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "bench.h" #include "policy/policy.h" #include "txmempool.h" #include #include static void AddTx(const CTransaction &tx, const Amount &nFee, CTxMemPool &pool) { int64_t nTime = 0; double dPriority = 10.0; unsigned int nHeight = 1; bool spendsCoinbase = false; unsigned int sigOpCost = 4; LockPoints lp; pool.addUnchecked(tx.GetId(), CTxMemPoolEntry(MakeTransactionRef(tx), nFee, nTime, dPriority, nHeight, tx.GetValueOut(), spendsCoinbase, sigOpCost, lp)); } // Right now this is only testing eviction performance in an extremely small // mempool. Code needs to be written to generate a much wider variety of // unique transactions for a more meaningful performance measurement. static void MempoolEviction(benchmark::State &state) { CMutableTransaction tx1 = CMutableTransaction(); tx1.vin.resize(1); tx1.vin[0].scriptSig = CScript() << OP_1; tx1.vout.resize(1); tx1.vout[0].scriptPubKey = CScript() << OP_1 << OP_EQUAL; tx1.vout[0].nValue = 10 * COIN; CMutableTransaction tx2 = CMutableTransaction(); tx2.vin.resize(1); tx2.vin[0].scriptSig = CScript() << OP_2; tx2.vout.resize(1); tx2.vout[0].scriptPubKey = CScript() << OP_2 << OP_EQUAL; tx2.vout[0].nValue = 10 * COIN; CMutableTransaction tx3 = CMutableTransaction(); tx3.vin.resize(1); tx3.vin[0].prevout = COutPoint(tx2.GetId(), 0); tx3.vin[0].scriptSig = CScript() << OP_2; tx3.vout.resize(1); tx3.vout[0].scriptPubKey = CScript() << OP_3 << OP_EQUAL; tx3.vout[0].nValue = 10 * COIN; CMutableTransaction tx4 = CMutableTransaction(); tx4.vin.resize(2); - tx4.vin[0].prevout.SetNull(); + tx4.vin[0].prevout = COutPoint(); tx4.vin[0].scriptSig = CScript() << OP_4; - tx4.vin[1].prevout.SetNull(); + tx4.vin[1].prevout = COutPoint(); tx4.vin[1].scriptSig = CScript() << OP_4; tx4.vout.resize(2); tx4.vout[0].scriptPubKey = CScript() << OP_4 << OP_EQUAL; tx4.vout[0].nValue = 10 * COIN; tx4.vout[1].scriptPubKey = CScript() << OP_4 << OP_EQUAL; tx4.vout[1].nValue = 10 * COIN; CMutableTransaction tx5 = CMutableTransaction(); tx5.vin.resize(2); tx5.vin[0].prevout = COutPoint(tx4.GetId(), 0); tx5.vin[0].scriptSig = CScript() << OP_4; - tx5.vin[1].prevout.SetNull(); + tx5.vin[1].prevout = COutPoint(); tx5.vin[1].scriptSig = CScript() << OP_5; tx5.vout.resize(2); tx5.vout[0].scriptPubKey = CScript() << OP_5 << OP_EQUAL; tx5.vout[0].nValue = 10 * COIN; tx5.vout[1].scriptPubKey = CScript() << OP_5 << OP_EQUAL; tx5.vout[1].nValue = 10 * COIN; CMutableTransaction tx6 = CMutableTransaction(); tx6.vin.resize(2); tx6.vin[0].prevout = COutPoint(tx4.GetId(), 1); tx6.vin[0].scriptSig = CScript() << OP_4; - tx6.vin[1].prevout.SetNull(); + tx6.vin[1].prevout = COutPoint(); tx6.vin[1].scriptSig = CScript() << OP_6; tx6.vout.resize(2); tx6.vout[0].scriptPubKey = CScript() << OP_6 << OP_EQUAL; tx6.vout[0].nValue = 10 * COIN; tx6.vout[1].scriptPubKey = CScript() << OP_6 << OP_EQUAL; tx6.vout[1].nValue = 10 * COIN; CMutableTransaction tx7 = CMutableTransaction(); tx7.vin.resize(2); tx7.vin[0].prevout = COutPoint(tx5.GetId(), 0); tx7.vin[0].scriptSig = CScript() << OP_5; tx7.vin[1].prevout = COutPoint(tx6.GetId(), 0); tx7.vin[1].scriptSig = CScript() << OP_6; tx7.vout.resize(2); tx7.vout[0].scriptPubKey = CScript() << OP_7 << OP_EQUAL; tx7.vout[0].nValue = 10 * COIN; tx7.vout[1].scriptPubKey = CScript() << OP_7 << OP_EQUAL; tx7.vout[1].nValue = 10 * COIN; CTxMemPool pool; CTransaction t1(tx1); CTransaction t2(tx2); CTransaction t3(tx3); CTransaction t4(tx4); CTransaction t5(tx5); CTransaction t6(tx6); CTransaction t7(tx1); while (state.KeepRunning()) { AddTx(t1, Amount(10000LL), pool); AddTx(t2, Amount(5000LL), pool); AddTx(t3, Amount(20000LL), pool); AddTx(t4, Amount(7000LL), pool); AddTx(t5, Amount(1000LL), pool); AddTx(t6, Amount(1100LL), pool); AddTx(t7, Amount(9000LL), pool); pool.TrimToSize(pool.DynamicMemoryUsage() * 3 / 4); pool.TrimToSize(t1.GetTotalSize()); } } BENCHMARK(MempoolEviction); diff --git a/src/miner.cpp b/src/miner.cpp index d82fdb05a9..796f426d0c 100644 --- a/src/miner.cpp +++ b/src/miner.cpp @@ -1,670 +1,670 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "miner.h" #include "amount.h" #include "chain.h" #include "chainparams.h" #include "coins.h" #include "config.h" #include "consensus/consensus.h" #include "consensus/merkle.h" #include "consensus/validation.h" #include "hash.h" #include "net.h" #include "policy/policy.h" #include "pow.h" #include "primitives/transaction.h" #include "script/standard.h" #include "timedata.h" #include "txmempool.h" #include "util.h" #include "utilmoneystr.h" #include "validation.h" #include "validationinterface.h" #include #include #include #include #include static const int MAX_COINBASE_SCRIPTSIG_SIZE = 100; ////////////////////////////////////////////////////////////////////////////// // // BitcoinMiner // // // Unconfirmed transactions in the memory pool often depend on other // transactions in the memory pool. When we select transactions from the // pool, we select by highest priority or fee rate, so we might consider // transactions that depend on transactions that aren't yet in the block. uint64_t nLastBlockTx = 0; uint64_t nLastBlockSize = 0; int64_t UpdateTime(CBlockHeader *pblock, const Config &config, const CBlockIndex *pindexPrev) { int64_t nOldTime = pblock->nTime; int64_t nNewTime = std::max(pindexPrev->GetMedianTimePast() + 1, GetAdjustedTime()); if (nOldTime < nNewTime) { pblock->nTime = nNewTime; } const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); // Updating time can change work required on testnet: if (consensusParams.fPowAllowMinDifficultyBlocks) { pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, config); } return nNewTime - nOldTime; } static uint64_t ComputeMaxGeneratedBlockSize(const Config &config, const CBlockIndex *pindexPrev) { // Block resource limits // If -blockmaxsize is not given, limit to DEFAULT_MAX_GENERATED_BLOCK_SIZE // If only one is given, only restrict the specified resource. // If both are given, restrict both. uint64_t nMaxGeneratedBlockSize = DEFAULT_MAX_GENERATED_BLOCK_SIZE; if (gArgs.IsArgSet("-blockmaxsize")) { nMaxGeneratedBlockSize = gArgs.GetArg("-blockmaxsize", DEFAULT_MAX_GENERATED_BLOCK_SIZE); } // Limit size to between 1K and MaxBlockSize-1K for sanity: nMaxGeneratedBlockSize = std::max(uint64_t(1000), std::min(config.GetMaxBlockSize() - 1000, nMaxGeneratedBlockSize)); // If May 15, 2018 HF is not activated yet, we also want to limit the max // generated block size to 8MB - 1000 if (!IsMonolithEnabled(config, pindexPrev)) { nMaxGeneratedBlockSize = std::min(8 * ONE_MEGABYTE - 1000, nMaxGeneratedBlockSize); } return nMaxGeneratedBlockSize; } BlockAssembler::BlockAssembler(const Config &_config) : config(&_config) { if (gArgs.IsArgSet("-blockmintxfee")) { Amount n(0); ParseMoney(gArgs.GetArg("-blockmintxfee", ""), n); blockMinFeeRate = CFeeRate(n); } else { blockMinFeeRate = CFeeRate(DEFAULT_BLOCK_MIN_TX_FEE); } LOCK(cs_main); nMaxGeneratedBlockSize = ComputeMaxGeneratedBlockSize(*config, chainActive.Tip()); } void BlockAssembler::resetBlock() { inBlock.clear(); // Reserve space for coinbase tx. nBlockSize = 1000; nBlockSigOps = 100; // These counters do not include coinbase tx. nBlockTx = 0; nFees = Amount(0); lastFewTxs = 0; blockFinished = false; } static const std::vector getExcessiveBlockSizeSig(const Config &config) { std::string cbmsg = "/EB" + getSubVersionEB(config.GetMaxBlockSize()) + "/"; const char *cbcstr = cbmsg.c_str(); std::vector vec(cbcstr, cbcstr + cbmsg.size()); return vec; } std::unique_ptr BlockAssembler::CreateNewBlock(const CScript &scriptPubKeyIn) { int64_t nTimeStart = GetTimeMicros(); resetBlock(); pblocktemplate.reset(new CBlockTemplate()); if (!pblocktemplate.get()) { return nullptr; } // Pointer for convenience. pblock = &pblocktemplate->block; // Add dummy coinbase tx as first transaction. pblock->vtx.emplace_back(); // updated at end pblocktemplate->vTxFees.push_back(Amount(-1)); // updated at end pblocktemplate->vTxSigOpsCount.push_back(-1); LOCK2(cs_main, mempool.cs); CBlockIndex *pindexPrev = chainActive.Tip(); nHeight = pindexPrev->nHeight + 1; const CChainParams &chainparams = config->GetChainParams(); pblock->nVersion = ComputeBlockVersion(pindexPrev, chainparams.GetConsensus()); // -regtest only: allow overriding block.nVersion with // -blockversion=N to test forking scenarios if (chainparams.MineBlocksOnDemand()) { pblock->nVersion = gArgs.GetArg("-blockversion", pblock->nVersion); } pblock->nTime = GetAdjustedTime(); nMaxGeneratedBlockSize = ComputeMaxGeneratedBlockSize(*config, pindexPrev); nLockTimeCutoff = (STANDARD_LOCKTIME_VERIFY_FLAGS & LOCKTIME_MEDIAN_TIME_PAST) ? pindexPrev->GetMedianTimePast() : pblock->GetBlockTime(); addPriorityTxs(); int nPackagesSelected = 0; int nDescendantsUpdated = 0; addPackageTxs(nPackagesSelected, nDescendantsUpdated); int64_t nTime1 = GetTimeMicros(); nLastBlockTx = nBlockTx; nLastBlockSize = nBlockSize; // Create coinbase transaction. CMutableTransaction coinbaseTx; coinbaseTx.vin.resize(1); - coinbaseTx.vin[0].prevout.SetNull(); + coinbaseTx.vin[0].prevout = COutPoint(); coinbaseTx.vout.resize(1); coinbaseTx.vout[0].scriptPubKey = scriptPubKeyIn; coinbaseTx.vout[0].nValue = nFees + GetBlockSubsidy(nHeight, chainparams.GetConsensus()); coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0; pblock->vtx[0] = MakeTransactionRef(coinbaseTx); pblocktemplate->vTxFees[0] = -1 * nFees; uint64_t nSerializeSize = GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION); LogPrintf("CreateNewBlock(): total size: %u txs: %u fees: %ld sigops %d\n", nSerializeSize, nBlockTx, nFees, nBlockSigOps); // Fill in header. pblock->hashPrevBlock = pindexPrev->GetBlockHash(); UpdateTime(pblock, *config, pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, *config); pblock->nNonce = 0; pblocktemplate->vTxSigOpsCount[0] = GetSigOpCountWithoutP2SH(*pblock->vtx[0]); CValidationState state; BlockValidationOptions validationOptions = BlockValidationOptions(false, false); if (!TestBlockValidity(*config, state, *pblock, pindexPrev, validationOptions)) { throw std::runtime_error(strprintf("%s: TestBlockValidity failed: %s", __func__, FormatStateMessage(state))); } int64_t nTime2 = GetTimeMicros(); LogPrint( BCLog::BENCH, "CreateNewBlock() packages: %.2fms (%d packages, %d " "updated descendants), validity: %.2fms (total %.2fms)\n", 0.001 * (nTime1 - nTimeStart), nPackagesSelected, nDescendantsUpdated, 0.001 * (nTime2 - nTime1), 0.001 * (nTime2 - nTimeStart)); return std::move(pblocktemplate); } bool BlockAssembler::isStillDependent(CTxMemPool::txiter iter) { for (CTxMemPool::txiter parent : mempool.GetMemPoolParents(iter)) { if (!inBlock.count(parent)) { return true; } } return false; } void BlockAssembler::onlyUnconfirmed(CTxMemPool::setEntries &testSet) { for (CTxMemPool::setEntries::iterator iit = testSet.begin(); iit != testSet.end();) { // Only test txs not already in the block. if (inBlock.count(*iit)) { testSet.erase(iit++); } else { iit++; } } } bool BlockAssembler::TestPackage(uint64_t packageSize, int64_t packageSigOps) { auto blockSizeWithPackage = nBlockSize + packageSize; if (blockSizeWithPackage >= nMaxGeneratedBlockSize) { return false; } if (nBlockSigOps + packageSigOps >= GetMaxBlockSigOpsCount(blockSizeWithPackage)) { return false; } return true; } /** * Perform transaction-level checks before adding to block: * - Transaction finality (locktime) * - Serialized size (in case -blockmaxsize is in use) */ bool BlockAssembler::TestPackageTransactions( const CTxMemPool::setEntries &package) { uint64_t nPotentialBlockSize = nBlockSize; for (const CTxMemPool::txiter it : package) { CValidationState state; if (!ContextualCheckTransaction(*config, it->GetTx(), state, nHeight, nLockTimeCutoff)) { return false; } uint64_t nTxSize = ::GetSerializeSize(it->GetTx(), SER_NETWORK, PROTOCOL_VERSION); if (nPotentialBlockSize + nTxSize >= nMaxGeneratedBlockSize) { return false; } nPotentialBlockSize += nTxSize; } return true; } bool BlockAssembler::TestForBlock(CTxMemPool::txiter it) { auto blockSizeWithTx = nBlockSize + ::GetSerializeSize(it->GetTx(), SER_NETWORK, PROTOCOL_VERSION); if (blockSizeWithTx >= nMaxGeneratedBlockSize) { if (nBlockSize > nMaxGeneratedBlockSize - 100 || lastFewTxs > 50) { blockFinished = true; return false; } if (nBlockSize > nMaxGeneratedBlockSize - 1000) { lastFewTxs++; } return false; } auto maxBlockSigOps = GetMaxBlockSigOpsCount(blockSizeWithTx); if (nBlockSigOps + it->GetSigOpCount() >= maxBlockSigOps) { // If the block has room for no more sig ops then flag that the block is // finished. // TODO: We should consider adding another transaction that isn't very // dense in sigops instead of bailing out so easily. if (nBlockSigOps > maxBlockSigOps - 2) { blockFinished = true; return false; } // Otherwise attempt to find another tx with fewer sigops to put in the // block. return false; } // Must check that lock times are still valid. This can be removed once MTP // is always enforced as long as reorgs keep the mempool consistent. CValidationState state; if (!ContextualCheckTransaction(*config, it->GetTx(), state, nHeight, nLockTimeCutoff)) { return false; } return true; } void BlockAssembler::AddToBlock(CTxMemPool::txiter iter) { pblock->vtx.emplace_back(iter->GetSharedTx()); pblocktemplate->vTxFees.push_back(iter->GetFee()); pblocktemplate->vTxSigOpsCount.push_back(iter->GetSigOpCount()); nBlockSize += iter->GetTxSize(); ++nBlockTx; nBlockSigOps += iter->GetSigOpCount(); nFees += iter->GetFee(); inBlock.insert(iter); bool fPrintPriority = gArgs.GetBoolArg("-printpriority", DEFAULT_PRINTPRIORITY); if (fPrintPriority) { double dPriority = iter->GetPriority(nHeight); Amount dummy; mempool.ApplyDeltas(iter->GetTx().GetId(), dPriority, dummy); LogPrintf( "priority %.1f fee %s txid %s\n", dPriority, CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(), iter->GetTx().GetId().ToString()); } } int BlockAssembler::UpdatePackagesForAdded( const CTxMemPool::setEntries &alreadyAdded, indexed_modified_transaction_set &mapModifiedTx) { int nDescendantsUpdated = 0; for (const CTxMemPool::txiter it : alreadyAdded) { CTxMemPool::setEntries descendants; mempool.CalculateDescendants(it, descendants); // Insert all descendants (not yet in block) into the modified set. for (CTxMemPool::txiter desc : descendants) { if (alreadyAdded.count(desc)) { continue; } ++nDescendantsUpdated; modtxiter mit = mapModifiedTx.find(desc); if (mit == mapModifiedTx.end()) { CTxMemPoolModifiedEntry modEntry(desc); modEntry.nSizeWithAncestors -= it->GetTxSize(); modEntry.nModFeesWithAncestors -= it->GetModifiedFee(); modEntry.nSigOpCountWithAncestors -= it->GetSigOpCount(); mapModifiedTx.insert(modEntry); } else { mapModifiedTx.modify(mit, update_for_parent_inclusion(it)); } } } return nDescendantsUpdated; } // Skip entries in mapTx that are already in a block or are present in // mapModifiedTx (which implies that the mapTx ancestor state is stale due to // ancestor inclusion in the block). Also skip transactions that we've already // failed to add. This can happen if we consider a transaction in mapModifiedTx // and it fails: we can then potentially consider it again while walking mapTx. // It's currently guaranteed to fail again, but as a belt-and-suspenders check // we put it in failedTx and avoid re-evaluation, since the re-evaluation would // be using cached size/sigops/fee values that are not actually correct. bool BlockAssembler::SkipMapTxEntry( CTxMemPool::txiter it, indexed_modified_transaction_set &mapModifiedTx, CTxMemPool::setEntries &failedTx) { assert(it != mempool.mapTx.end()); return mapModifiedTx.count(it) || inBlock.count(it) || failedTx.count(it); } void BlockAssembler::SortForBlock( const CTxMemPool::setEntries &package, CTxMemPool::txiter entry, std::vector &sortedEntries) { // Sort package by ancestor count. If a transaction A depends on transaction // B, then A's ancestor count must be greater than B's. So this is // sufficient to validly order the transactions for block inclusion. sortedEntries.clear(); sortedEntries.insert(sortedEntries.begin(), package.begin(), package.end()); std::sort(sortedEntries.begin(), sortedEntries.end(), CompareTxIterByAncestorCount()); } /** * addPackageTx includes transactions paying a fee by ensuring that * the partial ordering of transactions is maintained. That is to say * children come after parents, despite having a potentially larger fee. * @param[out] nPackagesSelected How many packages were selected * @param[out] nDescendantsUpdated Number of descendant transactions updated */ void BlockAssembler::addPackageTxs(int &nPackagesSelected, int &nDescendantsUpdated) { // selection algorithm orders the mempool based on feerate of a // transaction including all unconfirmed ancestors. Since we don't remove // transactions from the mempool as we select them for block inclusion, we // need an alternate method of updating the feerate of a transaction with // its not-yet-selected ancestors as we go. This is accomplished by // walking the in-mempool descendants of selected transactions and storing // a temporary modified state in mapModifiedTxs. Each time through the // loop, we compare the best transaction in mapModifiedTxs with the next // transaction in the mempool to decide what transaction package to work // on next. // mapModifiedTx will store sorted packages after they are modified because // some of their txs are already in the block. indexed_modified_transaction_set mapModifiedTx; // Keep track of entries that failed inclusion, to avoid duplicate work. CTxMemPool::setEntries failedTx; // Start by adding all descendants of previously added txs to mapModifiedTx // and modifying them for their already included ancestors. UpdatePackagesForAdded(inBlock, mapModifiedTx); CTxMemPool::indexed_transaction_set::index::type::iterator mi = mempool.mapTx.get().begin(); CTxMemPool::txiter iter; // Limit the number of attempts to add transactions to the block when it is // close to full; this is just a simple heuristic to finish quickly if the // mempool has a lot of entries. const int64_t MAX_CONSECUTIVE_FAILURES = 1000; int64_t nConsecutiveFailed = 0; while (mi != mempool.mapTx.get().end() || !mapModifiedTx.empty()) { // First try to find a new transaction in mapTx to evaluate. if (mi != mempool.mapTx.get().end() && SkipMapTxEntry(mempool.mapTx.project<0>(mi), mapModifiedTx, failedTx)) { ++mi; continue; } // Now that mi is not stale, determine which transaction to evaluate: // the next entry from mapTx, or the best from mapModifiedTx? bool fUsingModified = false; modtxscoreiter modit = mapModifiedTx.get().begin(); if (mi == mempool.mapTx.get().end()) { // We're out of entries in mapTx; use the entry from mapModifiedTx iter = modit->iter; fUsingModified = true; } else { // Try to compare the mapTx entry to the mapModifiedTx entry. iter = mempool.mapTx.project<0>(mi); if (modit != mapModifiedTx.get().end() && CompareModifiedEntry()(*modit, CTxMemPoolModifiedEntry(iter))) { // The best entry in mapModifiedTx has higher score than the one // from mapTx. Switch which transaction (package) to consider iter = modit->iter; fUsingModified = true; } else { // Either no entry in mapModifiedTx, or it's worse than mapTx. // Increment mi for the next loop iteration. ++mi; } } // We skip mapTx entries that are inBlock, and mapModifiedTx shouldn't // contain anything that is inBlock. assert(!inBlock.count(iter)); uint64_t packageSize = iter->GetSizeWithAncestors(); Amount packageFees = iter->GetModFeesWithAncestors(); int64_t packageSigOps = iter->GetSigOpCountWithAncestors(); if (fUsingModified) { packageSize = modit->nSizeWithAncestors; packageFees = modit->nModFeesWithAncestors; packageSigOps = modit->nSigOpCountWithAncestors; } if (packageFees < blockMinFeeRate.GetFee(packageSize)) { // Everything else we might consider has a lower fee rate return; } if (!TestPackage(packageSize, packageSigOps)) { if (fUsingModified) { // Since we always look at the best entry in mapModifiedTx, we // must erase failed entries so that we can consider the next // best entry on the next loop iteration mapModifiedTx.get().erase(modit); failedTx.insert(iter); } ++nConsecutiveFailed; if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES && nBlockSize > nMaxGeneratedBlockSize - 1000) { // Give up if we're close to full and haven't succeeded in a // while. break; } continue; } CTxMemPool::setEntries ancestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; mempool.CalculateMemPoolAncestors(*iter, ancestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); onlyUnconfirmed(ancestors); ancestors.insert(iter); // Test if all tx's are Final. if (!TestPackageTransactions(ancestors)) { if (fUsingModified) { mapModifiedTx.get().erase(modit); failedTx.insert(iter); } continue; } // This transaction will make it in; reset the failed counter. nConsecutiveFailed = 0; // Package can be added. Sort the entries in a valid order. std::vector sortedEntries; SortForBlock(ancestors, iter, sortedEntries); for (auto &entry : sortedEntries) { AddToBlock(entry); // Erase from the modified set, if present mapModifiedTx.erase(entry); } ++nPackagesSelected; // Update transactions that depend on each of these nDescendantsUpdated += UpdatePackagesForAdded(ancestors, mapModifiedTx); } } void BlockAssembler::addPriorityTxs() { // How much of the block should be dedicated to high-priority transactions, // included regardless of the fees they pay. if (config->GetBlockPriorityPercentage() == 0) { return; } uint64_t nBlockPrioritySize = nMaxGeneratedBlockSize * config->GetBlockPriorityPercentage() / 100; // This vector will be sorted into a priority queue: std::vector vecPriority; TxCoinAgePriorityCompare pricomparer; std::map waitPriMap; typedef std::map::iterator waitPriIter; double actualPriority = -1; vecPriority.reserve(mempool.mapTx.size()); for (CTxMemPool::indexed_transaction_set::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi) { double dPriority = mi->GetPriority(nHeight); Amount dummy; mempool.ApplyDeltas(mi->GetTx().GetId(), dPriority, dummy); vecPriority.push_back(TxCoinAgePriority(dPriority, mi)); } std::make_heap(vecPriority.begin(), vecPriority.end(), pricomparer); CTxMemPool::txiter iter; // Add a tx from priority queue to fill the part of block reserved to // priority transactions. while (!vecPriority.empty() && !blockFinished) { iter = vecPriority.front().second; actualPriority = vecPriority.front().first; std::pop_heap(vecPriority.begin(), vecPriority.end(), pricomparer); vecPriority.pop_back(); // If tx already in block, skip. if (inBlock.count(iter)) { // Shouldn't happen for priority txs. assert(false); continue; } // If tx is dependent on other mempool txs which haven't yet been // included then put it in the waitSet. if (isStillDependent(iter)) { waitPriMap.insert(std::make_pair(iter, actualPriority)); continue; } // If this tx fits in the block add it, otherwise keep looping. if (TestForBlock(iter)) { AddToBlock(iter); // If now that this txs is added we've surpassed our desired // priority size or have dropped below the AllowFreeThreshold, then // we're done adding priority txs. if (nBlockSize >= nBlockPrioritySize || !AllowFree(actualPriority)) { break; } // This tx was successfully added, so add transactions that depend // on this one to the priority queue to try again. for (CTxMemPool::txiter child : mempool.GetMemPoolChildren(iter)) { waitPriIter wpiter = waitPriMap.find(child); if (wpiter != waitPriMap.end()) { vecPriority.push_back( TxCoinAgePriority(wpiter->second, child)); std::push_heap(vecPriority.begin(), vecPriority.end(), pricomparer); waitPriMap.erase(wpiter); } } } } } void IncrementExtraNonce(const Config &config, CBlock *pblock, const CBlockIndex *pindexPrev, unsigned int &nExtraNonce) { // Update nExtraNonce static uint256 hashPrevBlock; if (hashPrevBlock != pblock->hashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; // Height first in coinbase required for block.version=2 unsigned int nHeight = pindexPrev->nHeight + 1; CMutableTransaction txCoinbase(*pblock->vtx[0]); txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce) << getExcessiveBlockSizeSig(config)) + COINBASE_FLAGS; assert(txCoinbase.vin[0].scriptSig.size() <= MAX_COINBASE_SCRIPTSIG_SIZE); pblock->vtx[0] = MakeTransactionRef(std::move(txCoinbase)); pblock->hashMerkleRoot = BlockMerkleRoot(*pblock); } diff --git a/src/primitives/transaction.h b/src/primitives/transaction.h index 3263dce1ff..9f40c2ee15 100644 --- a/src/primitives/transaction.h +++ b/src/primitives/transaction.h @@ -1,406 +1,401 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_PRIMITIVES_TRANSACTION_H #define BITCOIN_PRIMITIVES_TRANSACTION_H #include "amount.h" #include "script/script.h" #include "serialize.h" #include "uint256.h" static const int SERIALIZE_TRANSACTION = 0x00; /** * A TxId is the identifier of a transaction. Currently identical to TxHash but * differentiated for type safety. */ struct TxId : public uint256 { explicit TxId(const uint256 &b) : uint256(b) {} }; /** * A TxHash is the double sha256 hash of the full transaction data. */ struct TxHash : public uint256 { explicit TxHash(const uint256 &b) : uint256(b) {} }; /** * An outpoint - a combination of a transaction hash and an index n into its * vout. */ class COutPoint { private: uint256 txid; uint32_t n; public: - COutPoint() { SetNull(); } + COutPoint() : txid(), n(-1) {} COutPoint(uint256 txidIn, uint32_t nIn) { txid = txidIn; n = nIn; } ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(txid); READWRITE(n); } - void SetNull() { - txid.SetNull(); - n = uint32_t(-1); - } - bool IsNull() const { return txid.IsNull() && n == uint32_t(-1); } TxId GetTxId() const { return TxId(txid); } uint32_t GetN() const { return n; } friend bool operator<(const COutPoint &a, const COutPoint &b) { int cmp = a.txid.Compare(b.txid); return cmp < 0 || (cmp == 0 && a.n < b.n); } friend bool operator==(const COutPoint &a, const COutPoint &b) { return (a.txid == b.txid && a.n == b.n); } friend bool operator!=(const COutPoint &a, const COutPoint &b) { return !(a == b); } std::string ToString() const; }; /** * An input of a transaction. It contains the location of the previous * transaction's output that it claims and a signature that matches the output's * public key. */ class CTxIn { public: COutPoint prevout; CScript scriptSig; uint32_t nSequence; /** * Setting nSequence to this value for every input in a transaction disables * nLockTime. */ static const uint32_t SEQUENCE_FINAL = 0xffffffff; /* Below flags apply in the context of BIP 68*/ /** * If this flag set, CTxIn::nSequence is NOT interpreted as a relative * lock-time. */ static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31); /** * If CTxIn::nSequence encodes a relative lock-time and this flag is set, * the relative lock-time has units of 512 seconds, otherwise it specifies * blocks with a granularity of 1. */ static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22); /** * If CTxIn::nSequence encodes a relative lock-time, this mask is applied to * extract that lock-time from the sequence field. */ static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff; /** * In order to use the same number of bits to encode roughly the same * wall-clock duration, and because blocks are naturally limited to occur * every 600s on average, the minimum granularity for time-based relative * lock-time is fixed at 512 seconds. Converting from CTxIn::nSequence to * seconds is performed by multiplying by 512 = 2^9, or equivalently * shifting up by 9 bits. */ static const int SEQUENCE_LOCKTIME_GRANULARITY = 9; CTxIn() { nSequence = SEQUENCE_FINAL; } explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn = CScript(), uint32_t nSequenceIn = SEQUENCE_FINAL) : prevout(prevoutIn), scriptSig(scriptSigIn), nSequence(nSequenceIn) {} CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn = CScript(), uint32_t nSequenceIn = SEQUENCE_FINAL) : CTxIn(COutPoint(hashPrevTx, nOut), scriptSigIn, nSequenceIn) {} ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(prevout); READWRITE(scriptSig); READWRITE(nSequence); } friend bool operator==(const CTxIn &a, const CTxIn &b) { return (a.prevout == b.prevout && a.scriptSig == b.scriptSig && a.nSequence == b.nSequence); } friend bool operator!=(const CTxIn &a, const CTxIn &b) { return !(a == b); } std::string ToString() const; }; /** * An output of a transaction. It contains the public key that the next input * must be able to sign with to claim it. */ class CTxOut { public: Amount nValue; CScript scriptPubKey; CTxOut() { SetNull(); } CTxOut(Amount nValueIn, CScript scriptPubKeyIn) : nValue(nValueIn), scriptPubKey(scriptPubKeyIn) {} ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(nValue); READWRITE(scriptPubKey); } void SetNull() { nValue = Amount(-1); scriptPubKey.clear(); } bool IsNull() const { return (nValue == Amount(-1)); } Amount GetDustThreshold(const CFeeRate &minRelayTxFee) const { /** * "Dust" is defined in terms of CTransaction::minRelayTxFee, which has * units satoshis-per-kilobyte. If you'd pay more than 1/3 in fees to * spend something, then we consider it dust. A typical spendable * non-segwit txout is 34 bytes big, and will need a CTxIn of at least * 148 bytes to spend: so dust is a spendable txout less than * 546*minRelayTxFee/1000 (in satoshis). A typical spendable segwit * txout is 31 bytes big, and will need a CTxIn of at least 67 bytes to * spend: so dust is a spendable txout less than 294*minRelayTxFee/1000 * (in satoshis). */ if (scriptPubKey.IsUnspendable()) return Amount(0); size_t nSize = GetSerializeSize(*this, SER_DISK, 0); // the 148 mentioned above nSize += (32 + 4 + 1 + 107 + 4); return 3 * minRelayTxFee.GetFee(nSize); } bool IsDust(const CFeeRate &minRelayTxFee) const { return (nValue < GetDustThreshold(minRelayTxFee)); } friend bool operator==(const CTxOut &a, const CTxOut &b) { return (a.nValue == b.nValue && a.scriptPubKey == b.scriptPubKey); } friend bool operator!=(const CTxOut &a, const CTxOut &b) { return !(a == b); } std::string ToString() const; }; class CMutableTransaction; /** * Basic transaction serialization format: * - int32_t nVersion * - std::vector vin * - std::vector vout * - uint32_t nLockTime */ template inline void UnserializeTransaction(TxType &tx, Stream &s) { s >> tx.nVersion; tx.vin.clear(); tx.vout.clear(); /* Try to read the vin. In case the dummy is there, this will be read as an * empty vector. */ s >> tx.vin; /* We read a non-empty vin. Assume a normal vout follows. */ s >> tx.vout; s >> tx.nLockTime; } template inline void SerializeTransaction(const TxType &tx, Stream &s) { s << tx.nVersion; s << tx.vin; s << tx.vout; s << tx.nLockTime; } /** * The basic transaction that is broadcasted on the network and contained in * blocks. A transaction can contain multiple inputs and outputs. */ class CTransaction { public: // Default transaction version. static const int32_t CURRENT_VERSION = 2; // Changing the default transaction version requires a two step process: // first adapting relay policy by bumping MAX_STANDARD_VERSION, and then // later date bumping the default CURRENT_VERSION at which point both // CURRENT_VERSION and MAX_STANDARD_VERSION will be equal. static const int32_t MAX_STANDARD_VERSION = 2; // The local variables are made const to prevent unintended modification // without updating the cached hash value. However, CTransaction is not // actually immutable; deserialization and assignment are implemented, // and bypass the constness. This is safe, as they update the entire // structure, including the hash. const int32_t nVersion; const std::vector vin; const std::vector vout; const uint32_t nLockTime; private: /** Memory only. */ const uint256 hash; uint256 ComputeHash() const; public: /** Construct a CTransaction that qualifies as IsNull() */ CTransaction(); /** Convert a CMutableTransaction into a CTransaction. */ explicit CTransaction(const CMutableTransaction &tx); explicit CTransaction(CMutableTransaction &&tx); template inline void Serialize(Stream &s) const { SerializeTransaction(*this, s); } /** * This deserializing constructor is provided instead of an Unserialize * method. Unserialize is not possible, since it would require overwriting * const fields. */ template CTransaction(deserialize_type, Stream &s) : CTransaction(CMutableTransaction(deserialize, s)) {} bool IsNull() const { return vin.empty() && vout.empty(); } const TxId GetId() const { return TxId(hash); } const TxHash GetHash() const { return TxHash(hash); } // Return sum of txouts. Amount GetValueOut() const; // GetValueIn() is a method on CCoinsViewCache, because // inputs must be known to compute value in. // Compute priority, given priority of inputs and (optionally) tx size double ComputePriority(double dPriorityInputs, unsigned int nTxSize = 0) const; // Compute modified tx size for priority calculation (optionally given tx // size) unsigned int CalculateModifiedSize(unsigned int nTxSize = 0) const; /** * Get the total transaction size in bytes. * @return Total transaction size in bytes */ unsigned int GetTotalSize() const; bool IsCoinBase() const { return (vin.size() == 1 && vin[0].prevout.IsNull()); } friend bool operator==(const CTransaction &a, const CTransaction &b) { return a.hash == b.hash; } friend bool operator!=(const CTransaction &a, const CTransaction &b) { return a.hash != b.hash; } std::string ToString() const; }; /** * A mutable version of CTransaction. */ class CMutableTransaction { public: int32_t nVersion; std::vector vin; std::vector vout; uint32_t nLockTime; CMutableTransaction(); CMutableTransaction(const CTransaction &tx); template inline void Serialize(Stream &s) const { SerializeTransaction(*this, s); } template inline void Unserialize(Stream &s) { UnserializeTransaction(*this, s); } template CMutableTransaction(deserialize_type, Stream &s) { Unserialize(s); } /** * Compute the id and hash of this CMutableTransaction. This is computed on * the fly, as opposed to GetId() and GetHash() in CTransaction, which uses * a cached result. */ TxId GetId() const; TxHash GetHash() const; friend bool operator==(const CMutableTransaction &a, const CMutableTransaction &b) { return a.GetId() == b.GetId(); } }; typedef std::shared_ptr CTransactionRef; static inline CTransactionRef MakeTransactionRef() { return std::make_shared(); } template static inline CTransactionRef MakeTransactionRef(Tx &&txIn) { return std::make_shared(std::forward(txIn)); } /** Precompute sighash midstate to avoid quadratic hashing */ struct PrecomputedTransactionData { uint256 hashPrevouts, hashSequence, hashOutputs; PrecomputedTransactionData() : hashPrevouts(), hashSequence(), hashOutputs() {} PrecomputedTransactionData(const PrecomputedTransactionData &txdata) : hashPrevouts(txdata.hashPrevouts), hashSequence(txdata.hashSequence), hashOutputs(txdata.hashOutputs) {} PrecomputedTransactionData(const CTransaction &tx); }; #endif // BITCOIN_PRIMITIVES_TRANSACTION_H diff --git a/src/test/mempool_tests.cpp b/src/test/mempool_tests.cpp index 92bd0a5efd..1236401727 100644 --- a/src/test/mempool_tests.cpp +++ b/src/test/mempool_tests.cpp @@ -1,666 +1,666 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "policy/policy.h" #include "txmempool.h" #include "util.h" #include "test/test_bitcoin.h" #include #include #include BOOST_FIXTURE_TEST_SUITE(mempool_tests, TestingSetup) BOOST_AUTO_TEST_CASE(MempoolRemoveTest) { // Test CTxMemPool::remove functionality TestMemPoolEntryHelper entry; // Parent transaction with three children, and three grand-children: CMutableTransaction txParent; txParent.vin.resize(1); txParent.vin[0].scriptSig = CScript() << OP_11; txParent.vout.resize(3); for (int i = 0; i < 3; i++) { txParent.vout[i].scriptPubKey = CScript() << OP_11 << OP_EQUAL; txParent.vout[i].nValue = Amount(33000LL); } CMutableTransaction txChild[3]; for (int i = 0; i < 3; i++) { txChild[i].vin.resize(1); txChild[i].vin[0].scriptSig = CScript() << OP_11; txChild[i].vin[0].prevout = COutPoint(txParent.GetId(), i); txChild[i].vout.resize(1); txChild[i].vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; txChild[i].vout[0].nValue = Amount(11000LL); } CMutableTransaction txGrandChild[3]; for (int i = 0; i < 3; i++) { txGrandChild[i].vin.resize(1); txGrandChild[i].vin[0].scriptSig = CScript() << OP_11; txGrandChild[i].vin[0].prevout = COutPoint(txChild[i].GetId(), 0); txGrandChild[i].vout.resize(1); txGrandChild[i].vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; txGrandChild[i].vout[0].nValue = Amount(11000LL); } CTxMemPool testPool; // Nothing in pool, remove should do nothing: unsigned int poolSize = testPool.size(); testPool.removeRecursive(CTransaction(txParent)); BOOST_CHECK_EQUAL(testPool.size(), poolSize); // Just the parent: testPool.addUnchecked(txParent.GetId(), entry.FromTx(txParent)); poolSize = testPool.size(); testPool.removeRecursive(CTransaction(txParent)); BOOST_CHECK_EQUAL(testPool.size(), poolSize - 1); // Parent, children, grandchildren: testPool.addUnchecked(txParent.GetId(), entry.FromTx(txParent)); for (int i = 0; i < 3; i++) { testPool.addUnchecked(txChild[i].GetId(), entry.FromTx(txChild[i])); testPool.addUnchecked(txGrandChild[i].GetId(), entry.FromTx(txGrandChild[i])); } // Remove Child[0], GrandChild[0] should be removed: poolSize = testPool.size(); testPool.removeRecursive(CTransaction(txChild[0])); BOOST_CHECK_EQUAL(testPool.size(), poolSize - 2); // ... make sure grandchild and child are gone: poolSize = testPool.size(); testPool.removeRecursive(CTransaction(txGrandChild[0])); BOOST_CHECK_EQUAL(testPool.size(), poolSize); poolSize = testPool.size(); testPool.removeRecursive(CTransaction(txChild[0])); BOOST_CHECK_EQUAL(testPool.size(), poolSize); // Remove parent, all children/grandchildren should go: poolSize = testPool.size(); testPool.removeRecursive(CTransaction(txParent)); BOOST_CHECK_EQUAL(testPool.size(), poolSize - 5); BOOST_CHECK_EQUAL(testPool.size(), 0UL); // Add children and grandchildren, but NOT the parent (simulate the parent // being in a block) for (int i = 0; i < 3; i++) { testPool.addUnchecked(txChild[i].GetId(), entry.FromTx(txChild[i])); testPool.addUnchecked(txGrandChild[i].GetId(), entry.FromTx(txGrandChild[i])); } // Now remove the parent, as might happen if a block-re-org occurs but the // parent cannot be put into the mempool (maybe because it is non-standard): poolSize = testPool.size(); testPool.removeRecursive(CTransaction(txParent)); BOOST_CHECK_EQUAL(testPool.size(), poolSize - 6); BOOST_CHECK_EQUAL(testPool.size(), 0UL); } BOOST_AUTO_TEST_CASE(MempoolClearTest) { // Test CTxMemPool::clear functionality TestMemPoolEntryHelper entry; // Create a transaction CMutableTransaction txParent; txParent.vin.resize(1); txParent.vin[0].scriptSig = CScript() << OP_11; txParent.vout.resize(3); for (int i = 0; i < 3; i++) { txParent.vout[i].scriptPubKey = CScript() << OP_11 << OP_EQUAL; txParent.vout[i].nValue = Amount(33000LL); } CTxMemPool testPool; // Nothing in pool, clear should do nothing: testPool.clear(); BOOST_CHECK_EQUAL(testPool.size(), 0UL); // Add the transaction testPool.addUnchecked(txParent.GetId(), entry.FromTx(txParent)); BOOST_CHECK_EQUAL(testPool.size(), 1UL); BOOST_CHECK_EQUAL(testPool.mapTx.size(), 1UL); BOOST_CHECK_EQUAL(testPool.mapNextTx.size(), 1UL); BOOST_CHECK_EQUAL(testPool.vTxHashes.size(), 1UL); // CTxMemPool's members should be empty after a clear testPool.clear(); BOOST_CHECK_EQUAL(testPool.size(), 0UL); BOOST_CHECK_EQUAL(testPool.mapTx.size(), 0UL); BOOST_CHECK_EQUAL(testPool.mapNextTx.size(), 0UL); BOOST_CHECK_EQUAL(testPool.vTxHashes.size(), 0UL); } template void CheckSort(CTxMemPool &pool, std::vector &sortedOrder) { BOOST_CHECK_EQUAL(pool.size(), sortedOrder.size()); typename CTxMemPool::indexed_transaction_set::index::type::iterator it = pool.mapTx.get().begin(); int count = 0; for (; it != pool.mapTx.get().end(); ++it, ++count) { BOOST_CHECK_EQUAL(it->GetTx().GetId().ToString(), sortedOrder[count]); } } BOOST_AUTO_TEST_CASE(MempoolIndexingTest) { CTxMemPool pool; TestMemPoolEntryHelper entry; /* 3rd highest fee */ CMutableTransaction tx1 = CMutableTransaction(); tx1.vout.resize(1); tx1.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx1.vout[0].nValue = 10 * COIN; pool.addUnchecked(tx1.GetId(), entry.Fee(Amount(10000LL)).Priority(10.0).FromTx(tx1)); /* highest fee */ CMutableTransaction tx2 = CMutableTransaction(); tx2.vout.resize(1); tx2.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx2.vout[0].nValue = 2 * COIN; pool.addUnchecked(tx2.GetId(), entry.Fee(Amount(20000LL)).Priority(9.0).FromTx(tx2)); /* lowest fee */ CMutableTransaction tx3 = CMutableTransaction(); tx3.vout.resize(1); tx3.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx3.vout[0].nValue = 5 * COIN; pool.addUnchecked(tx3.GetId(), entry.Fee(Amount(0LL)).Priority(100.0).FromTx(tx3)); /* 2nd highest fee */ CMutableTransaction tx4 = CMutableTransaction(); tx4.vout.resize(1); tx4.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx4.vout[0].nValue = 6 * COIN; pool.addUnchecked(tx4.GetId(), entry.Fee(Amount(15000LL)).Priority(1.0).FromTx(tx4)); /* equal fee rate to tx1, but newer */ CMutableTransaction tx5 = CMutableTransaction(); tx5.vout.resize(1); tx5.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx5.vout[0].nValue = 11 * COIN; entry.nTime = 1; entry.dPriority = 10.0; pool.addUnchecked(tx5.GetId(), entry.Fee(Amount(10000LL)).FromTx(tx5)); BOOST_CHECK_EQUAL(pool.size(), 5UL); std::vector sortedOrder; sortedOrder.resize(5); sortedOrder[0] = tx3.GetId().ToString(); // 0 sortedOrder[1] = tx5.GetId().ToString(); // 10000 sortedOrder[2] = tx1.GetId().ToString(); // 10000 sortedOrder[3] = tx4.GetId().ToString(); // 15000 sortedOrder[4] = tx2.GetId().ToString(); // 20000 CheckSort(pool, sortedOrder); /* low fee but with high fee child */ /* tx6 -> tx7 -> tx8, tx9 -> tx10 */ CMutableTransaction tx6 = CMutableTransaction(); tx6.vout.resize(1); tx6.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx6.vout[0].nValue = 20 * COIN; pool.addUnchecked(tx6.GetId(), entry.Fee(Amount(0LL)).FromTx(tx6)); BOOST_CHECK_EQUAL(pool.size(), 6UL); // Check that at this point, tx6 is sorted low sortedOrder.insert(sortedOrder.begin(), tx6.GetId().ToString()); CheckSort(pool, sortedOrder); CTxMemPool::setEntries setAncestors; setAncestors.insert(pool.mapTx.find(tx6.GetId())); CMutableTransaction tx7 = CMutableTransaction(); tx7.vin.resize(1); tx7.vin[0].prevout = COutPoint(tx6.GetId(), 0); tx7.vin[0].scriptSig = CScript() << OP_11; tx7.vout.resize(2); tx7.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx7.vout[0].nValue = 10 * COIN; tx7.vout[1].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx7.vout[1].nValue = 1 * COIN; CTxMemPool::setEntries setAncestorsCalculated; std::string dummy; BOOST_CHECK_EQUAL( pool.CalculateMemPoolAncestors(entry.Fee(Amount(2000000LL)).FromTx(tx7), setAncestorsCalculated, 100, 1000000, 1000, 1000000, dummy), true); BOOST_CHECK(setAncestorsCalculated == setAncestors); pool.addUnchecked(tx7.GetId(), entry.FromTx(tx7), setAncestors); BOOST_CHECK_EQUAL(pool.size(), 7UL); // Now tx6 should be sorted higher (high fee child): tx7, tx6, tx2, ... sortedOrder.erase(sortedOrder.begin()); sortedOrder.push_back(tx6.GetId().ToString()); sortedOrder.push_back(tx7.GetId().ToString()); CheckSort(pool, sortedOrder); /* low fee child of tx7 */ CMutableTransaction tx8 = CMutableTransaction(); tx8.vin.resize(1); tx8.vin[0].prevout = COutPoint(tx7.GetId(), 0); tx8.vin[0].scriptSig = CScript() << OP_11; tx8.vout.resize(1); tx8.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx8.vout[0].nValue = 10 * COIN; setAncestors.insert(pool.mapTx.find(tx7.GetId())); pool.addUnchecked(tx8.GetId(), entry.Fee(Amount(0LL)).Time(2).FromTx(tx8), setAncestors); // Now tx8 should be sorted low, but tx6/tx both high sortedOrder.insert(sortedOrder.begin(), tx8.GetId().ToString()); CheckSort(pool, sortedOrder); /* low fee child of tx7 */ CMutableTransaction tx9 = CMutableTransaction(); tx9.vin.resize(1); tx9.vin[0].prevout = COutPoint(tx7.GetId(), 1); tx9.vin[0].scriptSig = CScript() << OP_11; tx9.vout.resize(1); tx9.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx9.vout[0].nValue = 1 * COIN; pool.addUnchecked(tx9.GetId(), entry.Fee(Amount(0LL)).Time(3).FromTx(tx9), setAncestors); // tx9 should be sorted low BOOST_CHECK_EQUAL(pool.size(), 9UL); sortedOrder.insert(sortedOrder.begin(), tx9.GetId().ToString()); CheckSort(pool, sortedOrder); std::vector snapshotOrder = sortedOrder; setAncestors.insert(pool.mapTx.find(tx8.GetId())); setAncestors.insert(pool.mapTx.find(tx9.GetId())); /* tx10 depends on tx8 and tx9 and has a high fee*/ CMutableTransaction tx10 = CMutableTransaction(); tx10.vin.resize(2); tx10.vin[0].prevout = COutPoint(tx8.GetId(), 0); tx10.vin[0].scriptSig = CScript() << OP_11; tx10.vin[1].prevout = COutPoint(tx9.GetId(), 0); tx10.vin[1].scriptSig = CScript() << OP_11; tx10.vout.resize(1); tx10.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx10.vout[0].nValue = 10 * COIN; setAncestorsCalculated.clear(); BOOST_CHECK_EQUAL(pool.CalculateMemPoolAncestors( entry.Fee(Amount(200000LL)).Time(4).FromTx(tx10), setAncestorsCalculated, 100, 1000000, 1000, 1000000, dummy), true); BOOST_CHECK(setAncestorsCalculated == setAncestors); pool.addUnchecked(tx10.GetId(), entry.FromTx(tx10), setAncestors); /** * tx8 and tx9 should both now be sorted higher * Final order after tx10 is added: * * tx3 = 0 (1) * tx5 = 10000 (1) * tx1 = 10000 (1) * tx4 = 15000 (1) * tx2 = 20000 (1) * tx9 = 200k (2 txs) * tx8 = 200k (2 txs) * tx10 = 200k (1 tx) * tx6 = 2.2M (5 txs) * tx7 = 2.2M (4 txs) */ // take out tx9, tx8 from the beginning sortedOrder.erase(sortedOrder.begin(), sortedOrder.begin() + 2); sortedOrder.insert(sortedOrder.begin() + 5, tx9.GetId().ToString()); sortedOrder.insert(sortedOrder.begin() + 6, tx8.GetId().ToString()); // tx10 is just before tx6 sortedOrder.insert(sortedOrder.begin() + 7, tx10.GetId().ToString()); CheckSort(pool, sortedOrder); // there should be 10 transactions in the mempool BOOST_CHECK_EQUAL(pool.size(), 10UL); // Now try removing tx10 and verify the sort order returns to normal pool.removeRecursive(pool.mapTx.find(tx10.GetId())->GetTx()); CheckSort(pool, snapshotOrder); pool.removeRecursive(pool.mapTx.find(tx9.GetId())->GetTx()); pool.removeRecursive(pool.mapTx.find(tx8.GetId())->GetTx()); /* Now check the sort on the mining score index. * Final order should be: * * tx7 (2M) * tx2 (20k) * tx4 (15000) * tx1/tx5 (10000) * tx3/6 (0) * (Ties resolved by hash) */ sortedOrder.clear(); sortedOrder.push_back(tx7.GetId().ToString()); sortedOrder.push_back(tx2.GetId().ToString()); sortedOrder.push_back(tx4.GetId().ToString()); if (tx1.GetId() < tx5.GetId()) { sortedOrder.push_back(tx5.GetId().ToString()); sortedOrder.push_back(tx1.GetId().ToString()); } else { sortedOrder.push_back(tx1.GetId().ToString()); sortedOrder.push_back(tx5.GetId().ToString()); } if (tx3.GetId() < tx6.GetId()) { sortedOrder.push_back(tx6.GetId().ToString()); sortedOrder.push_back(tx3.GetId().ToString()); } else { sortedOrder.push_back(tx3.GetId().ToString()); sortedOrder.push_back(tx6.GetId().ToString()); } CheckSort(pool, sortedOrder); } BOOST_AUTO_TEST_CASE(MempoolAncestorIndexingTest) { CTxMemPool pool; TestMemPoolEntryHelper entry; /* 3rd highest fee */ CMutableTransaction tx1 = CMutableTransaction(); tx1.vout.resize(1); tx1.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx1.vout[0].nValue = 10 * COIN; pool.addUnchecked(tx1.GetId(), entry.Fee(Amount(10000LL)).Priority(10.0).FromTx(tx1)); /* highest fee */ CMutableTransaction tx2 = CMutableTransaction(); tx2.vout.resize(1); tx2.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx2.vout[0].nValue = 2 * COIN; pool.addUnchecked(tx2.GetId(), entry.Fee(Amount(20000LL)).Priority(9.0).FromTx(tx2)); uint64_t tx2Size = CTransaction(tx2).GetTotalSize(); /* lowest fee */ CMutableTransaction tx3 = CMutableTransaction(); tx3.vout.resize(1); tx3.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx3.vout[0].nValue = 5 * COIN; pool.addUnchecked(tx3.GetId(), entry.Fee(Amount(0LL)).Priority(100.0).FromTx(tx3)); /* 2nd highest fee */ CMutableTransaction tx4 = CMutableTransaction(); tx4.vout.resize(1); tx4.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx4.vout[0].nValue = 6 * COIN; pool.addUnchecked(tx4.GetId(), entry.Fee(Amount(15000LL)).Priority(1.0).FromTx(tx4)); /* equal fee rate to tx1, but newer */ CMutableTransaction tx5 = CMutableTransaction(); tx5.vout.resize(1); tx5.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx5.vout[0].nValue = 11 * COIN; pool.addUnchecked(tx5.GetId(), entry.Fee(Amount(10000LL)).FromTx(tx5)); BOOST_CHECK_EQUAL(pool.size(), 5UL); std::vector sortedOrder; sortedOrder.resize(5); sortedOrder[0] = tx2.GetId().ToString(); // 20000 sortedOrder[1] = tx4.GetId().ToString(); // 15000 // tx1 and tx5 are both 10000 // Ties are broken by hash, not timestamp, so determine which hash comes // first. if (tx1.GetId() < tx5.GetId()) { sortedOrder[2] = tx1.GetId().ToString(); sortedOrder[3] = tx5.GetId().ToString(); } else { sortedOrder[2] = tx5.GetId().ToString(); sortedOrder[3] = tx1.GetId().ToString(); } sortedOrder[4] = tx3.GetId().ToString(); // 0 CheckSort(pool, sortedOrder); /* low fee parent with high fee child */ /* tx6 (0) -> tx7 (high) */ CMutableTransaction tx6 = CMutableTransaction(); tx6.vout.resize(1); tx6.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx6.vout[0].nValue = 20 * COIN; uint64_t tx6Size = CTransaction(tx6).GetTotalSize(); pool.addUnchecked(tx6.GetId(), entry.Fee(Amount(0LL)).FromTx(tx6)); BOOST_CHECK_EQUAL(pool.size(), 6UL); // Ties are broken by hash if (tx3.GetId() < tx6.GetId()) { sortedOrder.push_back(tx6.GetId().ToString()); } else { sortedOrder.insert(sortedOrder.end() - 1, tx6.GetId().ToString()); } CheckSort(pool, sortedOrder); CMutableTransaction tx7 = CMutableTransaction(); tx7.vin.resize(1); tx7.vin[0].prevout = COutPoint(tx6.GetId(), 0); tx7.vin[0].scriptSig = CScript() << OP_11; tx7.vout.resize(1); tx7.vout[0].scriptPubKey = CScript() << OP_11 << OP_EQUAL; tx7.vout[0].nValue = 10 * COIN; uint64_t tx7Size = CTransaction(tx7).GetTotalSize(); /* set the fee to just below tx2's feerate when including ancestor */ Amount fee((20000 / tx2Size) * (tx7Size + tx6Size) - 1); // CTxMemPoolEntry entry7(tx7, fee, 2, 10.0, 1, true); pool.addUnchecked(tx7.GetId(), entry.Fee(Amount(fee)).FromTx(tx7)); BOOST_CHECK_EQUAL(pool.size(), 7UL); sortedOrder.insert(sortedOrder.begin() + 1, tx7.GetId().ToString()); CheckSort(pool, sortedOrder); /* after tx6 is mined, tx7 should move up in the sort */ std::vector vtx; vtx.push_back(MakeTransactionRef(tx6)); pool.removeForBlock(vtx, 1); sortedOrder.erase(sortedOrder.begin() + 1); // Ties are broken by hash if (tx3.GetId() < tx6.GetId()) sortedOrder.pop_back(); else sortedOrder.erase(sortedOrder.end() - 2); sortedOrder.insert(sortedOrder.begin(), tx7.GetId().ToString()); CheckSort(pool, sortedOrder); } BOOST_AUTO_TEST_CASE(MempoolSizeLimitTest) { CTxMemPool pool; TestMemPoolEntryHelper entry; entry.dPriority = 10.0; CMutableTransaction tx1 = CMutableTransaction(); tx1.vin.resize(1); tx1.vin[0].scriptSig = CScript() << OP_1; tx1.vout.resize(1); tx1.vout[0].scriptPubKey = CScript() << OP_1 << OP_EQUAL; tx1.vout[0].nValue = 10 * COIN; pool.addUnchecked(tx1.GetId(), entry.Fee(Amount(10000LL)).FromTx(tx1, &pool)); CMutableTransaction tx2 = CMutableTransaction(); tx2.vin.resize(1); tx2.vin[0].scriptSig = CScript() << OP_2; tx2.vout.resize(1); tx2.vout[0].scriptPubKey = CScript() << OP_2 << OP_EQUAL; tx2.vout[0].nValue = 10 * COIN; pool.addUnchecked(tx2.GetId(), entry.Fee(Amount(5000LL)).FromTx(tx2, &pool)); // should do nothing pool.TrimToSize(pool.DynamicMemoryUsage()); BOOST_CHECK(pool.exists(tx1.GetId())); BOOST_CHECK(pool.exists(tx2.GetId())); // should remove the lower-feerate transaction pool.TrimToSize(pool.DynamicMemoryUsage() * 3 / 4); BOOST_CHECK(pool.exists(tx1.GetId())); BOOST_CHECK(!pool.exists(tx2.GetId())); pool.addUnchecked(tx2.GetId(), entry.FromTx(tx2, &pool)); CMutableTransaction tx3 = CMutableTransaction(); tx3.vin.resize(1); tx3.vin[0].prevout = COutPoint(tx2.GetId(), 0); tx3.vin[0].scriptSig = CScript() << OP_2; tx3.vout.resize(1); tx3.vout[0].scriptPubKey = CScript() << OP_3 << OP_EQUAL; tx3.vout[0].nValue = 10 * COIN; pool.addUnchecked(tx3.GetId(), entry.Fee(Amount(20000LL)).FromTx(tx3, &pool)); // tx3 should pay for tx2 (CPFP) pool.TrimToSize(pool.DynamicMemoryUsage() * 3 / 4); BOOST_CHECK(!pool.exists(tx1.GetId())); BOOST_CHECK(pool.exists(tx2.GetId())); BOOST_CHECK(pool.exists(tx3.GetId())); // mempool is limited to tx1's size in memory usage, so nothing fits pool.TrimToSize(CTransaction(tx1).GetTotalSize()); BOOST_CHECK(!pool.exists(tx1.GetId())); BOOST_CHECK(!pool.exists(tx2.GetId())); BOOST_CHECK(!pool.exists(tx3.GetId())); CFeeRate maxFeeRateRemoved(Amount(25000), CTransaction(tx3).GetTotalSize() + CTransaction(tx2).GetTotalSize()); BOOST_CHECK_EQUAL(pool.GetMinFee(1).GetFeePerK(), maxFeeRateRemoved.GetFeePerK() + Amount(1000)); CMutableTransaction tx4 = CMutableTransaction(); tx4.vin.resize(2); - tx4.vin[0].prevout.SetNull(); + tx4.vin[0].prevout = COutPoint(); tx4.vin[0].scriptSig = CScript() << OP_4; - tx4.vin[1].prevout.SetNull(); + tx4.vin[1].prevout = COutPoint(); tx4.vin[1].scriptSig = CScript() << OP_4; tx4.vout.resize(2); tx4.vout[0].scriptPubKey = CScript() << OP_4 << OP_EQUAL; tx4.vout[0].nValue = 10 * COIN; tx4.vout[1].scriptPubKey = CScript() << OP_4 << OP_EQUAL; tx4.vout[1].nValue = 10 * COIN; CMutableTransaction tx5 = CMutableTransaction(); tx5.vin.resize(2); tx5.vin[0].prevout = COutPoint(tx4.GetId(), 0); tx5.vin[0].scriptSig = CScript() << OP_4; - tx5.vin[1].prevout.SetNull(); + tx5.vin[1].prevout = COutPoint(); tx5.vin[1].scriptSig = CScript() << OP_5; tx5.vout.resize(2); tx5.vout[0].scriptPubKey = CScript() << OP_5 << OP_EQUAL; tx5.vout[0].nValue = 10 * COIN; tx5.vout[1].scriptPubKey = CScript() << OP_5 << OP_EQUAL; tx5.vout[1].nValue = 10 * COIN; CMutableTransaction tx6 = CMutableTransaction(); tx6.vin.resize(2); tx6.vin[0].prevout = COutPoint(tx4.GetId(), 1); tx6.vin[0].scriptSig = CScript() << OP_4; - tx6.vin[1].prevout.SetNull(); + tx6.vin[1].prevout = COutPoint(); tx6.vin[1].scriptSig = CScript() << OP_6; tx6.vout.resize(2); tx6.vout[0].scriptPubKey = CScript() << OP_6 << OP_EQUAL; tx6.vout[0].nValue = 10 * COIN; tx6.vout[1].scriptPubKey = CScript() << OP_6 << OP_EQUAL; tx6.vout[1].nValue = 10 * COIN; CMutableTransaction tx7 = CMutableTransaction(); tx7.vin.resize(2); tx7.vin[0].prevout = COutPoint(tx5.GetId(), 0); tx7.vin[0].scriptSig = CScript() << OP_5; tx7.vin[1].prevout = COutPoint(tx6.GetId(), 0); tx7.vin[1].scriptSig = CScript() << OP_6; tx7.vout.resize(2); tx7.vout[0].scriptPubKey = CScript() << OP_7 << OP_EQUAL; tx7.vout[0].nValue = 10 * COIN; tx7.vout[1].scriptPubKey = CScript() << OP_7 << OP_EQUAL; tx7.vout[1].nValue = 10 * COIN; pool.addUnchecked(tx4.GetId(), entry.Fee(Amount(7000LL)).FromTx(tx4, &pool)); pool.addUnchecked(tx5.GetId(), entry.Fee(Amount(1000LL)).FromTx(tx5, &pool)); pool.addUnchecked(tx6.GetId(), entry.Fee(Amount(1100LL)).FromTx(tx6, &pool)); pool.addUnchecked(tx7.GetId(), entry.Fee(Amount(9000LL)).FromTx(tx7, &pool)); // we only require this remove, at max, 2 txn, because its not clear what // we're really optimizing for aside from that pool.TrimToSize(pool.DynamicMemoryUsage() - 1); BOOST_CHECK(pool.exists(tx4.GetId())); BOOST_CHECK(pool.exists(tx6.GetId())); BOOST_CHECK(!pool.exists(tx7.GetId())); if (!pool.exists(tx5.GetId())) pool.addUnchecked(tx5.GetId(), entry.Fee(Amount(1000LL)).FromTx(tx5, &pool)); pool.addUnchecked(tx7.GetId(), entry.Fee(Amount(9000LL)).FromTx(tx7, &pool)); // should maximize mempool size by only removing 5/7 pool.TrimToSize(pool.DynamicMemoryUsage() / 2); BOOST_CHECK(pool.exists(tx4.GetId())); BOOST_CHECK(!pool.exists(tx5.GetId())); BOOST_CHECK(pool.exists(tx6.GetId())); BOOST_CHECK(!pool.exists(tx7.GetId())); pool.addUnchecked(tx5.GetId(), entry.Fee(Amount(1000LL)).FromTx(tx5, &pool)); pool.addUnchecked(tx7.GetId(), entry.Fee(Amount(9000LL)).FromTx(tx7, &pool)); std::vector vtx; SetMockTime(42); SetMockTime(42 + CTxMemPool::ROLLING_FEE_HALFLIFE); BOOST_CHECK_EQUAL(pool.GetMinFee(1).GetFeePerK(), maxFeeRateRemoved.GetFeePerK() + Amount(1000)); // ... we should keep the same min fee until we get a block pool.removeForBlock(vtx, 1); SetMockTime(42 + 2 * CTxMemPool::ROLLING_FEE_HALFLIFE); BOOST_CHECK_EQUAL(pool.GetMinFee(1).GetFeePerK(), (maxFeeRateRemoved.GetFeePerK() + Amount(1000)) / 2); // ... then feerate should drop 1/2 each halflife SetMockTime(42 + 2 * CTxMemPool::ROLLING_FEE_HALFLIFE + CTxMemPool::ROLLING_FEE_HALFLIFE / 2); BOOST_CHECK_EQUAL( pool.GetMinFee(pool.DynamicMemoryUsage() * 5 / 2).GetFeePerK(), (maxFeeRateRemoved.GetFeePerK() + Amount(1000)) / 4); // ... with a 1/2 halflife when mempool is < 1/2 its target size SetMockTime(42 + 2 * CTxMemPool::ROLLING_FEE_HALFLIFE + CTxMemPool::ROLLING_FEE_HALFLIFE / 2 + CTxMemPool::ROLLING_FEE_HALFLIFE / 4); BOOST_CHECK_EQUAL( pool.GetMinFee(pool.DynamicMemoryUsage() * 9 / 2).GetFeePerK(), (maxFeeRateRemoved.GetFeePerK() + Amount(1000)) / 8); // ... with a 1/4 halflife when mempool is < 1/4 its target size SetMockTime(42 + 7 * CTxMemPool::ROLLING_FEE_HALFLIFE + CTxMemPool::ROLLING_FEE_HALFLIFE / 2 + CTxMemPool::ROLLING_FEE_HALFLIFE / 4); BOOST_CHECK_EQUAL(pool.GetMinFee(1).GetFeePerK(), Amount(1000)); // ... but feerate should never drop below 1000 SetMockTime(42 + 8 * CTxMemPool::ROLLING_FEE_HALFLIFE + CTxMemPool::ROLLING_FEE_HALFLIFE / 2 + CTxMemPool::ROLLING_FEE_HALFLIFE / 4); BOOST_CHECK_EQUAL(pool.GetMinFee(1).GetFeePerK(), Amount(0)); // ... unless it has gone all the way to 0 (after getting past 1000/2) SetMockTime(0); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/miner_tests.cpp b/src/test/miner_tests.cpp index d9b59b1af1..6dd02f62ac 100644 --- a/src/test/miner_tests.cpp +++ b/src/test/miner_tests.cpp @@ -1,788 +1,788 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "miner.h" #include "chainparams.h" #include "coins.h" #include "config.h" #include "consensus/consensus.h" #include "consensus/merkle.h" #include "consensus/validation.h" #include "policy/policy.h" #include "pubkey.h" #include "script/standard.h" #include "txmempool.h" #include "uint256.h" #include "util.h" #include "utilstrencodings.h" #include "validation.h" #include "test/test_bitcoin.h" #include #include BOOST_FIXTURE_TEST_SUITE(miner_tests, TestingSetup) static CFeeRate blockMinFeeRate = CFeeRate(DEFAULT_BLOCK_MIN_TX_FEE); static struct { uint8_t extranonce; uint32_t nonce; } blockinfo[] = { {4, 0xa4a3e223}, {2, 0x15c32f9e}, {1, 0x0375b547}, {1, 0x7004a8a5}, {2, 0xce440296}, {2, 0x52cfe198}, {1, 0x77a72cd0}, {2, 0xbb5d6f84}, {2, 0x83f30c2c}, {1, 0x48a73d5b}, {1, 0xef7dcd01}, {2, 0x6809c6c4}, {2, 0x0883ab3c}, {1, 0x087bbbe2}, {2, 0x2104a814}, {2, 0xdffb6daa}, {1, 0xee8a0a08}, {2, 0xba4237c1}, {1, 0xa70349dc}, {1, 0x344722bb}, {3, 0xd6294733}, {2, 0xec9f5c94}, {2, 0xca2fbc28}, {1, 0x6ba4f406}, {2, 0x015d4532}, {1, 0x6e119b7c}, {2, 0x43e8f314}, {2, 0x27962f38}, {2, 0xb571b51b}, {2, 0xb36bee23}, {2, 0xd17924a8}, {2, 0x6bc212d9}, {1, 0x630d4948}, {2, 0x9a4c4ebb}, {2, 0x554be537}, {1, 0xd63ddfc7}, {2, 0xa10acc11}, {1, 0x759a8363}, {2, 0xfb73090d}, {1, 0xe82c6a34}, {1, 0xe33e92d7}, {3, 0x658ef5cb}, {2, 0xba32ff22}, {5, 0x0227a10c}, {1, 0xa9a70155}, {5, 0xd096d809}, {1, 0x37176174}, {1, 0x830b8d0f}, {1, 0xc6e3910e}, {2, 0x823f3ca8}, {1, 0x99850849}, {1, 0x7521fb81}, {1, 0xaacaabab}, {1, 0xd645a2eb}, {5, 0x7aea1781}, {5, 0x9d6e4b78}, {1, 0x4ce90fd8}, {1, 0xabdc832d}, {6, 0x4a34f32a}, {2, 0xf2524c1c}, {2, 0x1bbeb08a}, {1, 0xad47f480}, {1, 0x9f026aeb}, {1, 0x15a95049}, {2, 0xd1cb95b2}, {2, 0xf84bbda5}, {1, 0x0fa62cd1}, {1, 0xe05f9169}, {1, 0x78d194a9}, {5, 0x3e38147b}, {5, 0x737ba0d4}, {1, 0x63378e10}, {1, 0x6d5f91cf}, {2, 0x88612eb8}, {2, 0xe9639484}, {1, 0xb7fabc9d}, {2, 0x19b01592}, {1, 0x5a90dd31}, {2, 0x5bd7e028}, {2, 0x94d00323}, {1, 0xa9b9c01a}, {1, 0x3a40de61}, {1, 0x56e7eec7}, {5, 0x859f7ef6}, {1, 0xfd8e5630}, {1, 0x2b0c9f7f}, {1, 0xba700e26}, {1, 0x7170a408}, {1, 0x70de86a8}, {1, 0x74d64cd5}, {1, 0x49e738a1}, {2, 0x6910b602}, {0, 0x643c565f}, {1, 0x54264b3f}, {2, 0x97ea6396}, {2, 0x55174459}, {2, 0x03e8779a}, {1, 0x98f34d8f}, {1, 0xc07b2b07}, {1, 0xdfe29668}, {1, 0x3141c7c1}, {1, 0xb3b595f4}, {1, 0x735abf08}, {5, 0x623bfbce}, {2, 0xd351e722}, {1, 0xf4ca48c9}, {1, 0x5b19c670}, {1, 0xa164bf0e}, {2, 0xbbbeb305}, {2, 0xfe1c810a}, }; CBlockIndex CreateBlockIndex(int nHeight) { CBlockIndex index; index.nHeight = nHeight; index.pprev = chainActive.Tip(); return index; } bool TestSequenceLocks(const CTransaction &tx, int flags) { LOCK(mempool.cs); return CheckSequenceLocks(tx, flags); } // Test suite for ancestor feerate transaction selection. // Implemented as an additional function, rather than a separate test case, to // allow reusing the blockchain created in CreateNewBlock_validity. // Note that this test assumes blockprioritypercentage is 0. void TestPackageSelection(Config &config, CScript scriptPubKey, std::vector &txFirst) { // Test the ancestor feerate transaction selection. TestMemPoolEntryHelper entry; // these 3 tests assume blockprioritypercentage is 0. config.SetBlockPriorityPercentage(0); // Test that a medium fee transaction will be selected after a higher fee // rate package with a low fee rate parent. CMutableTransaction tx; tx.vin.resize(1); tx.vin[0].scriptSig = CScript() << OP_1; tx.vin[0].prevout = COutPoint(txFirst[0]->GetId(), 0); tx.vout.resize(1); tx.vout[0].nValue = Amount(5000000000LL - 1000); // This tx has a low fee: 1000 satoshis. // Save this txid for later use. TxId parentTxId = tx.GetId(); mempool.addUnchecked(parentTxId, entry.Fee(Amount(1000)) .Time(GetTime()) .SpendsCoinbase(true) .FromTx(tx)); // This tx has a medium fee: 10000 satoshis. tx.vin[0].prevout = COutPoint(txFirst[1]->GetId(), 0); tx.vout[0].nValue = Amount(5000000000LL - 10000); TxId mediumFeeTxId = tx.GetId(); mempool.addUnchecked(mediumFeeTxId, entry.Fee(Amount(10000)) .Time(GetTime()) .SpendsCoinbase(true) .FromTx(tx)); // This tx has a high fee, but depends on the first transaction. tx.vin[0].prevout = COutPoint(parentTxId, 0); // 50k satoshi fee. tx.vout[0].nValue = Amount(5000000000LL - 1000 - 50000); TxId highFeeTxId = tx.GetId(); mempool.addUnchecked(highFeeTxId, entry.Fee(Amount(50000)) .Time(GetTime()) .SpendsCoinbase(false) .FromTx(tx)); std::unique_ptr pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey); BOOST_CHECK(pblocktemplate->block.vtx[1]->GetId() == parentTxId); BOOST_CHECK(pblocktemplate->block.vtx[2]->GetId() == highFeeTxId); BOOST_CHECK(pblocktemplate->block.vtx[3]->GetId() == mediumFeeTxId); // Test that a package below the block min tx fee doesn't get included tx.vin[0].prevout = COutPoint(highFeeTxId, 0); // 0 fee. tx.vout[0].nValue = Amount(5000000000LL - 1000 - 50000); TxId freeTxId = tx.GetId(); mempool.addUnchecked(freeTxId, entry.Fee(Amount(0)).FromTx(tx)); size_t freeTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); // Calculate a fee on child transaction that will put the package just // below the block min tx fee (assuming 1 child tx of the same size). Amount feeToUse = blockMinFeeRate.GetFee(2 * freeTxSize) - Amount(1); tx.vin[0].prevout = COutPoint(freeTxId, 0); tx.vout[0].nValue = Amount(5000000000LL - 1000 - 50000) - feeToUse; TxId lowFeeTxId = tx.GetId(); mempool.addUnchecked(lowFeeTxId, entry.Fee(feeToUse).FromTx(tx)); pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey); // Verify that the free tx and the low fee tx didn't get selected. for (const auto &txn : pblocktemplate->block.vtx) { BOOST_CHECK(txn->GetId() != freeTxId); BOOST_CHECK(txn->GetId() != lowFeeTxId); } // Test that packages above the min relay fee do get included, even if one // of the transactions is below the min relay fee. Remove the low fee // transaction and replace with a higher fee transaction mempool.removeRecursive(CTransaction(tx)); // Now we should be just over the min relay fee. tx.vout[0].nValue -= Amount(2); lowFeeTxId = tx.GetId(); mempool.addUnchecked(lowFeeTxId, entry.Fee(feeToUse + Amount(2)).FromTx(tx)); pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey); BOOST_CHECK(pblocktemplate->block.vtx[4]->GetId() == freeTxId); BOOST_CHECK(pblocktemplate->block.vtx[5]->GetId() == lowFeeTxId); // Test that transaction selection properly updates ancestor fee // calculations as ancestor transactions get included in a block. Add a // 0-fee transaction that has 2 outputs. tx.vin[0].prevout = COutPoint(txFirst[2]->GetId(), 0); tx.vout.resize(2); tx.vout[0].nValue = Amount(5000000000LL - 100000000); // 1BCC output. tx.vout[1].nValue = Amount(100000000); TxId freeTxId2 = tx.GetId(); mempool.addUnchecked(freeTxId2, entry.Fee(Amount(0)).SpendsCoinbase(true).FromTx(tx)); // This tx can't be mined by itself. tx.vin[0].prevout = COutPoint(freeTxId2, 0); tx.vout.resize(1); feeToUse = blockMinFeeRate.GetFee(freeTxSize); tx.vout[0].nValue = Amount(5000000000LL) - Amount(100000000) - feeToUse; TxId lowFeeTxId2 = tx.GetId(); mempool.addUnchecked(lowFeeTxId2, entry.Fee(feeToUse).SpendsCoinbase(false).FromTx(tx)); pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey); // Verify that this tx isn't selected. for (const auto &txn : pblocktemplate->block.vtx) { BOOST_CHECK(txn->GetId() != freeTxId2); BOOST_CHECK(txn->GetId() != lowFeeTxId2); } // This tx will be mineable, and should cause lowFeeTxId2 to be selected as // well. tx.vin[0].prevout = COutPoint(freeTxId2, 1); // 10k satoshi fee. tx.vout[0].nValue = Amount(100000000 - 10000); mempool.addUnchecked(tx.GetId(), entry.Fee(Amount(10000)).FromTx(tx)); pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey); BOOST_CHECK(pblocktemplate->block.vtx[8]->GetId() == lowFeeTxId2); } void TestCoinbaseMessageEB(uint64_t eb, std::string cbmsg) { GlobalConfig config; config.SetMaxBlockSize(eb); CScript scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112" "de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; std::unique_ptr pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey); CBlock *pblock = &pblocktemplate->block; // IncrementExtraNonce creates a valid coinbase and merkleRoot unsigned int extraNonce = 0; IncrementExtraNonce(config, pblock, chainActive.Tip(), extraNonce); unsigned int nHeight = chainActive.Tip()->nHeight + 1; std::vector vec(cbmsg.begin(), cbmsg.end()); BOOST_CHECK(pblock->vtx[0]->vin[0].scriptSig == ((CScript() << nHeight << CScriptNum(extraNonce) << vec) + COINBASE_FLAGS)); } // Coinbase scriptSig has to contains the correct EB value // converted to MB, rounded down to the first decimal BOOST_AUTO_TEST_CASE(CheckCoinbase_EB) { TestCoinbaseMessageEB(1000001, "/EB1.0/"); TestCoinbaseMessageEB(2000000, "/EB2.0/"); TestCoinbaseMessageEB(8000000, "/EB8.0/"); TestCoinbaseMessageEB(8320000, "/EB8.3/"); } // NOTE: These tests rely on CreateNewBlock doing its own self-validation! BOOST_AUTO_TEST_CASE(CreateNewBlock_validity) { // Note that by default, these tests run with size accounting enabled. CScript scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112" "de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; std::unique_ptr pblocktemplate; CMutableTransaction tx, tx2; CScript script; uint256 hash; TestMemPoolEntryHelper entry; entry.nFee = Amount(11); entry.dPriority = 111.0; entry.nHeight = 11; GlobalConfig config; LOCK(cs_main); fCheckpointsEnabled = false; // Simple block creation, nothing special yet: BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); // We can't make transactions until we have inputs. Therefore, load 100 // blocks :) int baseheight = 0; std::vector txFirst; for (size_t i = 0; i < sizeof(blockinfo) / sizeof(*blockinfo); ++i) { // pointer for convenience. CBlock *pblock = &pblocktemplate->block; pblock->nVersion = 1; pblock->nTime = chainActive.Tip()->GetMedianTimePast() + 1; CMutableTransaction txCoinbase(*pblock->vtx[0]); txCoinbase.nVersion = 1; txCoinbase.vin[0].scriptSig = CScript(); txCoinbase.vin[0].scriptSig.push_back(blockinfo[i].extranonce); txCoinbase.vin[0].scriptSig.push_back(chainActive.Height()); // Ignore the (optional) segwit commitment added by CreateNewBlock (as // the hardcoded nonces don't account for this) txCoinbase.vout.resize(1); txCoinbase.vout[0].scriptPubKey = CScript(); pblock->vtx[0] = MakeTransactionRef(std::move(txCoinbase)); if (txFirst.size() == 0) baseheight = chainActive.Height(); if (txFirst.size() < 4) txFirst.push_back(pblock->vtx[0]); pblock->hashMerkleRoot = BlockMerkleRoot(*pblock); pblock->nNonce = blockinfo[i].nonce; std::shared_ptr shared_pblock = std::make_shared(*pblock); BOOST_CHECK(ProcessNewBlock(config, shared_pblock, true, nullptr)); pblock->hashPrevBlock = pblock->GetHash(); } // Just to make sure we can still make simple blocks. BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); const Amount BLOCKSUBSIDY = 50 * COIN; const Amount LOWFEE = CENT; const Amount HIGHFEE = COIN; const Amount HIGHERFEE = 4 * COIN; // block sigops > limit: 1000 CHECKMULTISIG + 1 tx.vin.resize(1); // NOTE: OP_NOP is used to force 20 SigOps for the CHECKMULTISIG tx.vin[0].scriptSig = CScript() << OP_0 << OP_0 << OP_0 << OP_NOP << OP_CHECKMULTISIG << OP_1; tx.vin[0].prevout = COutPoint(txFirst[0]->GetId(), 0); tx.vout.resize(1); tx.vout[0].nValue = BLOCKSUBSIDY; for (unsigned int i = 0; i < 1001; ++i) { tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); // Only first tx spends coinbase. bool spendsCoinbase = (i == 0) ? true : false; // If we don't set the # of sig ops in the CTxMemPoolEntry, template // creation fails. mempool.addUnchecked(hash, entry.Fee(LOWFEE) .Time(GetTime()) .SpendsCoinbase(spendsCoinbase) .FromTx(tx)); tx.vin[0].prevout = COutPoint(hash, 0); } BOOST_CHECK_THROW(BlockAssembler(config).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); tx.vin[0].prevout = COutPoint(txFirst[0]->GetId(), 0); tx.vout[0].nValue = BLOCKSUBSIDY; for (unsigned int i = 0; i < 1001; ++i) { tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); // Only first tx spends coinbase. bool spendsCoinbase = (i == 0) ? true : false; // If we do set the # of sig ops in the CTxMemPoolEntry, template // creation passes. mempool.addUnchecked(hash, entry.Fee(LOWFEE) .Time(GetTime()) .SpendsCoinbase(spendsCoinbase) .SigOpsCost(80) .FromTx(tx)); tx.vin[0].prevout = COutPoint(hash, 0); } BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); mempool.clear(); // block size > limit tx.vin[0].scriptSig = CScript(); // 18 * (520char + DROP) + OP_1 = 9433 bytes std::vector vchData(520); for (unsigned int i = 0; i < 18; ++i) { tx.vin[0].scriptSig << vchData << OP_DROP; } tx.vin[0].scriptSig << OP_1; tx.vin[0].prevout = COutPoint(txFirst[0]->GetId(), 0); tx.vout[0].nValue = BLOCKSUBSIDY; for (unsigned int i = 0; i < 128; ++i) { tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); // Only first tx spends coinbase. bool spendsCoinbase = (i == 0) ? true : false; mempool.addUnchecked(hash, entry.Fee(LOWFEE) .Time(GetTime()) .SpendsCoinbase(spendsCoinbase) .FromTx(tx)); tx.vin[0].prevout = COutPoint(hash, 0); } BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); mempool.clear(); // Orphan in mempool, template creation fails. hash = tx.GetId(); mempool.addUnchecked(hash, entry.Fee(LOWFEE).Time(GetTime()).FromTx(tx)); BOOST_CHECK_THROW(BlockAssembler(config).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); // Child with higher priority than parent. tx.vin[0].scriptSig = CScript() << OP_1; tx.vin[0].prevout = COutPoint(txFirst[1]->GetId(), 0); tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); tx.vin[0].prevout = COutPoint(hash, 0); tx.vin.resize(2); tx.vin[1].scriptSig = CScript() << OP_1; tx.vin[1].prevout = COutPoint(txFirst[0]->GetId(), 0); // First txn output + fresh coinbase - new txn fee. tx.vout[0].nValue = tx.vout[0].nValue + BLOCKSUBSIDY - HIGHERFEE; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHERFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); mempool.clear(); // Coinbase in mempool, template creation fails. tx.vin.resize(1); - tx.vin[0].prevout.SetNull(); + tx.vin[0].prevout = COutPoint(); tx.vin[0].scriptSig = CScript() << OP_0 << OP_1; tx.vout[0].nValue = Amount(0); hash = tx.GetId(); // Give it a fee so it'll get mined. mempool.addUnchecked( hash, entry.Fee(LOWFEE).Time(GetTime()).SpendsCoinbase(false).FromTx(tx)); BOOST_CHECK_THROW(BlockAssembler(config).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); // Invalid (pre-p2sh) txn in mempool, template creation fails. std::array times; for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Trick the MedianTimePast. times[i] = chainActive.Tip() ->GetAncestor(chainActive.Tip()->nHeight - i) ->nTime; chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime = P2SH_ACTIVATION_TIME; } tx.vin[0].prevout = COutPoint(txFirst[0]->GetId(), 0); tx.vin[0].scriptSig = CScript() << OP_1; tx.vout[0].nValue = BLOCKSUBSIDY - LOWFEE; script = CScript() << OP_0; tx.vout[0].scriptPubKey = GetScriptForDestination(CScriptID(script)); hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(LOWFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); tx.vin[0].prevout = COutPoint(hash, 0); tx.vin[0].scriptSig = CScript() << std::vector(script.begin(), script.end()); tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(LOWFEE).Time(GetTime()).SpendsCoinbase(false).FromTx(tx)); BOOST_CHECK_THROW(BlockAssembler(config).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Restore the MedianTimePast. chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime = times[i]; } // Double spend txn pair in mempool, template creation fails. tx.vin[0].prevout = COutPoint(txFirst[0]->GetId(), 0); tx.vin[0].scriptSig = CScript() << OP_1; tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE; tx.vout[0].scriptPubKey = CScript() << OP_1; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); tx.vout[0].scriptPubKey = CScript() << OP_2; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); BOOST_CHECK_THROW(BlockAssembler(config).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); // Subsidy changing. int nHeight = chainActive.Height(); // Create an actual 209999-long block chain (without valid blocks). while (chainActive.Tip()->nHeight < 209999) { CBlockIndex *prev = chainActive.Tip(); CBlockIndex *next = new CBlockIndex(); next->phashBlock = new uint256(InsecureRand256()); pcoinsTip->SetBestBlock(next->GetBlockHash()); next->pprev = prev; next->nHeight = prev->nHeight + 1; next->BuildSkip(); chainActive.SetTip(next); } BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); // Extend to a 210000-long block chain. while (chainActive.Tip()->nHeight < 210000) { CBlockIndex *prev = chainActive.Tip(); CBlockIndex *next = new CBlockIndex(); next->phashBlock = new uint256(InsecureRand256()); pcoinsTip->SetBestBlock(next->GetBlockHash()); next->pprev = prev; next->nHeight = prev->nHeight + 1; next->BuildSkip(); chainActive.SetTip(next); } BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); // Delete the dummy blocks again. while (chainActive.Tip()->nHeight > nHeight) { CBlockIndex *del = chainActive.Tip(); chainActive.SetTip(del->pprev); pcoinsTip->SetBestBlock(del->pprev->GetBlockHash()); delete del->phashBlock; delete del; } // non-final txs in mempool SetMockTime(chainActive.Tip()->GetMedianTimePast() + 1); int flags = LOCKTIME_VERIFY_SEQUENCE | LOCKTIME_MEDIAN_TIME_PAST; // height map std::vector prevheights; // Relative height locked. tx.nVersion = 2; tx.vin.resize(1); prevheights.resize(1); // Only 1 transaction. tx.vin[0].prevout = COutPoint(txFirst[0]->GetId(), 0); tx.vin[0].scriptSig = CScript() << OP_1; // txFirst[0] is the 2nd block tx.vin[0].nSequence = chainActive.Tip()->nHeight + 1; prevheights[0] = baseheight + 1; tx.vout.resize(1); tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE; tx.vout[0].scriptPubKey = CScript() << OP_1; tx.nLockTime = 0; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); { // Locktime passes. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransactionForCurrentBlock( config, CTransaction(tx), state, flags)); } // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(CTransaction(tx), flags)); // Sequence locks pass on 2nd block. BOOST_CHECK( SequenceLocks(CTransaction(tx), flags, &prevheights, CreateBlockIndex(chainActive.Tip()->nHeight + 2))); // Relative time locked. tx.vin[0].prevout = COutPoint(txFirst[1]->GetId(), 0); // txFirst[1] is the 3rd block. tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | (((chainActive.Tip()->GetMedianTimePast() + 1 - chainActive[1]->GetMedianTimePast()) >> CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) + 1); prevheights[0] = baseheight + 2; hash = tx.GetId(); mempool.addUnchecked(hash, entry.Time(GetTime()).FromTx(tx)); { // Locktime passes. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransactionForCurrentBlock( config, CTransaction(tx), state, flags)); } // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(CTransaction(tx), flags)); for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Trick the MedianTimePast. chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime += 512; } // Sequence locks pass 512 seconds later. BOOST_CHECK( SequenceLocks(CTransaction(tx), flags, &prevheights, CreateBlockIndex(chainActive.Tip()->nHeight + 1))); for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Undo tricked MTP. chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime -= 512; } // Absolute height locked. tx.vin[0].prevout = COutPoint(txFirst[2]->GetId(), 0); tx.vin[0].nSequence = CTxIn::SEQUENCE_FINAL - 1; prevheights[0] = baseheight + 3; tx.nLockTime = chainActive.Tip()->nHeight + 1; hash = tx.GetId(); mempool.addUnchecked(hash, entry.Time(GetTime()).FromTx(tx)); { // Locktime fails. GlobalConfig config; CValidationState state; BOOST_CHECK(!ContextualCheckTransactionForCurrentBlock( config, CTransaction(tx), state, flags)); BOOST_CHECK_EQUAL(state.GetRejectReason(), "bad-txns-nonfinal"); } // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(CTransaction(tx), flags)); { // Locktime passes on 2nd block. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransaction( config, CTransaction(tx), state, chainActive.Tip()->nHeight + 2, chainActive.Tip()->GetMedianTimePast())); } // Absolute time locked. tx.vin[0].prevout = COutPoint(txFirst[3]->GetId(), 0); tx.nLockTime = chainActive.Tip()->GetMedianTimePast(); prevheights.resize(1); prevheights[0] = baseheight + 4; hash = tx.GetId(); mempool.addUnchecked(hash, entry.Time(GetTime()).FromTx(tx)); { // Locktime fails. GlobalConfig config; CValidationState state; BOOST_CHECK(!ContextualCheckTransactionForCurrentBlock( config, CTransaction(tx), state, flags)); BOOST_CHECK_EQUAL(state.GetRejectReason(), "bad-txns-nonfinal"); } // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(CTransaction(tx), flags)); { // Locktime passes 1 second later. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransaction( config, CTransaction(tx), state, chainActive.Tip()->nHeight + 1, chainActive.Tip()->GetMedianTimePast() + 1)); } // mempool-dependent transactions (not added) tx.vin[0].prevout = COutPoint(hash, 0); prevheights[0] = chainActive.Tip()->nHeight + 1; tx.nLockTime = 0; tx.vin[0].nSequence = 0; { // Locktime passes. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransactionForCurrentBlock( config, CTransaction(tx), state, flags)); } // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(CTransaction(tx), flags)); tx.vin[0].nSequence = 1; // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(CTransaction(tx), flags)); tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG; // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(CTransaction(tx), flags)); tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | 1; // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(CTransaction(tx), flags)); BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); // None of the of the absolute height/time locked tx should have made it // into the template because we still check IsFinalTx in CreateNewBlock, but // relative locked txs will if inconsistently added to mempool. For now // these will still generate a valid template until BIP68 soft fork. BOOST_CHECK_EQUAL(pblocktemplate->block.vtx.size(), 3UL); // However if we advance height by 1 and time by 512, all of them should be // mined. for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Trick the MedianTimePast. chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime += 512; } chainActive.Tip()->nHeight++; SetMockTime(chainActive.Tip()->GetMedianTimePast() + 1); BOOST_CHECK(pblocktemplate = BlockAssembler(config).CreateNewBlock(scriptPubKey)); BOOST_CHECK_EQUAL(pblocktemplate->block.vtx.size(), 5UL); chainActive.Tip()->nHeight--; SetMockTime(0); mempool.clear(); TestPackageSelection(config, scriptPubKey, txFirst); fCheckpointsEnabled = true; } void CheckBlockMaxSize(const CChainParams &chainparams, uint64_t size, uint64_t expected) { GlobalConfig config; gArgs.ForceSetArg("-blockmaxsize", std::to_string(size)); BlockAssembler ba(config); BOOST_CHECK_EQUAL(ba.GetMaxGeneratedBlockSize(), expected); } BOOST_AUTO_TEST_CASE(BlockAssembler_construction) { GlobalConfig config; const CChainParams &chainparams = Params(); // We are working on a fake chain and need to protect ourselves. LOCK(cs_main); // Test around historical 1MB (plus one byte because that's mandatory) config.SetMaxBlockSize(ONE_MEGABYTE + 1); CheckBlockMaxSize(chainparams, 0, 1000); CheckBlockMaxSize(chainparams, 1000, 1000); CheckBlockMaxSize(chainparams, 1001, 1001); CheckBlockMaxSize(chainparams, 12345, 12345); CheckBlockMaxSize(chainparams, ONE_MEGABYTE - 1001, ONE_MEGABYTE - 1001); CheckBlockMaxSize(chainparams, ONE_MEGABYTE - 1000, ONE_MEGABYTE - 1000); CheckBlockMaxSize(chainparams, ONE_MEGABYTE - 999, ONE_MEGABYTE - 999); CheckBlockMaxSize(chainparams, ONE_MEGABYTE, ONE_MEGABYTE - 999); // The maximum block size to be generated before the May 15, 2018 HF static const auto EIGHT_MEGABYTES = 8 * ONE_MEGABYTE; static const auto LEGACY_CAP = EIGHT_MEGABYTES - 1000; // Test around historical 8MB cap. config.SetMaxBlockSize(EIGHT_MEGABYTES + 1); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES - 1001, EIGHT_MEGABYTES - 1001); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES - 1000, LEGACY_CAP); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES - 999, LEGACY_CAP); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES, EIGHT_MEGABYTES - 1000); // Test around default cap config.SetMaxBlockSize(DEFAULT_MAX_BLOCK_SIZE); // We are stuck at the legacy cap before activation. CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE, LEGACY_CAP); // Activate May 15, 2018 HF the dirty way const int64_t monolithTime = config.GetChainParams().GetConsensus().monolithActivationTime; auto pindex = chainActive.Tip(); for (size_t i = 0; pindex && i < 5; i++) { BOOST_CHECK(!IsMonolithEnabled(config, chainActive.Tip())); pindex->nTime = monolithTime; pindex = pindex->pprev; } BOOST_CHECK(IsMonolithEnabled(config, chainActive.Tip())); // Now we can use the default max block size. CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE - 1001, DEFAULT_MAX_BLOCK_SIZE - 1001); CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE - 1000, DEFAULT_MAX_BLOCK_SIZE - 1000); CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE - 999, DEFAULT_MAX_BLOCK_SIZE - 1000); CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE, DEFAULT_MAX_BLOCK_SIZE - 1000); // If the parameter is not specified, we use // DEFAULT_MAX_GENERATED_BLOCK_SIZE { gArgs.ClearArg("-blockmaxsize"); BlockAssembler ba(config); BOOST_CHECK_EQUAL(ba.GetMaxGeneratedBlockSize(), DEFAULT_MAX_GENERATED_BLOCK_SIZE); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/script_tests.cpp b/src/test/script_tests.cpp index 0d67de287a..91bf684d07 100644 --- a/src/test/script_tests.cpp +++ b/src/test/script_tests.cpp @@ -1,1873 +1,1873 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "data/script_tests.json.h" #include "core_io.h" #include "key.h" #include "keystore.h" #include "rpc/server.h" #include "script/script.h" #include "script/script_error.h" #include "script/sighashtype.h" #include "script/sign.h" #include "test/jsonutil.h" #include "test/scriptflags.h" #include "test/sigutil.h" #include "test/test_bitcoin.h" #include "util.h" #include "utilstrencodings.h" #if defined(HAVE_CONSENSUS_LIB) #include "script/bitcoinconsensus.h" #endif #include #include #include #include #include #include // Uncomment if you want to output updated JSON tests. // #define UPDATE_JSON_TESTS static const unsigned int flags = SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC; struct ScriptErrorDesc { ScriptError_t err; const char *name; }; static ScriptErrorDesc script_errors[] = { {SCRIPT_ERR_OK, "OK"}, {SCRIPT_ERR_UNKNOWN_ERROR, "UNKNOWN_ERROR"}, {SCRIPT_ERR_EVAL_FALSE, "EVAL_FALSE"}, {SCRIPT_ERR_OP_RETURN, "OP_RETURN"}, {SCRIPT_ERR_SCRIPT_SIZE, "SCRIPT_SIZE"}, {SCRIPT_ERR_PUSH_SIZE, "PUSH_SIZE"}, {SCRIPT_ERR_OP_COUNT, "OP_COUNT"}, {SCRIPT_ERR_STACK_SIZE, "STACK_SIZE"}, {SCRIPT_ERR_SIG_COUNT, "SIG_COUNT"}, {SCRIPT_ERR_PUBKEY_COUNT, "PUBKEY_COUNT"}, {SCRIPT_ERR_INVALID_OPERAND_SIZE, "OPERAND_SIZE"}, {SCRIPT_ERR_INVALID_NUMBER_RANGE, "INVALID_NUMBER_RANGE"}, {SCRIPT_ERR_INVALID_SPLIT_RANGE, "SPLIT_RANGE"}, {SCRIPT_ERR_VERIFY, "VERIFY"}, {SCRIPT_ERR_EQUALVERIFY, "EQUALVERIFY"}, {SCRIPT_ERR_CHECKMULTISIGVERIFY, "CHECKMULTISIGVERIFY"}, {SCRIPT_ERR_CHECKSIGVERIFY, "CHECKSIGVERIFY"}, {SCRIPT_ERR_NUMEQUALVERIFY, "NUMEQUALVERIFY"}, {SCRIPT_ERR_BAD_OPCODE, "BAD_OPCODE"}, {SCRIPT_ERR_DISABLED_OPCODE, "DISABLED_OPCODE"}, {SCRIPT_ERR_INVALID_STACK_OPERATION, "INVALID_STACK_OPERATION"}, {SCRIPT_ERR_INVALID_ALTSTACK_OPERATION, "INVALID_ALTSTACK_OPERATION"}, {SCRIPT_ERR_UNBALANCED_CONDITIONAL, "UNBALANCED_CONDITIONAL"}, {SCRIPT_ERR_NEGATIVE_LOCKTIME, "NEGATIVE_LOCKTIME"}, {SCRIPT_ERR_UNSATISFIED_LOCKTIME, "UNSATISFIED_LOCKTIME"}, {SCRIPT_ERR_SIG_HASHTYPE, "SIG_HASHTYPE"}, {SCRIPT_ERR_SIG_DER, "SIG_DER"}, {SCRIPT_ERR_MINIMALDATA, "MINIMALDATA"}, {SCRIPT_ERR_SIG_PUSHONLY, "SIG_PUSHONLY"}, {SCRIPT_ERR_SIG_HIGH_S, "SIG_HIGH_S"}, {SCRIPT_ERR_SIG_NULLDUMMY, "SIG_NULLDUMMY"}, {SCRIPT_ERR_PUBKEYTYPE, "PUBKEYTYPE"}, {SCRIPT_ERR_CLEANSTACK, "CLEANSTACK"}, {SCRIPT_ERR_MINIMALIF, "MINIMALIF"}, {SCRIPT_ERR_SIG_NULLFAIL, "NULLFAIL"}, {SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS, "DISCOURAGE_UPGRADABLE_NOPS"}, {SCRIPT_ERR_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM, "DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM"}, {SCRIPT_ERR_NONCOMPRESSED_PUBKEY, "NONCOMPRESSED_PUBKEY"}, {SCRIPT_ERR_ILLEGAL_FORKID, "ILLEGAL_FORKID"}, {SCRIPT_ERR_MUST_USE_FORKID, "MISSING_FORKID"}, {SCRIPT_ERR_DIV_BY_ZERO, "DIV_BY_ZERO"}, {SCRIPT_ERR_MOD_BY_ZERO, "MOD_BY_ZERO"}, }; const char *FormatScriptError(ScriptError_t err) { for (size_t i = 0; i < ARRAYLEN(script_errors); ++i) { if (script_errors[i].err == err) { return script_errors[i].name; } } BOOST_ERROR("Unknown scripterror enumeration value, update script_errors " "in script_tests.cpp."); return ""; } ScriptError_t ParseScriptError(const std::string &name) { for (size_t i = 0; i < ARRAYLEN(script_errors); ++i) { if (script_errors[i].name == name) { return script_errors[i].err; } } BOOST_ERROR("Unknown scripterror \"" << name << "\" in test description"); return SCRIPT_ERR_UNKNOWN_ERROR; } BOOST_FIXTURE_TEST_SUITE(script_tests, BasicTestingSetup) static CMutableTransaction BuildCreditingTransaction(const CScript &scriptPubKey, const Amount nValue) { CMutableTransaction txCredit; txCredit.nVersion = 1; txCredit.nLockTime = 0; txCredit.vin.resize(1); txCredit.vout.resize(1); - txCredit.vin[0].prevout.SetNull(); + txCredit.vin[0].prevout = COutPoint(); txCredit.vin[0].scriptSig = CScript() << CScriptNum(0) << CScriptNum(0); txCredit.vin[0].nSequence = CTxIn::SEQUENCE_FINAL; txCredit.vout[0].scriptPubKey = scriptPubKey; txCredit.vout[0].nValue = nValue; return txCredit; } static CMutableTransaction BuildSpendingTransaction(const CScript &scriptSig, const CMutableTransaction &txCredit) { CMutableTransaction txSpend; txSpend.nVersion = 1; txSpend.nLockTime = 0; txSpend.vin.resize(1); txSpend.vout.resize(1); txSpend.vin[0].prevout = COutPoint(txCredit.GetId(), 0); txSpend.vin[0].scriptSig = scriptSig; txSpend.vin[0].nSequence = CTxIn::SEQUENCE_FINAL; txSpend.vout[0].scriptPubKey = CScript(); txSpend.vout[0].nValue = txCredit.vout[0].nValue; return txSpend; } static void DoTest(const CScript &scriptPubKey, const CScript &scriptSig, int flags, const std::string &message, int scriptError, const Amount nValue) { bool expect = (scriptError == SCRIPT_ERR_OK); if (flags & SCRIPT_VERIFY_CLEANSTACK) { flags |= SCRIPT_VERIFY_P2SH; } ScriptError err; CMutableTransaction txCredit = BuildCreditingTransaction(scriptPubKey, nValue); CMutableTransaction tx = BuildSpendingTransaction(scriptSig, txCredit); CMutableTransaction tx2 = tx; BOOST_CHECK_MESSAGE(VerifyScript(scriptSig, scriptPubKey, flags, MutableTransactionSignatureChecker( &tx, 0, txCredit.vout[0].nValue), &err) == expect, message); BOOST_CHECK_MESSAGE( err == scriptError, std::string(FormatScriptError(err)) + " where " + std::string(FormatScriptError((ScriptError_t)scriptError)) + " expected: " + message); #if defined(HAVE_CONSENSUS_LIB) CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); stream << tx2; int libconsensus_flags = flags & bitcoinconsensus_SCRIPT_FLAGS_VERIFY_ALL; if (libconsensus_flags == flags) { if (flags & bitcoinconsensus_SCRIPT_ENABLE_SIGHASH_FORKID) { BOOST_CHECK_MESSAGE(bitcoinconsensus_verify_script_with_amount( scriptPubKey.data(), scriptPubKey.size(), txCredit.vout[0].nValue.GetSatoshis(), (const uint8_t *)&stream[0], stream.size(), 0, libconsensus_flags, nullptr) == expect, message); } else { BOOST_CHECK_MESSAGE(bitcoinconsensus_verify_script_with_amount( scriptPubKey.data(), scriptPubKey.size(), 0, (const uint8_t *)&stream[0], stream.size(), 0, libconsensus_flags, nullptr) == expect, message); BOOST_CHECK_MESSAGE(bitcoinconsensus_verify_script( scriptPubKey.data(), scriptPubKey.size(), (const uint8_t *)&stream[0], stream.size(), 0, libconsensus_flags, nullptr) == expect, message); } } #endif } namespace { const uint8_t vchKey0[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; const uint8_t vchKey1[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0}; const uint8_t vchKey2[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}; struct KeyData { CKey key0, key0C, key1, key1C, key2, key2C; CPubKey pubkey0, pubkey0C, pubkey0H; CPubKey pubkey1, pubkey1C; CPubKey pubkey2, pubkey2C; KeyData() { key0.Set(vchKey0, vchKey0 + 32, false); key0C.Set(vchKey0, vchKey0 + 32, true); pubkey0 = key0.GetPubKey(); pubkey0H = key0.GetPubKey(); pubkey0C = key0C.GetPubKey(); *const_cast(&pubkey0H[0]) = 0x06 | (pubkey0H[64] & 1); key1.Set(vchKey1, vchKey1 + 32, false); key1C.Set(vchKey1, vchKey1 + 32, true); pubkey1 = key1.GetPubKey(); pubkey1C = key1C.GetPubKey(); key2.Set(vchKey2, vchKey2 + 32, false); key2C.Set(vchKey2, vchKey2 + 32, true); pubkey2 = key2.GetPubKey(); pubkey2C = key2C.GetPubKey(); } }; class TestBuilder { private: //! Actually executed script CScript script; //! The P2SH redeemscript CScript redeemscript; CTransactionRef creditTx; CMutableTransaction spendTx; bool havePush; std::vector push; std::string comment; int flags; int scriptError; Amount nValue; void DoPush() { if (havePush) { spendTx.vin[0].scriptSig << push; havePush = false; } } void DoPush(const std::vector &data) { DoPush(); push = data; havePush = true; } public: TestBuilder(const CScript &script_, const std::string &comment_, int flags_, bool P2SH = false, Amount nValue_ = Amount(0)) : script(script_), havePush(false), comment(comment_), flags(flags_), scriptError(SCRIPT_ERR_OK), nValue(nValue_) { CScript scriptPubKey = script; if (P2SH) { redeemscript = scriptPubKey; scriptPubKey = CScript() << OP_HASH160 << ToByteVector(CScriptID(redeemscript)) << OP_EQUAL; } creditTx = MakeTransactionRef(BuildCreditingTransaction(scriptPubKey, nValue)); spendTx = BuildSpendingTransaction(CScript(), *creditTx); } TestBuilder &ScriptError(ScriptError_t err) { scriptError = err; return *this; } TestBuilder &Add(const CScript &_script) { DoPush(); spendTx.vin[0].scriptSig += _script; return *this; } TestBuilder &Num(int num) { DoPush(); spendTx.vin[0].scriptSig << num; return *this; } TestBuilder &Push(const std::string &hex) { DoPush(ParseHex(hex)); return *this; } TestBuilder &Push(const CScript &_script) { DoPush(std::vector(_script.begin(), _script.end())); return *this; } TestBuilder &PushSig(const CKey &key, SigHashType sigHashType = SigHashType(), unsigned int lenR = 32, unsigned int lenS = 32, Amount amount = Amount(0), uint32_t flags = SCRIPT_ENABLE_SIGHASH_FORKID) { uint256 hash = SignatureHash(script, CTransaction(spendTx), 0, sigHashType, amount, nullptr, flags); std::vector vchSig, r, s; uint32_t iter = 0; do { key.Sign(hash, vchSig, iter++); if ((lenS == 33) != (vchSig[5 + vchSig[3]] == 33)) { NegateSignatureS(vchSig); } r = std::vector(vchSig.begin() + 4, vchSig.begin() + 4 + vchSig[3]); s = std::vector(vchSig.begin() + 6 + vchSig[3], vchSig.begin() + 6 + vchSig[3] + vchSig[5 + vchSig[3]]); } while (lenR != r.size() || lenS != s.size()); vchSig.push_back(static_cast(sigHashType.getRawSigHashType())); DoPush(vchSig); return *this; } TestBuilder &Push(const CPubKey &pubkey) { DoPush(std::vector(pubkey.begin(), pubkey.end())); return *this; } TestBuilder &PushRedeem() { DoPush(std::vector(redeemscript.begin(), redeemscript.end())); return *this; } TestBuilder &EditPush(unsigned int pos, const std::string &hexin, const std::string &hexout) { assert(havePush); std::vector datain = ParseHex(hexin); std::vector dataout = ParseHex(hexout); assert(pos + datain.size() <= push.size()); BOOST_CHECK_MESSAGE( std::vector(push.begin() + pos, push.begin() + pos + datain.size()) == datain, comment); push.erase(push.begin() + pos, push.begin() + pos + datain.size()); push.insert(push.begin() + pos, dataout.begin(), dataout.end()); return *this; } TestBuilder &DamagePush(unsigned int pos) { assert(havePush); assert(pos < push.size()); push[pos] ^= 1; return *this; } TestBuilder &Test() { // Make a copy so we can rollback the push. TestBuilder copy = *this; DoPush(); DoTest(creditTx->vout[0].scriptPubKey, spendTx.vin[0].scriptSig, flags, comment, scriptError, nValue); *this = copy; return *this; } UniValue GetJSON() { DoPush(); UniValue array(UniValue::VARR); if (nValue != Amount(0)) { UniValue amount(UniValue::VARR); amount.push_back(ValueFromAmount(nValue)); array.push_back(amount); } array.push_back(FormatScript(spendTx.vin[0].scriptSig)); array.push_back(FormatScript(creditTx->vout[0].scriptPubKey)); array.push_back(FormatScriptFlags(flags)); array.push_back(FormatScriptError((ScriptError_t)scriptError)); array.push_back(comment); return array; } std::string GetComment() { return comment; } const CScript &GetScriptPubKey() { return creditTx->vout[0].scriptPubKey; } }; std::string JSONPrettyPrint(const UniValue &univalue) { std::string ret = univalue.write(4); // Workaround for libunivalue pretty printer, which puts a space between // commas and newlines size_t pos = 0; while ((pos = ret.find(" \n", pos)) != std::string::npos) { ret.replace(pos, 2, "\n"); pos++; } return ret; } } // namespace BOOST_AUTO_TEST_CASE(script_build) { const KeyData keys; std::vector tests; tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK", 0) .PushSig(keys.key0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK, bad sig", 0) .PushSig(keys.key0) .DamagePush(10) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey1C.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH", 0) .PushSig(keys.key1) .Push(keys.pubkey1C)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey2C.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH, bad pubkey", 0) .PushSig(keys.key2) .Push(keys.pubkey2C) .DamagePush(5) .ScriptError(SCRIPT_ERR_EQUALVERIFY)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK anyonecanpay", 0) .PushSig(keys.key1, SigHashType().withAnyoneCanPay())); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK anyonecanpay marked with normal hashtype", 0) .PushSig(keys.key1, SigHashType().withAnyoneCanPay()) .EditPush(70, "81", "01") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0C) << OP_CHECKSIG, "P2SH(P2PK)", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0C) << OP_CHECKSIG, "P2SH(P2PK), bad redeemscript", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .PushRedeem() .DamagePush(10) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey0.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2SH(P2PKH)", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .Push(keys.pubkey0) .PushRedeem()); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey1.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2SH(P2PKH), bad sig but no VERIFY_P2SH", 0, true) .PushSig(keys.key0) .DamagePush(10) .PushRedeem()); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey1.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2SH(P2PKH), bad sig", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .DamagePush(10) .PushRedeem() .ScriptError(SCRIPT_ERR_EQUALVERIFY)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3", 0) .Num(0) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3, 2 sigs", 0) .Num(0) .PushSig(keys.key0) .PushSig(keys.key1) .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "P2SH(2-of-3)", SCRIPT_VERIFY_P2SH, true) .Num(0) .PushSig(keys.key1) .PushSig(keys.key2) .PushRedeem()); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "P2SH(2-of-3), 1 sig", SCRIPT_VERIFY_P2SH, true) .Num(0) .PushSig(keys.key1) .Num(0) .PushRedeem() .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much R padding but no DERSIG", 0) .PushSig(keys.key1, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much S padding but no DERSIG", 0) .PushSig(keys.key1) .EditPush(1, "44", "45") .EditPush(37, "20", "2100")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much S padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1) .EditPush(1, "44", "45") .EditPush(37, "20", "2100") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too little R padding but no DERSIG", 0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too little R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with bad sig with too much R padding but no DERSIG", 0) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .DamagePush(10)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with bad sig with too much R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .DamagePush(10) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with too much R padding but no DERSIG", 0) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with too much R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 1, without DERSIG", 0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 1, with DERSIG", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 2, without DERSIG", 0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 2, with DERSIG", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 3, without DERSIG", 0) .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 3, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, without DERSIG", 0) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG, non-null DER-compliant signature", SCRIPT_VERIFY_DERSIG) .Push("300602010102010101")); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG and NULLFAIL", SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_NULLFAIL) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG and NULLFAIL, " "non-null DER-compliant signature", SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_NULLFAIL) .Push("300602010102010101") .ScriptError(SCRIPT_ERR_SIG_NULLFAIL)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 5, without DERSIG", 0) .Num(1) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 5, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(1) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 6, without DERSIG", 0) .Num(1)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 6, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(1) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 7, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 7, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 8, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 8, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 9, without DERSIG", 0) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 9, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 10, without DERSIG", 0) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220")); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 10, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 11, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 11, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 12, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 12, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with multi-byte hashtype, without DERSIG", 0) .PushSig(keys.key2) .EditPush(70, "01", "0101")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with multi-byte hashtype, with DERSIG", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key2) .EditPush(70, "01", "0101") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with high S but no LOW_S", 0) .PushSig(keys.key2, SigHashType(), 32, 33)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with high S", SCRIPT_VERIFY_LOW_S) .PushSig(keys.key2, SigHashType(), 32, 33) .ScriptError(SCRIPT_ERR_SIG_HIGH_S)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG, "P2PK with hybrid pubkey but no STRICTENC", 0) .PushSig(keys.key0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG, "P2PK with hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0, SigHashType()) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with hybrid pubkey but no STRICTENC", 0) .PushSig(keys.key0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid hybrid pubkey but no STRICTENC", 0) .PushSig(keys.key0) .DamagePush(10)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0) .DamagePush(10) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder(CScript() << OP_1 << ToByteVector(keys.pubkey0H) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "1-of-2 with the second 1 hybrid pubkey and no STRICTENC", 0) .Num(0) .PushSig(keys.key1)); tests.push_back(TestBuilder(CScript() << OP_1 << ToByteVector(keys.pubkey0H) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "1-of-2 with the second 1 hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .Num(0) .PushSig(keys.key1)); tests.push_back(TestBuilder(CScript() << OP_1 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey0H) << OP_2 << OP_CHECKMULTISIG, "1-of-2 with the first 1 hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .Num(0) .PushSig(keys.key1) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK with undefined hashtype but no STRICTENC", 0) .PushSig(keys.key1, SigHashType(5))); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK with undefined hashtype", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key1, SigHashType(5)) .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); // Generate P2PKH tests for invalid SigHashType tests.push_back( TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey0.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH with invalid sighashtype", 0) .PushSig(keys.key0, SigHashType(0x21), 32, 32, Amount(0), 0) .Push(keys.pubkey0)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey0.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH with invalid sighashtype and STRICTENC", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0, SigHashType(0x21), 32, 32, Amount(0), SCRIPT_VERIFY_STRICTENC) .Push(keys.pubkey0) // Should fail for STRICTENC .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); // Generate P2SH tests for invalid SigHashType tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2SH(P2PK) with invalid sighashtype", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key1, SigHashType(0x21)) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2SH(P2PK) with invalid sighashtype and STRICTENC", SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC, true) .PushSig(keys.key1, SigHashType(0x21)) .PushRedeem() // Should fail for STRICTENC .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid sig and undefined hashtype but no STRICTENC", 0) .PushSig(keys.key1, SigHashType(5)) .DamagePush(10)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid sig and undefined hashtype", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key1, SigHashType(5)) .DamagePush(10) .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3 with nonzero dummy but no NULLDUMMY", 0) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3 with nonzero dummy", SCRIPT_VERIFY_NULLDUMMY) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_SIG_NULLDUMMY)); tests.push_back( TestBuilder( CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG << OP_NOT, "3-of-3 NOT with invalid sig and nonzero dummy but no NULLDUMMY", 0) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2) .DamagePush(10)); tests.push_back( TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG << OP_NOT, "3-of-3 NOT with invalid sig with nonzero dummy", SCRIPT_VERIFY_NULLDUMMY) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2) .DamagePush(10) .ScriptError(SCRIPT_ERR_SIG_NULLDUMMY)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "2-of-2 with two identical keys and sigs " "pushed using OP_DUP but no SIGPUSHONLY", 0) .Num(0) .PushSig(keys.key1) .Add(CScript() << OP_DUP)); tests.push_back( TestBuilder( CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "2-of-2 with two identical keys and sigs pushed using OP_DUP", SCRIPT_VERIFY_SIGPUSHONLY) .Num(0) .PushSig(keys.key1) .Add(CScript() << OP_DUP) .ScriptError(SCRIPT_ERR_SIG_PUSHONLY)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2SH(P2PK) with non-push scriptSig but no P2SH or SIGPUSHONLY", 0, true) .PushSig(keys.key2) .Add(CScript() << OP_NOP8) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with non-push scriptSig but with P2SH validation", 0) .PushSig(keys.key2) .Add(CScript() << OP_NOP8)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2SH(P2PK) with non-push scriptSig but no SIGPUSHONLY", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key2) .Add(CScript() << OP_NOP8) .PushRedeem() .ScriptError(SCRIPT_ERR_SIG_PUSHONLY)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2SH(P2PK) with non-push scriptSig but not P2SH", SCRIPT_VERIFY_SIGPUSHONLY, true) .PushSig(keys.key2) .Add(CScript() << OP_NOP8) .PushRedeem() .ScriptError(SCRIPT_ERR_SIG_PUSHONLY)); tests.push_back( TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "2-of-2 with two identical keys and sigs pushed", SCRIPT_VERIFY_SIGPUSHONLY) .Num(0) .PushSig(keys.key1) .PushSig(keys.key1)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK with unnecessary input but no CLEANSTACK", SCRIPT_VERIFY_P2SH) .Num(11) .PushSig(keys.key0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK with unnecessary input", SCRIPT_VERIFY_CLEANSTACK | SCRIPT_VERIFY_P2SH) .Num(11) .PushSig(keys.key0) .ScriptError(SCRIPT_ERR_CLEANSTACK)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2SH with unnecessary input but no CLEANSTACK", SCRIPT_VERIFY_P2SH, true) .Num(11) .PushSig(keys.key0) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2SH with unnecessary input", SCRIPT_VERIFY_CLEANSTACK | SCRIPT_VERIFY_P2SH, true) .Num(11) .PushSig(keys.key0) .PushRedeem() .ScriptError(SCRIPT_ERR_CLEANSTACK)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2SH with CLEANSTACK", SCRIPT_VERIFY_CLEANSTACK | SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .PushRedeem()); static const Amount TEST_AMOUNT(12345000000000); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK FORKID", SCRIPT_ENABLE_SIGHASH_FORKID, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK INVALID AMOUNT", SCRIPT_ENABLE_SIGHASH_FORKID, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT + Amount(1)) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK INVALID FORKID", SCRIPT_VERIFY_STRICTENC, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT) .ScriptError(SCRIPT_ERR_ILLEGAL_FORKID)); // Test replay protection tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK REPLAY PROTECTED", SCRIPT_ENABLE_SIGHASH_FORKID | SCRIPT_ENABLE_REPLAY_PROTECTION, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT, SCRIPT_ENABLE_SIGHASH_FORKID | SCRIPT_ENABLE_REPLAY_PROTECTION)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK REPLAY PROTECTED", SCRIPT_ENABLE_SIGHASH_FORKID | SCRIPT_ENABLE_REPLAY_PROTECTION, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT, SCRIPT_ENABLE_SIGHASH_FORKID) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); std::set tests_set; { UniValue json_tests = read_json(std::string( json_tests::script_tests, json_tests::script_tests + sizeof(json_tests::script_tests))); for (unsigned int idx = 0; idx < json_tests.size(); idx++) { const UniValue &tv = json_tests[idx]; tests_set.insert(JSONPrettyPrint(tv.get_array())); } } std::string strGen; for (TestBuilder &test : tests) { test.Test(); std::string str = JSONPrettyPrint(test.GetJSON()); #ifndef UPDATE_JSON_TESTS if (tests_set.count(str) == 0) { BOOST_CHECK_MESSAGE( false, "Missing auto script_valid test: " + test.GetComment()); } #endif strGen += str + ",\n"; } #ifdef UPDATE_JSON_TESTS FILE *file = fopen("script_tests.json.gen", "w"); fputs(strGen.c_str(), file); fclose(file); #endif } BOOST_AUTO_TEST_CASE(script_json_test) { // Read tests from test/data/script_tests.json // Format is an array of arrays // Inner arrays are [ ["wit"..., nValue]?, "scriptSig", "scriptPubKey", // "flags", "expected_scripterror" ] // ... where scriptSig and scriptPubKey are stringified // scripts. UniValue tests = read_json(std::string( json_tests::script_tests, json_tests::script_tests + sizeof(json_tests::script_tests))); for (unsigned int idx = 0; idx < tests.size(); idx++) { UniValue test = tests[idx]; std::string strTest = test.write(); Amount nValue(0); unsigned int pos = 0; if (test.size() > 0 && test[pos].isArray()) { nValue = AmountFromValue(test[pos][0]); pos++; } // Allow size > 3; extra stuff ignored (useful for comments) if (test.size() < 4 + pos) { if (test.size() != 1) { BOOST_ERROR("Bad test: " << strTest); } continue; } std::string scriptSigString = test[pos++].get_str(); std::string scriptPubKeyString = test[pos++].get_str(); try { CScript scriptSig = ParseScript(scriptSigString); CScript scriptPubKey = ParseScript(scriptPubKeyString); unsigned int scriptflags = ParseScriptFlags(test[pos++].get_str()); int scriptError = ParseScriptError(test[pos++].get_str()); DoTest(scriptPubKey, scriptSig, scriptflags, strTest, scriptError, nValue); } catch (std::runtime_error &e) { BOOST_TEST_MESSAGE("Script test failed. scriptSig: " << scriptSigString << " scriptPubKey: " << scriptPubKeyString); BOOST_TEST_MESSAGE("Exception: " << e.what()); throw; } } } BOOST_AUTO_TEST_CASE(script_PushData) { // Check that PUSHDATA1, PUSHDATA2, and PUSHDATA4 create the same value on // the stack as the 1-75 opcodes do. static const uint8_t direct[] = {1, 0x5a}; static const uint8_t pushdata1[] = {OP_PUSHDATA1, 1, 0x5a}; static const uint8_t pushdata2[] = {OP_PUSHDATA2, 1, 0, 0x5a}; static const uint8_t pushdata4[] = {OP_PUSHDATA4, 1, 0, 0, 0, 0x5a}; ScriptError err; std::vector> directStack; BOOST_CHECK(EvalScript(directStack, CScript(&direct[0], &direct[sizeof(direct)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); std::vector> pushdata1Stack; BOOST_CHECK(EvalScript( pushdata1Stack, CScript(&pushdata1[0], &pushdata1[sizeof(pushdata1)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK(pushdata1Stack == directStack); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); std::vector> pushdata2Stack; BOOST_CHECK(EvalScript( pushdata2Stack, CScript(&pushdata2[0], &pushdata2[sizeof(pushdata2)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK(pushdata2Stack == directStack); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); std::vector> pushdata4Stack; BOOST_CHECK(EvalScript( pushdata4Stack, CScript(&pushdata4[0], &pushdata4[sizeof(pushdata4)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK(pushdata4Stack == directStack); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } CScript sign_multisig(CScript scriptPubKey, std::vector keys, CTransaction transaction) { uint256 hash = SignatureHash(scriptPubKey, transaction, 0, SigHashType(), Amount(0)); CScript result; // // NOTE: CHECKMULTISIG has an unfortunate bug; it requires one extra item on // the stack, before the signatures. Putting OP_0 on the stack is the // workaround; fixing the bug would mean splitting the block chain (old // clients would not accept new CHECKMULTISIG transactions, and vice-versa) // result << OP_0; for (const CKey &key : keys) { std::vector vchSig; BOOST_CHECK(key.Sign(hash, vchSig)); vchSig.push_back(uint8_t(SIGHASH_ALL)); result << vchSig; } return result; } CScript sign_multisig(CScript scriptPubKey, const CKey &key, CTransaction transaction) { std::vector keys; keys.push_back(key); return sign_multisig(scriptPubKey, keys, transaction); } BOOST_AUTO_TEST_CASE(script_CHECKMULTISIG12) { ScriptError err; CKey key1, key2, key3; key1.MakeNewKey(true); key2.MakeNewKey(false); key3.MakeNewKey(true); CScript scriptPubKey12; scriptPubKey12 << OP_1 << ToByteVector(key1.GetPubKey()) << ToByteVector(key2.GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CMutableTransaction txFrom12 = BuildCreditingTransaction(scriptPubKey12, Amount(0)); CMutableTransaction txTo12 = BuildSpendingTransaction(CScript(), txFrom12); CScript goodsig1 = sign_multisig(scriptPubKey12, key1, CTransaction(txTo12)); BOOST_CHECK(VerifyScript( goodsig1, scriptPubKey12, flags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); txTo12.vout[0].nValue = Amount(2); BOOST_CHECK(!VerifyScript( goodsig1, scriptPubKey12, flags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); CScript goodsig2 = sign_multisig(scriptPubKey12, key2, CTransaction(txTo12)); BOOST_CHECK(VerifyScript( goodsig2, scriptPubKey12, flags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); CScript badsig1 = sign_multisig(scriptPubKey12, key3, CTransaction(txTo12)); BOOST_CHECK(!VerifyScript( badsig1, scriptPubKey12, flags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } BOOST_AUTO_TEST_CASE(script_CHECKMULTISIG23) { ScriptError err; CKey key1, key2, key3, key4; key1.MakeNewKey(true); key2.MakeNewKey(false); key3.MakeNewKey(true); key4.MakeNewKey(false); CScript scriptPubKey23; scriptPubKey23 << OP_2 << ToByteVector(key1.GetPubKey()) << ToByteVector(key2.GetPubKey()) << ToByteVector(key3.GetPubKey()) << OP_3 << OP_CHECKMULTISIG; CMutableTransaction txFrom23 = BuildCreditingTransaction(scriptPubKey23, Amount(0)); CMutableTransaction mutableTxTo23 = BuildSpendingTransaction(CScript(), txFrom23); // after it has been set up, mutableTxTo23 does not change in this test, // so we can convert it to readonly transaction and use // TransactionSignatureChecker // instead of MutableTransactionSignatureChecker const CTransaction txTo23(mutableTxTo23); std::vector keys; keys.push_back(key1); keys.push_back(key2); CScript goodsig1 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(VerifyScript( goodsig1, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); keys.clear(); keys.push_back(key1); keys.push_back(key3); CScript goodsig2 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(VerifyScript( goodsig2, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); keys.clear(); keys.push_back(key2); keys.push_back(key3); CScript goodsig3 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(VerifyScript( goodsig3, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); keys.clear(); keys.push_back(key2); keys.push_back(key2); // Can't re-use sig CScript badsig1 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig1, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key2); keys.push_back(key1); // sigs must be in correct order CScript badsig2 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig2, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key3); keys.push_back(key2); // sigs must be in correct order CScript badsig3 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig3, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key4); keys.push_back(key2); // sigs must match pubkeys CScript badsig4 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig4, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key1); keys.push_back(key4); // sigs must match pubkeys CScript badsig5 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig5, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); // Must have signatures CScript badsig6 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig6, scriptPubKey23, flags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_INVALID_STACK_OPERATION, ScriptErrorString(err)); } BOOST_AUTO_TEST_CASE(script_combineSigs) { // Test the CombineSignatures function Amount amount(0); CBasicKeyStore keystore; std::vector keys; std::vector pubkeys; for (int i = 0; i < 3; i++) { CKey key; key.MakeNewKey(i % 2 == 1); keys.push_back(key); pubkeys.push_back(key.GetPubKey()); keystore.AddKey(key); } CMutableTransaction txFrom = BuildCreditingTransaction( GetScriptForDestination(keys[0].GetPubKey().GetID()), Amount(0)); CMutableTransaction txTo = BuildSpendingTransaction(CScript(), txFrom); CScript &scriptPubKey = txFrom.vout[0].scriptPubKey; CScript &scriptSig = txTo.vin[0].scriptSig; // Although it looks like CMutableTransaction is not modified after it’s // been set up (it is not passed as parameter to any non-const function), // it is actually modified when new value is assigned to scriptPubKey, // which points to mutableTxFrom.vout[0].scriptPubKey. Therefore we can // not use single instance of CTransaction in this test. // CTransaction creates a copy of CMutableTransaction and is not modified // when scriptPubKey is assigned to. SignatureData empty; SignatureData combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, empty); BOOST_CHECK(combined.scriptSig.empty()); // Single signature case: SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); // changes scriptSig combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), empty); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); CScript scriptSigCopy = scriptSig; // Signing again will give a different, valid signature: SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSigCopy), SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSigCopy || combined.scriptSig == scriptSig); // P2SH, single-signature case: CScript pkSingle; pkSingle << ToByteVector(keys[0].GetPubKey()) << OP_CHECKSIG; keystore.AddCScript(pkSingle); scriptPubKey = GetScriptForDestination(CScriptID(pkSingle)); SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), empty); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); scriptSigCopy = scriptSig; SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSigCopy), SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSigCopy || combined.scriptSig == scriptSig); // dummy scriptSigCopy with placeholder, should always choose // non-placeholder: scriptSigCopy = CScript() << OP_0 << std::vector(pkSingle.begin(), pkSingle.end()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSigCopy), SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), SignatureData(scriptSigCopy)); BOOST_CHECK(combined.scriptSig == scriptSig); // Hardest case: Multisig 2-of-3 scriptPubKey = GetScriptForMultisig(2, pubkeys); keystore.AddCScript(scriptPubKey); SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), empty); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); // A couple of partially-signed versions: std::vector sig1; uint256 hash1 = SignatureHash(scriptPubKey, CTransaction(txTo), 0, SigHashType(), Amount(0)); BOOST_CHECK(keys[0].Sign(hash1, sig1)); sig1.push_back(SIGHASH_ALL); std::vector sig2; uint256 hash2 = SignatureHash( scriptPubKey, CTransaction(txTo), 0, SigHashType().withBaseType(BaseSigHashType::NONE), Amount(0)); BOOST_CHECK(keys[1].Sign(hash2, sig2)); sig2.push_back(SIGHASH_NONE); std::vector sig3; uint256 hash3 = SignatureHash( scriptPubKey, CTransaction(txTo), 0, SigHashType().withBaseType(BaseSigHashType::SINGLE), Amount(0)); BOOST_CHECK(keys[2].Sign(hash3, sig3)); sig3.push_back(SIGHASH_SINGLE); // Not fussy about order (or even existence) of placeholders or signatures: CScript partial1a = CScript() << OP_0 << sig1 << OP_0; CScript partial1b = CScript() << OP_0 << OP_0 << sig1; CScript partial2a = CScript() << OP_0 << sig2; CScript partial2b = CScript() << sig2 << OP_0; CScript partial3a = CScript() << sig3; CScript partial3b = CScript() << OP_0 << OP_0 << sig3; CScript partial3c = CScript() << OP_0 << sig3 << OP_0; CScript complete12 = CScript() << OP_0 << sig1 << sig2; CScript complete13 = CScript() << OP_0 << sig1 << sig3; CScript complete23 = CScript() << OP_0 << sig2 << sig3; combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial1a), SignatureData(partial1b)); BOOST_CHECK(combined.scriptSig == partial1a); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial1a), SignatureData(partial2a)); BOOST_CHECK(combined.scriptSig == complete12); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial2a), SignatureData(partial1a)); BOOST_CHECK(combined.scriptSig == complete12); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial1b), SignatureData(partial2b)); BOOST_CHECK(combined.scriptSig == complete12); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial3b), SignatureData(partial1b)); BOOST_CHECK(combined.scriptSig == complete13); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial2a), SignatureData(partial3a)); BOOST_CHECK(combined.scriptSig == complete23); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial3b), SignatureData(partial2b)); BOOST_CHECK(combined.scriptSig == complete23); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial3b), SignatureData(partial3a)); BOOST_CHECK(combined.scriptSig == partial3c); } BOOST_AUTO_TEST_CASE(script_standard_push) { ScriptError err; for (int i = 0; i < 67000; i++) { CScript script; script << i; BOOST_CHECK_MESSAGE(script.IsPushOnly(), "Number " << i << " is not pure push."); BOOST_CHECK_MESSAGE(VerifyScript(script, CScript() << OP_1, SCRIPT_VERIFY_MINIMALDATA, BaseSignatureChecker(), &err), "Number " << i << " push is not minimal data."); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } for (unsigned int i = 0; i <= MAX_SCRIPT_ELEMENT_SIZE; i++) { std::vector data(i, '\111'); CScript script; script << data; BOOST_CHECK_MESSAGE(script.IsPushOnly(), "Length " << i << " is not pure push."); BOOST_CHECK_MESSAGE(VerifyScript(script, CScript() << OP_1, SCRIPT_VERIFY_MINIMALDATA, BaseSignatureChecker(), &err), "Length " << i << " push is not minimal data."); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } } BOOST_AUTO_TEST_CASE(script_IsPushOnly_on_invalid_scripts) { // IsPushOnly returns false when given a script containing only pushes that // are invalid due to truncation. IsPushOnly() is consensus critical because // P2SH evaluation uses it, although this specific behavior should not be // consensus critical as the P2SH evaluation would fail first due to the // invalid push. Still, it doesn't hurt to test it explicitly. static const uint8_t direct[] = {1}; BOOST_CHECK(!CScript(direct, direct + sizeof(direct)).IsPushOnly()); } BOOST_AUTO_TEST_CASE(script_GetScriptAsm) { BOOST_CHECK_EQUAL("OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_NOP2, true)); BOOST_CHECK_EQUAL( "OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_CHECKLOCKTIMEVERIFY, true)); BOOST_CHECK_EQUAL("OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_NOP2)); BOOST_CHECK_EQUAL("OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_CHECKLOCKTIMEVERIFY)); std::string derSig("304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e" "3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38" "d782e53023ee313d741ad0cfbc0c5090"); std::string pubKey( "03b0da749730dc9b4b1f4a14d6902877a92541f5368778853d9c4a0cb7802dcfb2"); std::vector vchPubKey = ToByteVector(ParseHex(pubKey)); BOOST_CHECK_EQUAL( derSig + "00 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "00")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "80 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "80")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "01")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "81")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL|FORKID] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "41")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL|FORKID|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "c1")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "02")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "82")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE|FORKID] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "42")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE|FORKID|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "c2")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "03")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "83")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE|FORKID] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "43")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE|FORKID|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "c3")) << vchPubKey, true)); BOOST_CHECK_EQUAL(derSig + "00 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "00")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "80 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "80")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "01 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "01")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "02 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "02")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "03 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "03")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "81 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "81")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "82 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "82")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "83 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "83")) << vchPubKey)); } static CScript ScriptFromHex(const char *hex) { std::vector data = ParseHex(hex); return CScript(data.begin(), data.end()); } BOOST_AUTO_TEST_CASE(script_FindAndDelete) { // Exercise the FindAndDelete functionality CScript s; CScript d; CScript expect; s = CScript() << OP_1 << OP_2; // delete nothing should be a no-op d = CScript(); expect = s; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); s = CScript() << OP_1 << OP_2 << OP_3; d = CScript() << OP_2; expect = CScript() << OP_1 << OP_3; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = CScript() << OP_3 << OP_1 << OP_3 << OP_3 << OP_4 << OP_3; d = CScript() << OP_3; expect = CScript() << OP_1 << OP_4; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 4); BOOST_CHECK(s == expect); // PUSH 0x02ff03 onto stack s = ScriptFromHex("0302ff03"); d = ScriptFromHex("0302ff03"); expect = CScript(); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); // PUSH 0x2ff03 PUSH 0x2ff03 s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("0302ff03"); expect = CScript(); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 2); BOOST_CHECK(s == expect); s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("02"); expect = s; // FindAndDelete matches entire opcodes BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("ff"); expect = s; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); // This is an odd edge case: strip of the push-three-bytes prefix, leaving // 02ff03 which is push-two-bytes: s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("03"); expect = CScript() << ParseHex("ff03") << ParseHex("ff03"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 2); BOOST_CHECK(s == expect); // Byte sequence that spans multiple opcodes: // PUSH(0xfeed) OP_1 OP_VERIFY s = ScriptFromHex("02feed5169"); d = ScriptFromHex("feed51"); expect = s; // doesn't match 'inside' opcodes BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); // PUSH(0xfeed) OP_1 OP_VERIFY s = ScriptFromHex("02feed5169"); d = ScriptFromHex("02feed51"); expect = ScriptFromHex("69"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = ScriptFromHex("516902feed5169"); d = ScriptFromHex("feed51"); expect = s; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); s = ScriptFromHex("516902feed5169"); d = ScriptFromHex("02feed51"); expect = ScriptFromHex("516969"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = CScript() << OP_0 << OP_0 << OP_1 << OP_1; d = CScript() << OP_0 << OP_1; // FindAndDelete is single-pass expect = CScript() << OP_0 << OP_1; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = CScript() << OP_0 << OP_0 << OP_1 << OP_0 << OP_1 << OP_1; d = CScript() << OP_0 << OP_1; // FindAndDelete is single-pass expect = CScript() << OP_0 << OP_1; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 2); BOOST_CHECK(s == expect); // Another weird edge case: // End with invalid push (not enough data)... s = ScriptFromHex("0003feed"); // ... can remove the invalid push d = ScriptFromHex("03feed"); expect = ScriptFromHex("00"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = ScriptFromHex("0003feed"); d = ScriptFromHex("00"); expect = ScriptFromHex("03feed"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/sigopcount_tests.cpp b/src/test/sigopcount_tests.cpp index fb612db0b7..91cf7ae4b6 100644 --- a/src/test/sigopcount_tests.cpp +++ b/src/test/sigopcount_tests.cpp @@ -1,223 +1,223 @@ // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "consensus/consensus.h" #include "consensus/validation.h" #include "key.h" #include "pubkey.h" #include "script/script.h" #include "script/standard.h" #include "test/test_bitcoin.h" #include "uint256.h" #include "validation.h" #include #include #include // Helpers: static std::vector Serialize(const CScript &s) { std::vector sSerialized(s.begin(), s.end()); return sSerialized; } BOOST_FIXTURE_TEST_SUITE(sigopcount_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(GetSigOpCount) { // Test CScript::GetSigOpCount() CScript s1; BOOST_CHECK_EQUAL(s1.GetSigOpCount(false), 0U); BOOST_CHECK_EQUAL(s1.GetSigOpCount(true), 0U); uint160 dummy; s1 << OP_1 << ToByteVector(dummy) << ToByteVector(dummy) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK_EQUAL(s1.GetSigOpCount(true), 2U); s1 << OP_IF << OP_CHECKSIG << OP_ENDIF; BOOST_CHECK_EQUAL(s1.GetSigOpCount(true), 3U); BOOST_CHECK_EQUAL(s1.GetSigOpCount(false), 21U); CScript p2sh = GetScriptForDestination(CScriptID(s1)); CScript scriptSig; scriptSig << OP_0 << Serialize(s1); BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(scriptSig), 3U); std::vector keys; for (int i = 0; i < 3; i++) { CKey k; k.MakeNewKey(true); keys.push_back(k.GetPubKey()); } CScript s2 = GetScriptForMultisig(1, keys); BOOST_CHECK_EQUAL(s2.GetSigOpCount(true), 3U); BOOST_CHECK_EQUAL(s2.GetSigOpCount(false), 20U); p2sh = GetScriptForDestination(CScriptID(s2)); BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(true), 0U); BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(false), 0U); CScript scriptSig2; scriptSig2 << OP_1 << ToByteVector(dummy) << ToByteVector(dummy) << Serialize(s2); BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(scriptSig2), 3U); } /** * Verifies script execution of the zeroth scriptPubKey of tx output and zeroth * scriptSig and witness of tx input. */ ScriptError VerifyWithFlag(const CTransaction &output, const CMutableTransaction &input, int flags) { ScriptError error; CTransaction inputi(input); bool ret = VerifyScript( inputi.vin[0].scriptSig, output.vout[0].scriptPubKey, flags, TransactionSignatureChecker(&inputi, 0, output.vout[0].nValue), &error); BOOST_CHECK((ret == true) == (error == SCRIPT_ERR_OK)); return error; } /** * Builds a creationTx from scriptPubKey and a spendingTx from scriptSig and * witness such that spendingTx spends output zero of creationTx. Also inserts * creationTx's output into the coins view. */ void BuildTxs(CMutableTransaction &spendingTx, CCoinsViewCache &coins, CMutableTransaction &creationTx, const CScript &scriptPubKey, const CScript &scriptSig) { creationTx.nVersion = 1; creationTx.vin.resize(1); - creationTx.vin[0].prevout.SetNull(); + creationTx.vin[0].prevout = COutPoint(); creationTx.vin[0].scriptSig = CScript(); creationTx.vout.resize(1); creationTx.vout[0].nValue = Amount(1); creationTx.vout[0].scriptPubKey = scriptPubKey; spendingTx.nVersion = 1; spendingTx.vin.resize(1); spendingTx.vin[0].prevout = COutPoint(creationTx.GetId(), 0); spendingTx.vin[0].scriptSig = scriptSig; spendingTx.vout.resize(1); spendingTx.vout[0].nValue = Amount(1); spendingTx.vout[0].scriptPubKey = CScript(); AddCoins(coins, CTransaction(creationTx), 0); } BOOST_AUTO_TEST_CASE(GetTxSigOpCost) { // Transaction creates outputs CMutableTransaction creationTx; // Transaction that spends outputs and whose sig op cost is going to be // tested CMutableTransaction spendingTx; // Create utxo set CCoinsView coinsDummy; CCoinsViewCache coins(&coinsDummy); // Create key CKey key; key.MakeNewKey(true); CPubKey pubkey = key.GetPubKey(); // Default flags int flags = SCRIPT_VERIFY_P2SH; // Multisig script (legacy counting) { CScript scriptPubKey = CScript() << 1 << ToByteVector(pubkey) << ToByteVector(pubkey) << 2 << OP_CHECKMULTISIGVERIFY; // Do not use a valid signature to avoid using wallet operations. CScript scriptSig = CScript() << OP_0 << OP_0; BuildTxs(spendingTx, coins, creationTx, scriptPubKey, scriptSig); // Legacy counting only includes signature operations in scriptSigs and // scriptPubKeys of a transaction and does not take the actual executed // sig operations into account. spendingTx in itself does not contain a // signature operation. assert(GetTransactionSigOpCount(CTransaction(spendingTx), coins, flags) == 0); // creationTx contains two signature operations in its scriptPubKey, but // legacy counting is not accurate. assert(GetTransactionSigOpCount(CTransaction(creationTx), coins, flags) == MAX_PUBKEYS_PER_MULTISIG); // Sanity check: script verification fails because of an invalid // signature. assert(VerifyWithFlag(CTransaction(creationTx), spendingTx, flags) == SCRIPT_ERR_CHECKMULTISIGVERIFY); } // Multisig nested in P2SH { CScript redeemScript = CScript() << 1 << ToByteVector(pubkey) << ToByteVector(pubkey) << 2 << OP_CHECKMULTISIGVERIFY; CScript scriptPubKey = GetScriptForDestination(CScriptID(redeemScript)); CScript scriptSig = CScript() << OP_0 << OP_0 << ToByteVector(redeemScript); BuildTxs(spendingTx, coins, creationTx, scriptPubKey, scriptSig); assert(GetTransactionSigOpCount(CTransaction(spendingTx), coins, flags) == 2); assert(VerifyWithFlag(CTransaction(creationTx), spendingTx, flags) == SCRIPT_ERR_CHECKMULTISIGVERIFY); } } BOOST_AUTO_TEST_CASE(test_consensus_sigops_limit) { BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1), MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(123456), MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1000000), MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1000001), 2 * MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1348592), 2 * MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(2000000), 2 * MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(2000001), 3 * MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(2654321), 3 * MAX_BLOCK_SIGOPS_PER_MB); BOOST_CHECK_EQUAL( GetMaxBlockSigOpsCount(std::numeric_limits::max()), 4295 * MAX_BLOCK_SIGOPS_PER_MB); } BOOST_AUTO_TEST_CASE(test_max_sigops_per_tx) { CMutableTransaction tx; tx.nVersion = 1; tx.vin.resize(1); tx.vin[0].prevout = COutPoint(InsecureRand256(), 0); tx.vin[0].scriptSig = CScript(); tx.vout.resize(1); tx.vout[0].nValue = Amount(1); tx.vout[0].scriptPubKey = CScript(); { CValidationState state; BOOST_CHECK(CheckRegularTransaction(CTransaction(tx), state, false)); } // Get just before the limit. for (size_t i = 0; i < MAX_TX_SIGOPS_COUNT; i++) { tx.vout[0].scriptPubKey << OP_CHECKSIG; } { CValidationState state; BOOST_CHECK(CheckRegularTransaction(CTransaction(tx), state, false)); } // And go over. tx.vout[0].scriptPubKey << OP_CHECKSIG; { CValidationState state; BOOST_CHECK(!CheckRegularTransaction(CTransaction(tx), state, false)); BOOST_CHECK_EQUAL(state.GetRejectReason(), "bad-txn-sigops"); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/transaction_tests.cpp b/src/test/transaction_tests.cpp index a4a68413e5..cdded18140 100644 --- a/src/test/transaction_tests.cpp +++ b/src/test/transaction_tests.cpp @@ -1,787 +1,787 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "data/tx_invalid.json.h" #include "data/tx_valid.json.h" #include "test/test_bitcoin.h" #include "checkqueue.h" #include "clientversion.h" #include "consensus/validation.h" #include "core_io.h" #include "key.h" #include "keystore.h" #include "policy/policy.h" #include "script/script.h" #include "script/script_error.h" #include "script/sign.h" #include "script/standard.h" #include "test/jsonutil.h" #include "test/scriptflags.h" #include "utilstrencodings.h" #include "validation.h" // For CheckRegularTransaction #include #include #include #include #include typedef std::vector valtype; BOOST_FIXTURE_TEST_SUITE(transaction_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(tx_valid) { // Read tests from test/data/tx_valid.json // Format is an array of arrays // Inner arrays are either [ "comment" ] // or [[[prevout hash, prevout index, prevout scriptPubKey], [input 2], // ...],"], serializedTransaction, verifyFlags // ... where all scripts are stringified scripts. // // verifyFlags is a comma separated list of script verification flags to // apply, or "NONE" UniValue tests = read_json( std::string(json_tests::tx_valid, json_tests::tx_valid + sizeof(json_tests::tx_valid))); ScriptError err; for (size_t idx = 0; idx < tests.size(); idx++) { UniValue test = tests[idx]; std::string strTest = test.write(); if (test[0].isArray()) { if (test.size() != 3 || !test[1].isStr() || !test[2].isStr()) { BOOST_ERROR("Bad test: " << strTest); continue; } std::map mapprevOutScriptPubKeys; std::map mapprevOutValues; UniValue inputs = test[0].get_array(); bool fValid = true; for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++) { const UniValue &input = inputs[inpIdx]; if (!input.isArray()) { fValid = false; break; } UniValue vinput = input.get_array(); if (vinput.size() < 3 || vinput.size() > 4) { fValid = false; break; } COutPoint outpoint(uint256S(vinput[0].get_str()), vinput[1].get_int()); mapprevOutScriptPubKeys[outpoint] = ParseScript(vinput[2].get_str()); if (vinput.size() >= 4) { mapprevOutValues[outpoint] = Amount(vinput[3].get_int64()); } } if (!fValid) { BOOST_ERROR("Bad test: " << strTest); continue; } std::string transaction = test[1].get_str(); CDataStream stream(ParseHex(transaction), SER_NETWORK, PROTOCOL_VERSION); CTransaction tx(deserialize, stream); CValidationState state; BOOST_CHECK_MESSAGE(tx.IsCoinBase() ? CheckCoinbase(tx, state) : CheckRegularTransaction(tx, state), strTest); BOOST_CHECK(state.IsValid()); PrecomputedTransactionData txdata(tx); for (size_t i = 0; i < tx.vin.size(); i++) { if (!mapprevOutScriptPubKeys.count(tx.vin[i].prevout)) { BOOST_ERROR("Bad test: " << strTest); break; } Amount amount(0); if (mapprevOutValues.count(tx.vin[i].prevout)) { amount = Amount(mapprevOutValues[tx.vin[i].prevout]); } uint32_t verify_flags = ParseScriptFlags(test[2].get_str()); BOOST_CHECK_MESSAGE( VerifyScript(tx.vin[i].scriptSig, mapprevOutScriptPubKeys[tx.vin[i].prevout], verify_flags, TransactionSignatureChecker( &tx, i, amount, txdata), &err), strTest); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } } } } BOOST_AUTO_TEST_CASE(tx_invalid) { // Read tests from test/data/tx_invalid.json // Format is an array of arrays // Inner arrays are either [ "comment" ] // or [[[prevout hash, prevout index, prevout scriptPubKey], [input 2], // ...],"], serializedTransaction, verifyFlags // ... where all scripts are stringified scripts. // // verifyFlags is a comma separated list of script verification flags to // apply, or "NONE" UniValue tests = read_json( std::string(json_tests::tx_invalid, json_tests::tx_invalid + sizeof(json_tests::tx_invalid))); ScriptError err; for (size_t idx = 0; idx < tests.size(); idx++) { UniValue test = tests[idx]; std::string strTest = test.write(); if (test[0].isArray()) { if (test.size() != 3 || !test[1].isStr() || !test[2].isStr()) { BOOST_ERROR("Bad test: " << strTest); continue; } std::map mapprevOutScriptPubKeys; std::map mapprevOutValues; UniValue inputs = test[0].get_array(); bool fValid = true; for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++) { const UniValue &input = inputs[inpIdx]; if (!input.isArray()) { fValid = false; break; } UniValue vinput = input.get_array(); if (vinput.size() < 3 || vinput.size() > 4) { fValid = false; break; } COutPoint outpoint(uint256S(vinput[0].get_str()), vinput[1].get_int()); mapprevOutScriptPubKeys[outpoint] = ParseScript(vinput[2].get_str()); if (vinput.size() >= 4) { mapprevOutValues[outpoint] = Amount(vinput[3].get_int64()); } } if (!fValid) { BOOST_ERROR("Bad test: " << strTest); continue; } std::string transaction = test[1].get_str(); CDataStream stream(ParseHex(transaction), SER_NETWORK, PROTOCOL_VERSION); CTransaction tx(deserialize, stream); CValidationState state; fValid = CheckRegularTransaction(tx, state) && state.IsValid(); PrecomputedTransactionData txdata(tx); for (size_t i = 0; i < tx.vin.size() && fValid; i++) { if (!mapprevOutScriptPubKeys.count(tx.vin[i].prevout)) { BOOST_ERROR("Bad test: " << strTest); break; } Amount amount(0); if (0 != mapprevOutValues.count(tx.vin[i].prevout)) { amount = mapprevOutValues[tx.vin[i].prevout]; } uint32_t verify_flags = ParseScriptFlags(test[2].get_str()); fValid = VerifyScript( tx.vin[i].scriptSig, mapprevOutScriptPubKeys[tx.vin[i].prevout], verify_flags, TransactionSignatureChecker(&tx, i, amount, txdata), &err); } BOOST_CHECK_MESSAGE(!fValid, strTest); BOOST_CHECK_MESSAGE(err != SCRIPT_ERR_OK, ScriptErrorString(err)); } } } BOOST_AUTO_TEST_CASE(basic_transaction_tests) { // Random real transaction // (e2769b09e784f32f62ef849763d4f45b98e07ba658647343b915ff832b110436) uint8_t ch[] = { 0x01, 0x00, 0x00, 0x00, 0x01, 0x6b, 0xff, 0x7f, 0xcd, 0x4f, 0x85, 0x65, 0xef, 0x40, 0x6d, 0xd5, 0xd6, 0x3d, 0x4f, 0xf9, 0x4f, 0x31, 0x8f, 0xe8, 0x20, 0x27, 0xfd, 0x4d, 0xc4, 0x51, 0xb0, 0x44, 0x74, 0x01, 0x9f, 0x74, 0xb4, 0x00, 0x00, 0x00, 0x00, 0x8c, 0x49, 0x30, 0x46, 0x02, 0x21, 0x00, 0xda, 0x0d, 0xc6, 0xae, 0xce, 0xfe, 0x1e, 0x06, 0xef, 0xdf, 0x05, 0x77, 0x37, 0x57, 0xde, 0xb1, 0x68, 0x82, 0x09, 0x30, 0xe3, 0xb0, 0xd0, 0x3f, 0x46, 0xf5, 0xfc, 0xf1, 0x50, 0xbf, 0x99, 0x0c, 0x02, 0x21, 0x00, 0xd2, 0x5b, 0x5c, 0x87, 0x04, 0x00, 0x76, 0xe4, 0xf2, 0x53, 0xf8, 0x26, 0x2e, 0x76, 0x3e, 0x2d, 0xd5, 0x1e, 0x7f, 0xf0, 0xbe, 0x15, 0x77, 0x27, 0xc4, 0xbc, 0x42, 0x80, 0x7f, 0x17, 0xbd, 0x39, 0x01, 0x41, 0x04, 0xe6, 0xc2, 0x6e, 0xf6, 0x7d, 0xc6, 0x10, 0xd2, 0xcd, 0x19, 0x24, 0x84, 0x78, 0x9a, 0x6c, 0xf9, 0xae, 0xa9, 0x93, 0x0b, 0x94, 0x4b, 0x7e, 0x2d, 0xb5, 0x34, 0x2b, 0x9d, 0x9e, 0x5b, 0x9f, 0xf7, 0x9a, 0xff, 0x9a, 0x2e, 0xe1, 0x97, 0x8d, 0xd7, 0xfd, 0x01, 0xdf, 0xc5, 0x22, 0xee, 0x02, 0x28, 0x3d, 0x3b, 0x06, 0xa9, 0xd0, 0x3a, 0xcf, 0x80, 0x96, 0x96, 0x8d, 0x7d, 0xbb, 0x0f, 0x91, 0x78, 0xff, 0xff, 0xff, 0xff, 0x02, 0x8b, 0xa7, 0x94, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xba, 0xde, 0xec, 0xfd, 0xef, 0x05, 0x07, 0x24, 0x7f, 0xc8, 0xf7, 0x42, 0x41, 0xd7, 0x3b, 0xc0, 0x39, 0x97, 0x2d, 0x7b, 0x88, 0xac, 0x40, 0x94, 0xa8, 0x02, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xc1, 0x09, 0x32, 0x48, 0x3f, 0xec, 0x93, 0xed, 0x51, 0xf5, 0xfe, 0x95, 0xe7, 0x25, 0x59, 0xf2, 0xcc, 0x70, 0x43, 0xf9, 0x88, 0xac, 0x00, 0x00, 0x00, 0x00, 0x00}; std::vector vch(ch, ch + sizeof(ch) - 1); CDataStream stream(vch, SER_DISK, CLIENT_VERSION); CMutableTransaction tx; stream >> tx; CValidationState state; BOOST_CHECK_MESSAGE(CheckRegularTransaction(CTransaction(tx), state) && state.IsValid(), "Simple deserialized transaction should be valid."); // Check that duplicate txins fail tx.vin.push_back(tx.vin[0]); BOOST_CHECK_MESSAGE(!CheckRegularTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with duplicate txins should be invalid."); } // // Helper: create two dummy transactions, each with // two outputs. The first has 11 and 50 CENT outputs // paid to a TX_PUBKEY, the second 21 and 22 CENT outputs // paid to a TX_PUBKEYHASH. // static std::vector SetupDummyInputs(CBasicKeyStore &keystoreRet, CCoinsViewCache &coinsRet) { std::vector dummyTransactions; dummyTransactions.resize(2); // Add some keys to the keystore: CKey key[4]; for (int i = 0; i < 4; i++) { key[i].MakeNewKey(i % 2); keystoreRet.AddKey(key[i]); } // Create some dummy input transactions dummyTransactions[0].vout.resize(2); dummyTransactions[0].vout[0].nValue = 11 * CENT; dummyTransactions[0].vout[0].scriptPubKey << ToByteVector(key[0].GetPubKey()) << OP_CHECKSIG; dummyTransactions[0].vout[1].nValue = 50 * CENT; dummyTransactions[0].vout[1].scriptPubKey << ToByteVector(key[1].GetPubKey()) << OP_CHECKSIG; AddCoins(coinsRet, CTransaction(dummyTransactions[0]), 0); dummyTransactions[1].vout.resize(2); dummyTransactions[1].vout[0].nValue = 21 * CENT; dummyTransactions[1].vout[0].scriptPubKey = GetScriptForDestination(key[2].GetPubKey().GetID()); dummyTransactions[1].vout[1].nValue = 22 * CENT; dummyTransactions[1].vout[1].scriptPubKey = GetScriptForDestination(key[3].GetPubKey().GetID()); AddCoins(coinsRet, CTransaction(dummyTransactions[1]), 0); return dummyTransactions; } BOOST_AUTO_TEST_CASE(test_Get) { CBasicKeyStore keystore; CCoinsView coinsDummy; CCoinsViewCache coins(&coinsDummy); std::vector dummyTransactions = SetupDummyInputs(keystore, coins); CMutableTransaction t1; t1.vin.resize(3); t1.vin[0].prevout = COutPoint(dummyTransactions[0].GetId(), 1); t1.vin[0].scriptSig << std::vector(65, 0); t1.vin[1].prevout = COutPoint(dummyTransactions[1].GetId(), 0); t1.vin[1].scriptSig << std::vector(65, 0) << std::vector(33, 4); t1.vin[2].prevout = COutPoint(dummyTransactions[1].GetId(), 1); t1.vin[2].scriptSig << std::vector(65, 0) << std::vector(33, 4); t1.vout.resize(2); t1.vout[0].nValue = 90 * CENT; t1.vout[0].scriptPubKey << OP_1; BOOST_CHECK(AreInputsStandard(CTransaction(t1), coins)); BOOST_CHECK_EQUAL(coins.GetValueIn(CTransaction(t1)), (50 + 21 + 22) * CENT); } void CreateCreditAndSpend(const CKeyStore &keystore, const CScript &outscript, CTransactionRef &output, CMutableTransaction &input, bool success = true) { CMutableTransaction outputm; outputm.nVersion = 1; outputm.vin.resize(1); - outputm.vin[0].prevout.SetNull(); + outputm.vin[0].prevout = COutPoint(); outputm.vin[0].scriptSig = CScript(); outputm.vout.resize(1); outputm.vout[0].nValue = Amount(1); outputm.vout[0].scriptPubKey = outscript; CDataStream ssout(SER_NETWORK, PROTOCOL_VERSION); ssout << outputm; ssout >> output; BOOST_CHECK_EQUAL(output->vin.size(), 1UL); BOOST_CHECK(output->vin[0] == outputm.vin[0]); BOOST_CHECK_EQUAL(output->vout.size(), 1UL); BOOST_CHECK(output->vout[0] == outputm.vout[0]); CMutableTransaction inputm; inputm.nVersion = 1; inputm.vin.resize(1); inputm.vin[0].prevout = COutPoint(output->GetId(), 0); inputm.vout.resize(1); inputm.vout[0].nValue = Amount(1); inputm.vout[0].scriptPubKey = CScript(); bool ret = SignSignature(keystore, *output, inputm, 0, SigHashType().withForkId()); BOOST_CHECK_EQUAL(ret, success); CDataStream ssin(SER_NETWORK, PROTOCOL_VERSION); ssin << inputm; ssin >> input; BOOST_CHECK_EQUAL(input.vin.size(), 1UL); BOOST_CHECK(input.vin[0] == inputm.vin[0]); BOOST_CHECK_EQUAL(input.vout.size(), 1UL); BOOST_CHECK(input.vout[0] == inputm.vout[0]); } void CheckWithFlag(const CTransactionRef &output, const CMutableTransaction &input, int flags, bool success) { ScriptError error; CTransaction inputi(input); bool ret = VerifyScript( inputi.vin[0].scriptSig, output->vout[0].scriptPubKey, flags | SCRIPT_ENABLE_SIGHASH_FORKID, TransactionSignatureChecker(&inputi, 0, output->vout[0].nValue), &error); BOOST_CHECK_EQUAL(ret, success); } static CScript PushAll(const std::vector &values) { CScript result; for (const valtype &v : values) { if (v.size() == 0) { result << OP_0; } else if (v.size() == 1 && v[0] >= 1 && v[0] <= 16) { result << CScript::EncodeOP_N(v[0]); } else { result << v; } } return result; } void ReplaceRedeemScript(CScript &script, const CScript &redeemScript) { std::vector stack; EvalScript(stack, script, SCRIPT_VERIFY_STRICTENC, BaseSignatureChecker()); BOOST_CHECK(stack.size() > 0); stack.back() = std::vector(redeemScript.begin(), redeemScript.end()); script = PushAll(stack); } BOOST_AUTO_TEST_CASE(test_big_transaction) { CKey key; key.MakeNewKey(false); CBasicKeyStore keystore; keystore.AddKeyPubKey(key, key.GetPubKey()); CScript scriptPubKey = CScript() << ToByteVector(key.GetPubKey()) << OP_CHECKSIG; std::vector sigHashes; sigHashes.emplace_back(SIGHASH_NONE | SIGHASH_FORKID); sigHashes.emplace_back(SIGHASH_SINGLE | SIGHASH_FORKID); sigHashes.emplace_back(SIGHASH_ALL | SIGHASH_FORKID); sigHashes.emplace_back(SIGHASH_NONE | SIGHASH_FORKID | SIGHASH_ANYONECANPAY); sigHashes.emplace_back(SIGHASH_SINGLE | SIGHASH_FORKID | SIGHASH_ANYONECANPAY); sigHashes.emplace_back(SIGHASH_ALL | SIGHASH_FORKID | SIGHASH_ANYONECANPAY); CMutableTransaction mtx; mtx.nVersion = 1; // create a big transaction of 4500 inputs signed by the same key. const static size_t OUTPUT_COUNT = 4500; mtx.vout.reserve(OUTPUT_COUNT); for (size_t ij = 0; ij < OUTPUT_COUNT; ij++) { size_t i = mtx.vin.size(); uint256 prevId = uint256S( "0000000000000000000000000000000000000000000000000000000000000100"); COutPoint outpoint(prevId, i); mtx.vin.resize(mtx.vin.size() + 1); mtx.vin[i].prevout = outpoint; mtx.vin[i].scriptSig = CScript(); mtx.vout.emplace_back(Amount(1000), CScript() << OP_1); } // sign all inputs for (size_t i = 0; i < mtx.vin.size(); i++) { bool hashSigned = SignSignature(keystore, scriptPubKey, mtx, i, Amount(1000), sigHashes.at(i % sigHashes.size())); BOOST_CHECK_MESSAGE(hashSigned, "Failed to sign test transaction"); } CTransaction tx(mtx); // check all inputs concurrently, with the cache PrecomputedTransactionData txdata(tx); boost::thread_group threadGroup; CCheckQueue scriptcheckqueue(128); CCheckQueueControl control(&scriptcheckqueue); for (int i = 0; i < 20; i++) { threadGroup.create_thread(boost::bind( &CCheckQueue::Thread, boost::ref(scriptcheckqueue))); } std::vector coins; for (size_t i = 0; i < mtx.vin.size(); i++) { CTxOut out; out.nValue = Amount(1000); out.scriptPubKey = scriptPubKey; coins.emplace_back(std::move(out), 1, false); } for (size_t i = 0; i < mtx.vin.size(); i++) { std::vector vChecks; CTxOut &out = coins[tx.vin[i].prevout.GetN()].GetTxOut(); CScriptCheck check(out.scriptPubKey, out.nValue, tx, i, MANDATORY_SCRIPT_VERIFY_FLAGS, false, txdata); vChecks.push_back(CScriptCheck()); check.swap(vChecks.back()); control.Add(vChecks); } bool controlCheck = control.Wait(); BOOST_CHECK(controlCheck); threadGroup.interrupt_all(); threadGroup.join_all(); } BOOST_AUTO_TEST_CASE(test_witness) { CBasicKeyStore keystore, keystore2; CKey key1, key2, key3, key1L, key2L; CPubKey pubkey1, pubkey2, pubkey3, pubkey1L, pubkey2L; key1.MakeNewKey(true); key2.MakeNewKey(true); key3.MakeNewKey(true); key1L.MakeNewKey(false); key2L.MakeNewKey(false); pubkey1 = key1.GetPubKey(); pubkey2 = key2.GetPubKey(); pubkey3 = key3.GetPubKey(); pubkey1L = key1L.GetPubKey(); pubkey2L = key2L.GetPubKey(); keystore.AddKeyPubKey(key1, pubkey1); keystore.AddKeyPubKey(key2, pubkey2); keystore.AddKeyPubKey(key1L, pubkey1L); keystore.AddKeyPubKey(key2L, pubkey2L); CScript scriptPubkey1, scriptPubkey2, scriptPubkey1L, scriptPubkey2L, scriptMulti; scriptPubkey1 << ToByteVector(pubkey1) << OP_CHECKSIG; scriptPubkey2 << ToByteVector(pubkey2) << OP_CHECKSIG; scriptPubkey1L << ToByteVector(pubkey1L) << OP_CHECKSIG; scriptPubkey2L << ToByteVector(pubkey2L) << OP_CHECKSIG; std::vector oneandthree; oneandthree.push_back(pubkey1); oneandthree.push_back(pubkey3); scriptMulti = GetScriptForMultisig(2, oneandthree); keystore.AddCScript(scriptPubkey1); keystore.AddCScript(scriptPubkey2); keystore.AddCScript(scriptPubkey1L); keystore.AddCScript(scriptPubkey2L); keystore.AddCScript(scriptMulti); keystore2.AddCScript(scriptMulti); keystore2.AddKeyPubKey(key3, pubkey3); CTransactionRef output1, output2; CMutableTransaction input1, input2; SignatureData sigdata; // Normal pay-to-compressed-pubkey. CreateCreditAndSpend(keystore, scriptPubkey1, output1, input1); CreateCreditAndSpend(keystore, scriptPubkey2, output2, input2); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, false); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // P2SH pay-to-compressed-pubkey. CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey1)), output1, input1); CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey2)), output2, input2); ReplaceRedeemScript(input2.vin[0].scriptSig, scriptPubkey1); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, true); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // Normal pay-to-uncompressed-pubkey. CreateCreditAndSpend(keystore, scriptPubkey1L, output1, input1); CreateCreditAndSpend(keystore, scriptPubkey2L, output2, input2); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, false); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // P2SH pay-to-uncompressed-pubkey. CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey1L)), output1, input1); CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptPubkey2L)), output2, input2); ReplaceRedeemScript(input2.vin[0].scriptSig, scriptPubkey1L); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); CheckWithFlag(output1, input2, 0, true); CheckWithFlag(output1, input2, SCRIPT_VERIFY_P2SH, false); CheckWithFlag(output1, input2, STANDARD_SCRIPT_VERIFY_FLAGS, false); // Normal 2-of-2 multisig CreateCreditAndSpend(keystore, scriptMulti, output1, input1, false); CheckWithFlag(output1, input1, 0, false); CreateCreditAndSpend(keystore2, scriptMulti, output2, input2, false); CheckWithFlag(output2, input2, 0, false); BOOST_CHECK(*output1 == *output2); UpdateTransaction( input1, 0, CombineSignatures(output1->vout[0].scriptPubKey, MutableTransactionSignatureChecker( &input1, 0, output1->vout[0].nValue), DataFromTransaction(input1, 0), DataFromTransaction(input2, 0))); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); // P2SH 2-of-2 multisig CreateCreditAndSpend(keystore, GetScriptForDestination(CScriptID(scriptMulti)), output1, input1, false); CheckWithFlag(output1, input1, 0, true); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, false); CreateCreditAndSpend(keystore2, GetScriptForDestination(CScriptID(scriptMulti)), output2, input2, false); CheckWithFlag(output2, input2, 0, true); CheckWithFlag(output2, input2, SCRIPT_VERIFY_P2SH, false); BOOST_CHECK(*output1 == *output2); UpdateTransaction( input1, 0, CombineSignatures(output1->vout[0].scriptPubKey, MutableTransactionSignatureChecker( &input1, 0, output1->vout[0].nValue), DataFromTransaction(input1, 0), DataFromTransaction(input2, 0))); CheckWithFlag(output1, input1, SCRIPT_VERIFY_P2SH, true); CheckWithFlag(output1, input1, STANDARD_SCRIPT_VERIFY_FLAGS, true); } BOOST_AUTO_TEST_CASE(test_IsStandard) { LOCK(cs_main); CBasicKeyStore keystore; CCoinsView coinsDummy; CCoinsViewCache coins(&coinsDummy); std::vector dummyTransactions = SetupDummyInputs(keystore, coins); CMutableTransaction t; t.vin.resize(1); t.vin[0].prevout = COutPoint(dummyTransactions[0].GetId(), 1); t.vin[0].scriptSig << std::vector(65, 0); t.vout.resize(1); t.vout[0].nValue = 90 * CENT; CKey key; key.MakeNewKey(true); t.vout[0].scriptPubKey = GetScriptForDestination(key.GetPubKey().GetID()); std::string reason; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // Check dust with default relay fee: Amount nDustThreshold = 3 * 182 * dustRelayFee.GetFeePerK() / 1000; BOOST_CHECK_EQUAL(nDustThreshold, Amount(546)); // dust: t.vout[0].nValue = nDustThreshold - Amount(1); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // not dust: t.vout[0].nValue = nDustThreshold; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // Check dust with odd relay fee to verify rounding: // nDustThreshold = 182 * 1234 / 1000 * 3 dustRelayFee = CFeeRate(Amount(1234)); // dust: t.vout[0].nValue = Amount(672 - 1); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // not dust: t.vout[0].nValue = Amount(672); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); dustRelayFee = CFeeRate(DUST_RELAY_TX_FEE); t.vout[0].scriptPubKey = CScript() << OP_1; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // MAX_OP_RETURN_RELAY-byte TX_NULL_DATA (standard) t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef38"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY, t.vout[0].scriptPubKey.size()); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // MAX_OP_RETURN_RELAY+1-byte TX_NULL_DATA (non-standard) t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef3800"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY + 1, t.vout[0].scriptPubKey.size()); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); /** * Check acceptance of larger op_return when asked to. */ // New default size of 223 byte is standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("646578784062697477617463682e636f2092c558ed52c56d" "8dd14ca76226bc936a84820d898443873eb03d8854b21fa3" "952b99a2981873e74509281730d78a21786d34a38bd1ebab" "822fad42278f7f4420db6ab1fd2b6826148d4f73bb41ec2d" "40a6d5793d66e17074a0c56a8a7df21062308f483dd6e38d" "53609d350038df0a1b2a9ac8332016e0b904f66880dd0108" "81c4e8074cce8e4ad6c77cb3460e01bf0e7e811b5f945f83" "732ba6677520a893d75d9a966cb8f85dc301656b1635c631" "f5d00d4adf73f2dd112ca75cf19754651909becfbe65aed1" "3afb2ab8"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY_LARGE, t.vout[0].scriptPubKey.size()); BOOST_CHECK(IsStandardTx(CTransaction(t), reason, true)); // Larger than default size of 223 byte is non-standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("646578784062697477617463682e636f2092c558ed52c56d" "8dd14ca76226bc936a84820d898443873eb03d8854b21fa3" "952b99a2981873e74509281730d78a21786d34a38bd1ebab" "822fad42278f7f4420db6ab1fd2b6826148d4f73bb41ec2d" "40a6d5793d66e17074a0c56a8a7df21062308f483dd6e38d" "53609d350038df0a1b2a9ac8332016e0b904f66880dd0108" "81c4e8074cce8e4ad6c77cb3460e01bf0e7e811b5f945f83" "732ba6677520a893d75d9a966cb8f85dc301656b1635c631" "f5d00d4adf73f2dd112ca75cf19754651909becfbe65aed1" "3afb2ab800"); BOOST_CHECK_EQUAL(MAX_OP_RETURN_RELAY_LARGE + 1, t.vout[0].scriptPubKey.size()); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason, true)); /** * Check when a custom value is used for -datacarriersize . */ unsigned newMaxSize = MAX_OP_RETURN_RELAY + 7; gArgs.ForceSetArg("-datacarriersize", std::to_string(newMaxSize)); // Max user provided payload size is standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef3877696e64657878"); BOOST_CHECK_EQUAL(t.vout[0].scriptPubKey.size(), newMaxSize); BOOST_CHECK(IsStandardTx(CTransaction(t), reason, false)); BOOST_CHECK(IsStandardTx(CTransaction(t), reason, true)); // Max user provided payload size + 1 is non-standard t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef3804678afdb0fe5548" "271967f1a67130b7105cd6a828e03909a67962e0ea1f61de" "b649f6bc3f4cef3877696e6465787800"); BOOST_CHECK_EQUAL(t.vout[0].scriptPubKey.size(), newMaxSize + 1); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason, false)); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason, true)); // Clear custom confirguration. gArgs.ClearArg("-datacarriersize"); // Data payload can be encoded in any way... t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex(""); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("00") << ParseHex("01"); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // OP_RESERVED *is* considered to be a PUSHDATA type opcode by IsPushOnly()! t.vout[0].scriptPubKey = CScript() << OP_RETURN << OP_RESERVED << -1 << 0 << ParseHex("01") << 2 << 3 << 4 << 5 << 6 << 7 << 8 << 9 << 10 << 11 << 12 << 13 << 14 << 15 << 16; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN << 0 << ParseHex("01") << 2 << ParseHex("fffffffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffffff"); BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // ...so long as it only contains PUSHDATA's t.vout[0].scriptPubKey = CScript() << OP_RETURN << OP_RETURN; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); // TX_NULL_DATA w/o PUSHDATA t.vout.resize(1); t.vout[0].scriptPubKey = CScript() << OP_RETURN; BOOST_CHECK(IsStandardTx(CTransaction(t), reason)); // Only one TX_NULL_DATA permitted in all cases t.vout.resize(2); t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38"); t.vout[1].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38"); BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38"); t.vout[1].scriptPubKey = CScript() << OP_RETURN; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); t.vout[0].scriptPubKey = CScript() << OP_RETURN; t.vout[1].scriptPubKey = CScript() << OP_RETURN; BOOST_CHECK(!IsStandardTx(CTransaction(t), reason)); } BOOST_AUTO_TEST_SUITE_END()