diff --git a/test/functional/rpc_fundrawtransaction.py b/test/functional/rpc_fundrawtransaction.py index 67db95927a..c3047ad1bb 100755 --- a/test/functional/rpc_fundrawtransaction.py +++ b/test/functional/rpc_fundrawtransaction.py @@ -1,822 +1,822 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from decimal import Decimal from test_framework.messages import CTransaction, FromHex from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_fee_amount, assert_greater_than, assert_greater_than_or_equal, assert_raises_rpc_error, connect_nodes_bi, ) def get_unspent(listunspent, amount): for utx in listunspent: if utx['amount'] == amount: return utx raise AssertionError( 'Could not find unspent with amount={}'.format(amount)) class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 5 self.setup_clean_chain = True self.extra_args = [[], [], [], [], ["-deprecatedrpc=fundrawtransaction"]] def setup_network(self, split=False): self.setup_nodes() connect_nodes_bi(self.nodes[0], self.nodes[1]) connect_nodes_bi(self.nodes[1], self.nodes[2]) connect_nodes_bi(self.nodes[0], self.nodes[2]) connect_nodes_bi(self.nodes[0], self.nodes[3]) connect_nodes_bi(self.nodes[0], self.nodes[4]) def run_test(self): min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee / 1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() # ensure that setting changePosition in fundraw with an exact match is handled properly rawmatch = self.nodes[2].createrawtransaction( [], {self.nodes[2].getnewaddress(): 50}) rawmatch = self.nodes[2].fundrawtransaction( rawmatch, {"changePosition": 1, "subtractFeeFromOutputs": [0]}) assert_equal(rawmatch["changepos"], -1) watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[ 0].getaddressinfo(watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress( watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress( self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[4].getnewaddress(), 5.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.nodes[0].generate(1) self.sync_all() # # simple test # # inputs = [] outputs = {self.nodes[0].getnewaddress(): 1.0} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) # test that we have enough inputs # # simple test with two coins # # inputs = [] outputs = {self.nodes[0].getnewaddress(): 2.2} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) # test if we have enough inputs # # simple test with two coins # # inputs = [] outputs = {self.nodes[0].getnewaddress(): 2.6} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') # # simple test with two outputs # # inputs = [] outputs = { self.nodes[0].getnewaddress(): 2.6, self.nodes[1].getnewaddress(): 2.5} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') # # test a fundrawtransaction with a VIN greater than the required amount # # utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): 1.0} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] # compare vin total and totalout+fee assert_equal(fee + totalOut, utx['amount']) # # test a fundrawtransaction with which will not get a change output # # utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = { self.nodes[0].getnewaddress(): Decimal(5.0) - fee - feeTolerance} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) # compare vin total and totalout+fee # # test a fundrawtransaction with an invalid option # # utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): Decimal(4.0)} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-3, "Unexpected key foo", self.nodes[ 2].fundrawtransaction, rawTx, {'foo': 'bar'}) # # test a fundrawtransaction with an invalid change address # # utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): Decimal(4.0)} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error( -5, "changeAddress must be a valid bitcoin address", self.nodes[2].fundrawtransaction, rawTx, {'changeAddress': 'foobar'}) # # test a fundrawtransaction with a provided change address # # utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): Decimal(4.0)} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) change = self.nodes[2].getnewaddress() assert_raises_rpc_error(-8, "changePosition out of bounds", self.nodes[ 2].fundrawtransaction, rawTx, {'changeAddress': change, 'changePosition': 2}) rawtxfund = self.nodes[2].fundrawtransaction( rawTx, {'changeAddress': change, 'changePosition': 0}) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) out = dec_tx['vout'][0] assert_equal(change, out['scriptPubKey']['addresses'][0]) # # test a fundrawtransaction with a VIN smaller than the required amount # # utx = get_unspent(self.nodes[2].listunspent(), 1) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): 1.0} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawTx = rawTx[:82] + "0100" + rawTx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts += 1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) # # test a fundrawtransaction with two VINs # # utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}, {'txid': utx2['txid'], 'vout': utx2['vout']}] outputs = {self.nodes[0].getnewaddress(): 6.0} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts += 1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns += 1 # we now must see two vins identical to vins given as params assert_equal(matchingIns, 2) # # test a fundrawtransaction with two VINs and two vOUTs # # utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}, {'txid': utx2['txid'], 'vout': utx2['vout']}] outputs = { self.nodes[0].getnewaddress(): 6.0, self.nodes[0].getnewaddress(): 1.0} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts += 1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) # # test a fundrawtransaction with invalid vin # # inputs = [ {'txid': "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout': 0}] # invalid vin! outputs = {self.nodes[0].getnewaddress(): 1.0} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_raises_rpc_error( -4, "Insufficient funds", self.nodes[2].fundrawtransaction, rawTx) # # compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress(): 1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) # create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] # compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) # # # compare fee of a standard pubkeyhash transaction with multiple # outputs inputs = [] outputs = {self.nodes[1].getnewaddress(): 1.1, self.nodes[1].getnewaddress(): 1.2, self.nodes[1].getnewaddress(): 0.1, self.nodes[ 1].getnewaddress(): 1.3, self.nodes[1].getnewaddress(): 0.2, self.nodes[1].getnewaddress(): 0.3} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) # create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] # compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) # # # compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[1].getaddressinfo(addr2) mSigObj = self.nodes[1].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] inputs = [] outputs = {mSigObj: 1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) # create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] # compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) # # # compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[1].getaddressinfo(addr2) addr3Obj = self.nodes[1].getaddressinfo(addr3) addr4Obj = self.nodes[1].getaddressinfo(addr4) addr5Obj = self.nodes[1].getaddressinfo(addr5) mSigObj = self.nodes[1].addmultisigaddress( 4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']])['address'] inputs = [] outputs = {mSigObj: 1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) # create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] # compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) # # # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] - # send 1.2 BTC to msig addr + # send 1.2 BCH to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress(): 1.1} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawTx) signedTx = self.nodes[2].signrawtransactionwithwallet(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal( oldBalance + Decimal('1.10000000'), self.nodes[1].getbalance()) # # locked wallet test self.stop_node(0) self.nodes[1].node_encrypt_wallet("test") self.stop_node(2) self.stop_node(3) self.stop_node(4) self.start_nodes() # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes[0], self.nodes[1]) connect_nodes_bi(self.nodes[1], self.nodes[2]) connect_nodes_bi(self.nodes[0], self.nodes[2]) connect_nodes_bi(self.nodes[0], self.nodes[3]) connect_nodes_bi(self.nodes[0], self.nodes[4]) self.sync_all() # drain the keypool self.nodes[1].getnewaddress() self.nodes[1].getrawchangeaddress() inputs = [] outputs = {self.nodes[0].getnewaddress(): 1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked assert_raises_rpc_error(-4, "Keypool ran out, please call keypoolrefill first", self.nodes[1].fundrawtransaction, rawTx) # refill the keypool self.nodes[1].walletpassphrase("test", 100) # need to refill the keypool to get an internal change address self.nodes[1].keypoolrefill(8) self.nodes[1].walletlock() assert_raises_rpc_error(-13, "walletpassphrase", self.nodes[ 1].sendtoaddress, self.nodes[0].getnewaddress(), 1.2) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress(): 1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) # now we need to unlock self.nodes[1].walletpassphrase("test", 600) signedTx = self.nodes[1].signrawtransactionwithwallet(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal( oldBalance + Decimal('51.10000000'), self.nodes[0].getbalance()) # # multiple (~19) inputs tx test | Compare fee # # # empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress( self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0, 20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() # fund a tx with ~20 small inputs inputs = [] outputs = { self.nodes[0].getnewaddress(): 0.15, self.nodes[0].getnewaddress(): 0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) # create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] # compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance * 19) # ~19 inputs # # multiple (~19) inputs tx test | sign/send # # # again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress( self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0, 20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() # fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = { self.nodes[0].getnewaddress(): 0.15, self.nodes[0].getnewaddress(): 0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) fundedAndSignedTx = self.nodes[1].signrawtransactionwithwallet( fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance + Decimal('50.19000000'), self.nodes[0].getbalance()) # 0.19+block reward # # test fundrawtransaction with OP_RETURN and no vin # # rawTx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawTx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawTx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added # # test a fundrawtransaction using only watchonly # # inputs = [] outputs = {self.nodes[2].getnewaddress(): watchonly_amount / 2} rawTx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction( rawTx, {'includeWatching': True}) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) # # test fundrawtransaction using the entirety of watched funds # # inputs = [] outputs = {self.nodes[2].getnewaddress(): watchonly_amount} rawTx = self.nodes[3].createrawtransaction(inputs, outputs) # Backward compatibility test (2nd param is includeWatching) result = self.nodes[3].fundrawtransaction(rawTx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec[ "vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][ result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransactionwithwallet(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransactionwithwallet(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) self.sync_all() # # Test feeRate option # # # Make sure there is exactly one input so coin selection can't skew the # result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[3].getnewaddress(): 1} rawTx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction( rawTx) # uses min_relay_tx_fee (set by settxfee) result2 = self.nodes[3].fundrawtransaction( rawTx, {"feeRate": 2 * min_relay_tx_fee}) result_fee_rate = result['fee'] * 1000 / \ FromHex(CTransaction(), result['hex']).billable_size() assert_fee_amount( result2['fee'], FromHex(CTransaction(), result2['hex']).billable_size(), 2 * result_fee_rate) result3 = self.nodes[3].fundrawtransaction( rawTx, {"feeRate": 10 * min_relay_tx_fee}) # allow this transaction to be underfunded by 10 bytes. This is due # to the first transaction possibly being overfunded by up to .9 # satoshi due to fee ceilings being used. assert_fee_amount( result3['fee'], FromHex(CTransaction(), result3['hex']).billable_size(), 10 * result_fee_rate, 10) # # DEPRECATED, should be removed in v0.20 # Test address reuse option # # dInputs = [] dOutputs = {self.nodes[4].getnewaddress(): 1} dRawTx = self.nodes[4].createrawtransaction(dInputs, dOutputs) dResult = self.nodes[4].fundrawtransaction( dRawTx, {"reserveChangeKey": False}) res_dec = self.nodes[0].decoderawtransaction(dResult["hex"]) changeaddress = "" for out in res_dec['vout']: if out['value'] > 1.0: changeaddress += out['scriptPubKey']['addresses'][0] assert(changeaddress != "") nextaddr = self.nodes[4].getrawchangeaddress() # frt should not have removed the key from the keypool assert(changeaddress == nextaddr) # # DEPRECATED, should be removed in v0.20 # Test address reuse option does # # throws an rpc error when not deprecated # # assert_raises_rpc_error(-32, "fundrawtransaction -reserveChangeKey " + "is deprecated and will be fully removed " + "in v0.20. To use the -reserveChangeKey " + "option in v0.19, restart bitcoind with " + "-deprecatedrpc=fundrawtransaction.\n" + "Projects should transition to expecting " + "change addresses removed from the keypool " + "before upgrading to v0.20", self.nodes[3].fundrawtransaction, rawTx, {"reserveChangeKey": False}) # # Test no address reuse occurs # # result3 = self.nodes[3].fundrawtransaction(rawTx) res_dec = self.nodes[0].decoderawtransaction(result3["hex"]) changeaddress = "" for out in res_dec['vout']: if out['value'] > 1.0: changeaddress += out['scriptPubKey']['addresses'][0] assert(changeaddress != "") nextaddr = self.nodes[3].getnewaddress() # Now the change address key should be removed from the keypool assert(changeaddress != nextaddr) # # Test subtractFeeFromOutputs option # # # Make sure there is exactly one input so coin selection can't skew the # result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress(): 1} rawTx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawTx), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction( rawTx, {"subtractFeeFromOutputs": []}), # empty subtraction list self.nodes[3].fundrawtransaction( rawTx, {"subtractFeeFromOutputs": [0]}), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction( rawTx, {"feeRate": 2 * min_relay_tx_fee}), self.nodes[3].fundrawtransaction(rawTx, {"feeRate": 2 * min_relay_tx_fee, "subtractFeeFromOutputs": [0]})] dec_tx = [self.nodes[3].decoderawtransaction(tx['hex']) for tx in result] output = [d['vout'][1 - r['changepos']]['value'] for d, r in zip(dec_tx, result)] change = [d['vout'][r['changepos']]['value'] for d, r in zip(dec_tx, result)] assert_equal(result[0]['fee'], result[1]['fee'], result[2]['fee']) assert_equal(result[3]['fee'], result[4]['fee']) assert_equal(change[0], change[1]) assert_equal(output[0], output[1]) assert_equal(output[0], output[2] + result[2]['fee']) assert_equal(change[0] + result[0]['fee'], change[2]) assert_equal(output[3], output[4] + result[4]['fee']) assert_equal(change[3] + result[3]['fee'], change[4]) inputs = [] outputs = { self.nodes[2].getnewaddress(): value for value in (1.0, 1.1, 1.2, 1.3)} rawTx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawTx), # split the fee between outputs 0, 2, and 3, but not output 1 self.nodes[3].fundrawtransaction(rawTx, {"subtractFeeFromOutputs": [0, 2, 3]})] dec_tx = [self.nodes[3].decoderawtransaction(result[0]['hex']), self.nodes[3].decoderawtransaction(result[1]['hex'])] # Nested list of non-change output amounts for each transaction output = [[out['value'] for i, out in enumerate(d['vout']) if i != r['changepos']] for d, r in zip(dec_tx, result)] # List of differences in output amounts between normal and subtractFee # transactions share = [o0 - o1 for o0, o1 in zip(output[0], output[1])] # output 1 is the same in both transactions assert_equal(share[1], 0) # the other 3 outputs are smaller as a result of subtractFeeFromOutputs assert_greater_than(share[0], 0) assert_greater_than(share[2], 0) assert_greater_than(share[3], 0) # outputs 2 and 3 take the same share of the fee assert_equal(share[2], share[3]) # output 0 takes at least as much share of the fee, and no more than 2 # satoshis more, than outputs 2 and 3 assert_greater_than_or_equal(share[0], share[2]) assert_greater_than_or_equal(share[2] + Decimal(2e-8), share[0]) # the fee is the same in both transactions assert_equal(result[0]['fee'], result[1]['fee']) # the total subtracted from the outputs is equal to the fee assert_equal(share[0] + share[2] + share[3], result[0]['fee']) if __name__ == '__main__': RawTransactionsTest().main() diff --git a/test/functional/rpc_rawtransaction.py b/test/functional/rpc_rawtransaction.py index fcbcf5fcf5..44b5b219cf 100755 --- a/test/functional/rpc_rawtransaction.py +++ b/test/functional/rpc_rawtransaction.py @@ -1,480 +1,480 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """rawtranscation RPCs QA test. # Tests the following RPCs: # - createrawtransaction # - signrawtransactionwithwallet # - sendrawtransaction # - decoderawtransaction # - getrawtransaction """ from decimal import Decimal from collections import OrderedDict from io import BytesIO from test_framework.test_framework import BitcoinTestFramework from test_framework.txtools import pad_raw_tx from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, connect_nodes_bi, hex_str_to_bytes, bytes_to_hex_str, ) from test_framework.messages import ( CTransaction, ) class multidict(dict): """Dictionary that allows duplicate keys. Constructed with a list of (key, value) tuples. When dumped by the json module, will output invalid json with repeated keys, eg: >>> json.dumps(multidict([(1,2),(1,2)]) '{"1": 2, "1": 2}' Used to test calls to rpc methods with repeated keys in the json object.""" def __init__(self, x): dict.__init__(self, x) self.x = x def items(self): return self.x # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 def setup_network(self, split=False): super().setup_network() connect_nodes_bi(self.nodes[0], self.nodes[2]) def run_test(self): self.log.info( 'prepare some coins for multiple *rawtransaction commands') self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.sync_all() self.nodes[0].generate(5) self.sync_all() self.log.info( 'Test getrawtransaction on genesis block coinbase returns an error') block = self.nodes[0].getblock(self.nodes[0].getblockhash(0)) assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot']) self.log.info( 'Check parameter types and required parameters of createrawtransaction') # Test `createrawtransaction` required parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction) assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, []) # Test `createrawtransaction` invalid extra parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, 'foo') # Test `createrawtransaction` invalid `inputs` txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000' assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {}) assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{}], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be a number", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {}) assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {}) # Test `createrawtransaction` invalid `outputs` address = self.nodes[0].getnewaddress() address2 = self.nodes[0].getnewaddress() assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo') # Should not throw for backwards compatibility self.nodes[0].createrawtransaction(inputs=[], outputs={}) self.nodes[0].createrawtransaction(inputs=[], outputs=[]) assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'}) assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0}) assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'}) assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1}) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: {}".format( address), self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)])) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: {}".format( address), self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}]) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}]) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']]) # Test `createrawtransaction` invalid `locktime` assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo') assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1) assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296) self.log.info( 'Check that createrawtransaction accepts an array and object as outputs') tx = CTransaction() # One output tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction( inputs=[{'txid': txid, 'vout': 9}], outputs={address: 99})))) assert_equal(len(tx.vout), 1) assert_equal( bytes_to_hex_str(tx.serialize()), self.nodes[2].createrawtransaction( inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}]), ) # Two outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)]))))) assert_equal(len(tx.vout), 2) assert_equal( bytes_to_hex_str(tx.serialize()), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {address: 99}, {address2: 99}]), ) # Two data outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=multidict([('data', '99'), ('data', '99')]))))) assert_equal(len(tx.vout), 2) assert_equal( bytes_to_hex_str(tx.serialize()), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {'data': '99'}, {'data': '99'}]), ) # Multiple mixed outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=multidict([(address, 99), ('data', '99'), ('data', '99')]))))) assert_equal(len(tx.vout), 3) assert_equal( bytes_to_hex_str(tx.serialize()), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {address: 99}, {'data': '99'}, {'data': '99'}]), ) self.log.info('sendrawtransaction with missing input') # won't exists inputs = [ {'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout': 1}] outputs = {self.nodes[0].getnewaddress(): 4.998} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) rawtx = pad_raw_tx(rawtx) rawtx = self.nodes[2].signrawtransactionwithwallet(rawtx) # This will raise an exception since there are missing inputs assert_raises_rpc_error( -25, "Missing inputs", self.nodes[2].sendrawtransaction, rawtx['hex']) ##################################### # getrawtransaction with block hash # ##################################### # make a tx by sending then generate 2 blocks; block1 has the tx in it tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1) block1, block2 = self.nodes[2].generate(2) self.sync_all() # We should be able to get the raw transaction by providing the correct block gottx = self.nodes[0].getrawtransaction(tx, True, block1) assert_equal(gottx['txid'], tx) assert_equal(gottx['in_active_chain'], True) # We should not have the 'in_active_chain' flag when we don't provide a block gottx = self.nodes[0].getrawtransaction(tx, True) assert_equal(gottx['txid'], tx) assert 'in_active_chain' not in gottx # We should not get the tx if we provide an unrelated block assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2) # An invalid block hash should raise the correct errors assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, True) assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, "foobar") assert_raises_rpc_error(-8, "parameter 3 must be of length 64", self.nodes[0].getrawtransaction, tx, True, "abcd1234") assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000") # Undo the blocks and check in_active_chain self.nodes[0].invalidateblock(block1) gottx = self.nodes[0].getrawtransaction( txid=tx, verbose=True, blockhash=block1) assert_equal(gottx['in_active_chain'], False) self.nodes[0].reconsiderblock(block1) assert_equal(self.nodes[0].getbestblockhash(), block2) # # RAW TX MULTISIG TESTS # # # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) # Tests for createmultisig and addmultisigaddress assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"]) # createmultisig can only take public keys self.nodes[0].createmultisig( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here. assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr1])['address'] # use balance deltas instead of absolute values bal = self.nodes[2].getbalance() - # send 1.2 BTC to msig adr + # send 1.2 BCH to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[0].generate(1) self.sync_all() # node2 has both keys of the 2of2 ms addr., tx should affect the # balance assert_equal(self.nodes[2].getbalance(), bal + Decimal('1.20000000')) # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) addr3Obj = self.nodes[2].getaddressinfo(addr3) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address'] txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # THIS IS A INCOMPLETE FEATURE # NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND # COUNT AT BALANCE CALCULATION # for now, assume the funds of a 2of3 multisig tx are not marked as # spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{ "txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "amount": vout['value'], }] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet( rawTx, inputs) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned['complete'], False) rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs) # node2 can sign the tx compl., own two of three keys assert_equal(rawTxSigned['complete'], True) self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal + Decimal( '50.00000000') + Decimal('2.19000000')) # block reward + tx rawTxBlock = self.nodes[0].getblock(self.nodes[0].getbestblockhash()) # 2of2 test for combining transactions bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) self.nodes[1].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObjValid = self.nodes[2].getaddressinfo(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # the funds of a 2of2 multisig tx should not be marked as spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx2['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{"txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey'] ['hex'], "redeemScript": mSigObjValid['hex'], "amount": vout['value']}] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned1) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned['complete'], False) rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned2) # node2 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned2['complete'], False) rawTxComb = self.nodes[2].combinerawtransaction( [rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']]) self.log.debug(rawTxComb) self.nodes[2].sendrawtransaction(rawTxComb) rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance( ), bal+Decimal('50.00000000')+Decimal('2.19000000')) # block reward + tx # getrawtransaction tests # 1. valid parameters - only supply txid txHash = rawTx["hash"] assert_equal( self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal( self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[0].getrawtransaction( txHash, False), rawTxSigned['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to # update this test every time the output format changes. assert_equal(self.nodes[0].getrawtransaction( txHash, 1)["hex"], rawTxSigned['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[0].getrawtransaction( txHash, True)["hex"], rawTxSigned['hex']) # 6. invalid parameters - supply txid and string "Flase" assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, "False") # 7. invalid parameters - supply txid and empty array assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, []) # 8. invalid parameters - supply txid and empty dict assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, {}) # Sanity checks on verbose getrawtransaction output rawTxOutput = self.nodes[0].getrawtransaction(txHash, True) assert_equal(rawTxOutput["hex"], rawTxSigned["hex"]) assert_equal(rawTxOutput["txid"], txHash) assert_equal(rawTxOutput["hash"], txHash) assert_greater_than(rawTxOutput["size"], 300) assert_equal(rawTxOutput["version"], 0x02) assert_equal(rawTxOutput["locktime"], 0) assert_equal(len(rawTxOutput["vin"]), 1) assert_equal(len(rawTxOutput["vout"]), 1) assert_equal(rawTxOutput["blockhash"], rawTxBlock["hash"]) assert_equal(rawTxOutput["confirmations"], 3) assert_equal(rawTxOutput["time"], rawTxBlock["time"]) assert_equal(rawTxOutput["blocktime"], rawTxBlock["time"]) inputs = [ {'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'sequence': 1000}] outputs = {self.nodes[0].getnewaddress(): 1} assert_raises_rpc_error( -8, 'Invalid parameter, missing vout key', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = "1" assert_raises_rpc_error( -8, 'Invalid parameter, vout must be a number', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = -1 assert_raises_rpc_error( -8, 'Invalid parameter, vout must be positive', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = 1 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 1000) # 9. invalid parameters - sequence number out of range inputs[0]['sequence'] = -1 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) # 10. invalid parameters - sequence number out of range inputs[0]['sequence'] = 4294967296 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['sequence'] = 4294967294 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 4294967294) if __name__ == '__main__': RawTransactionsTest().main() diff --git a/test/functional/wallet_abandonconflict.py b/test/functional/wallet_abandonconflict.py index e24ca3ab7f..b848000722 100755 --- a/test/functional/wallet_abandonconflict.py +++ b/test/functional/wallet_abandonconflict.py @@ -1,210 +1,210 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the abandontransaction RPC. The abandontransaction RPC marks a transaction and all its in-wallet descendants as abandoned which allows their inputs to be respent. It can be used to replace "stuck" or evicted transactions. It only works on transactions which are not included in a block and are not currently in the mempool. It has no effect on transactions which are already conflicted or abandoned. """ from decimal import Decimal from test_framework.messages import CTransaction, FromHex from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, disconnect_nodes, satoshi_round, sync_blocks, sync_mempools, ) class AbandonConflictTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.extra_args = [["-minrelaytxfee=0.00001"], []] def run_test(self): def total_fees(*txids): total = 0 for txid in txids: ctx = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid)) total += self.nodes[0].calculate_fee_from_txid(txid) return satoshi_round(total) self.nodes[1].generate(100) sync_blocks(self.nodes) balance = self.nodes[0].getbalance() txA = self.nodes[0].sendtoaddress( self.nodes[0].getnewaddress(), Decimal("10")) txB = self.nodes[0].sendtoaddress( self.nodes[0].getnewaddress(), Decimal("10")) txC = self.nodes[0].sendtoaddress( self.nodes[0].getnewaddress(), Decimal("10")) sync_mempools(self.nodes) self.nodes[1].generate(1) sync_blocks(self.nodes) newbalance = self.nodes[0].getbalance() # no more than fees lost assert(balance - newbalance <= total_fees(txA, txB, txC)) balance = newbalance # Disconnect nodes so node0's transactions don't get into node1's mempool disconnect_nodes(self.nodes[0], self.nodes[1]) # Identify the 10btc outputs nA = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction( txA, 1)["vout"]) if vout["value"] == Decimal("10")) nB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction( txB, 1)["vout"]) if vout["value"] == Decimal("10")) nC = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction( txC, 1)["vout"]) if vout["value"] == Decimal("10")) inputs = [] # spend 10btc outputs from txA and txB inputs.append({"txid": txA, "vout": nA}) inputs.append({"txid": txB, "vout": nB}) outputs = {} outputs[self.nodes[0].getnewaddress()] = Decimal("14.99998") outputs[self.nodes[1].getnewaddress()] = Decimal("5") signed = self.nodes[0].signrawtransactionwithwallet( self.nodes[0].createrawtransaction(inputs, outputs)) txAB1 = self.nodes[0].sendrawtransaction(signed["hex"]) # Identify the 14.99998btc output nAB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction( txAB1, 1)["vout"]) if vout["value"] == Decimal("14.99998")) # Create a child tx spending AB1 and C inputs = [] # Amount 14.99998 BCH inputs.append({"txid": txAB1, "vout": nAB}) # Amount 10 BCH inputs.append({"txid": txC, "vout": nC}) outputs = {} outputs[self.nodes[0].getnewaddress()] = Decimal("24.9996") signed2 = self.nodes[0].signrawtransactionwithwallet( self.nodes[0].createrawtransaction(inputs, outputs)) txABC2 = self.nodes[0].sendrawtransaction(signed2["hex"]) # Create a child tx spending ABC2 signed3_change = Decimal("24.999") inputs = [{"txid": txABC2, "vout": 0}] outputs = {self.nodes[0].getnewaddress(): signed3_change} signed3 = self.nodes[0].signrawtransactionwithwallet( self.nodes[0].createrawtransaction(inputs, outputs)) # note tx is never directly referenced, only abandoned as a child of the above self.nodes[0].sendrawtransaction(signed3["hex"]) # In mempool txs from self should increase balance from change newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("30") + signed3_change) balance = newbalance # Restart the node with a higher min relay fee so the parent tx is no longer in mempool # TODO: redo with eviction self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) # Verify txs no longer in either node's mempool assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) # Transactions which are not in the mempool should only reduce wallet balance. # Transaction inputs should still be spent, but the change not yet received. newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - signed3_change) # Unconfirmed received funds that are not in mempool also shouldn't show # up in unconfirmed balance. Note that the transactions stored in the wallet # are not necessarily in the node's mempool. unconfbalance = self.nodes[0].getunconfirmedbalance( ) + self.nodes[0].getbalance() assert_equal(unconfbalance, newbalance) # Unconfirmed transactions which are not in the mempool should also # not be in listunspent assert(not txABC2 in [utxo["txid"] for utxo in self.nodes[0].listunspent(0)]) balance = newbalance # Abandon original transaction and verify inputs are available again # including that the child tx was also abandoned self.nodes[0].abandontransaction(txAB1) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance + Decimal("30")) balance = newbalance # Verify that even with a low min relay fee, the tx is not re-accepted # from wallet on startup once abandoned. self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.00001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(self.nodes[0].getbalance(), balance) # If the transaction is re-sent the wallet also unabandons it. The # change should be available, and it's child transaction should remain # abandoned. # NOTE: Abandoned transactions are internal to the wallet, and tracked # separately from other indices. self.nodes[0].sendrawtransaction(signed["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("20") + Decimal("14.99998")) balance = newbalance # Send child tx again so it is not longer abandoned. self.nodes[0].sendrawtransaction(signed2["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("10") - Decimal("14.99998") + Decimal("24.9996")) balance = newbalance # Reset to a higher relay fee so that we abandon a transaction self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("24.9996")) balance = newbalance # Create a double spend of AB1. Spend it again from only A's 10 output. # Mine double spend from node 1. inputs = [] inputs.append({"txid": txA, "vout": nA}) outputs = {} outputs[self.nodes[1].getnewaddress()] = Decimal("9.9999") tx = self.nodes[0].createrawtransaction(inputs, outputs) signed = self.nodes[0].signrawtransactionwithwallet(tx) self.nodes[1].sendrawtransaction(signed["hex"]) self.nodes[1].generate(1) connect_nodes(self.nodes[0], self.nodes[1]) sync_blocks(self.nodes) - # Verify that B and C's 10 BTC outputs are available for spending again because AB1 is now conflicted + # Verify that B and C's 10 BCH outputs are available for spending again because AB1 is now conflicted newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance + Decimal("20")) balance = newbalance # There is currently a minor bug around this and so this test doesn't work. See Issue #7315 - # Invalidate the block with the double spend and B's 10 BTC output should no longer be available + # Invalidate the block with the double spend and B's 10 BCH output should no longer be available # Don't think C's should either self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) newbalance = self.nodes[0].getbalance() #assert_equal(newbalance, balance - Decimal("10")) self.log.info( "If balance has not declined after invalidateblock then out of mempool wallet tx which is no longer") self.log.info( "conflicted has not resumed causing its inputs to be seen as spent. See Issue #7315") self.log.info(str(balance) + " -> " + str(newbalance) + " ?") if __name__ == '__main__': AbandonConflictTest().main() diff --git a/test/functional/wallet_basic.py b/test/functional/wallet_basic.py index 7cb9108681..06886dafa1 100755 --- a/test/functional/wallet_basic.py +++ b/test/functional/wallet_basic.py @@ -1,495 +1,495 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet.""" from decimal import Decimal import time from test_framework.messages import FromHex, CTransaction from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_array_result, assert_equal, assert_fee_amount, assert_raises_rpc_error, connect_nodes_bi, count_bytes, sync_blocks, sync_mempools, ) class WalletTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True def setup_network(self): self.add_nodes(4) self.start_node(0) self.start_node(1) self.start_node(2) connect_nodes_bi(self.nodes[0], self.nodes[1]) connect_nodes_bi(self.nodes[1], self.nodes[2]) connect_nodes_bi(self.nodes[0], self.nodes[2]) self.sync_all([self.nodes[0:3]]) def check_fee_amount(self, curr_balance, balance_with_fee, fee_per_byte, tx_size): """Return curr_balance after asserting the fee was in range""" fee = balance_with_fee - curr_balance assert_fee_amount(fee, tx_size, fee_per_byte * 1000) return curr_balance def run_test(self): # Check that there's no UTXO on none of the nodes assert_equal(len(self.nodes[0].listunspent()), 0) assert_equal(len(self.nodes[1].listunspent()), 0) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("Mining blocks...") self.nodes[0].generate(1) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 50) assert_equal(walletinfo['balance'], 0) self.sync_all([self.nodes[0:3]]) self.nodes[1].generate(101) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 0) # Check that only first and second nodes have UTXOs utxos = self.nodes[0].listunspent() assert_equal(len(utxos), 1) assert_equal(len(self.nodes[1].listunspent()), 1) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("test gettxout") confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"] # First, outputs that are unspent both in the chain and in the # mempool should appear with or without include_mempool txout = self.nodes[0].gettxout( txid=confirmed_txid, n=confirmed_index, include_mempool=False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout( txid=confirmed_txid, n=confirmed_index, include_mempool=True) assert_equal(txout['value'], 50) - # Send 21 BTC from 0 to 2 using sendtoaddress call. + # Send 21 BCH from 0 to 2 using sendtoaddress call. # Locked memory should use at least 32 bytes to sign each transaction self.log.info("test getmemoryinfo") memory_before = self.nodes[0].getmemoryinfo() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11) mempool_txid = self.nodes[0].sendtoaddress( self.nodes[2].getnewaddress(), 10) memory_after = self.nodes[0].getmemoryinfo() assert(memory_before['locked']['used'] + 64 <= memory_after['locked']['used']) self.log.info("test gettxout (second part)") # utxo spent in mempool should be visible if you exclude mempool # but invisible if you include mempool txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True) assert txout is None # new utxo from mempool should be invisible if you exclude mempool # but visible if you include mempool txout = self.nodes[0].gettxout(mempool_txid, 0, False) assert txout is None txout1 = self.nodes[0].gettxout(mempool_txid, 0, True) txout2 = self.nodes[0].gettxout(mempool_txid, 1, True) # note the mempool tx will have randomly assigned indices # but 10 will go to node2 and the rest will go to node0 balance = self.nodes[0].getbalance() assert_equal(set([txout1['value'], txout2['value']]), set([10, balance])) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 0) # Have node0 mine a block, thus it will collect its own fee. self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # Exercise locking of unspent outputs unspent_0 = self.nodes[2].listunspent()[0] unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]} self.nodes[2].lockunspent(False, [unspent_0]) assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20) assert_equal([unspent_0], self.nodes[2].listlockunspent()) self.nodes[2].lockunspent(True, [unspent_0]) assert_equal(len(self.nodes[2].listlockunspent()), 0) # Have node1 generate 100 blocks (so node0 can recover the fee) self.nodes[1].generate(100) self.sync_all([self.nodes[0:3]]) # node0 should end up with 100 btc in block rewards plus fees, but # minus the 21 plus fees sent to node2 assert_equal(self.nodes[0].getbalance(), 100 - 21) assert_equal(self.nodes[2].getbalance(), 21) # Node0 should have two unspent outputs. # Create a couple of transactions to send them to node2, submit them through # node1, and make sure both node0 and node2 pick them up properly: node0utxos = self.nodes[0].listunspent(1) assert_equal(len(node0utxos), 2) # create both transactions txns_to_send = [] for utxo in node0utxos: inputs = [] outputs = {} inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]}) outputs[self.nodes[2].getnewaddress("from1")] = utxo["amount"] - 3 raw_tx = self.nodes[0].createrawtransaction(inputs, outputs) txns_to_send.append( self.nodes[0].signrawtransactionwithwallet(raw_tx)) # Have node 1 (miner) send the transactions self.nodes[1].sendrawtransaction(txns_to_send[0]["hex"], True) self.nodes[1].sendrawtransaction(txns_to_send[1]["hex"], True) # Have node1 mine a block to confirm transactions: self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 94) assert_equal(self.nodes[2].getbalance("from1"), 94 - 21) - # Send 10 BTC normal + # Send 10 BCH normal old_balance = self.nodes[2].getbalance() address = self.nodes[0].getnewaddress("test") fee_per_byte = Decimal('0.001') / 1000 self.nodes[2].settxfee(fee_per_byte * 1000) txid = self.nodes[2].sendtoaddress(address, 10, "", "", False) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) ctx = FromHex(CTransaction(), self.nodes[2].getrawtransaction(txid)) node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), old_balance - Decimal('10'), fee_per_byte, ctx.billable_size()) assert_equal(self.nodes[0].getbalance(), Decimal('10')) - # Send 10 BTC with subtract fee from amount + # Send 10 BCH with subtract fee from amount txid = self.nodes[2].sendtoaddress(address, 10, "", "", True) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal( '20'), fee_per_byte, count_bytes(self.nodes[2].getrawtransaction(txid))) - # Sendmany 10 BTC + # Sendmany 10 BCH txid = self.nodes[2].sendmany('from1', {address: 10}, 0, "", []) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_0_bal += Decimal('10') ctx = FromHex(CTransaction(), self.nodes[2].getrawtransaction(txid)) node_2_bal = self.check_fee_amount(self.nodes[2].getbalance( ), node_2_bal - Decimal('10'), fee_per_byte, ctx.billable_size()) assert_equal(self.nodes[0].getbalance(), node_0_bal) - # Sendmany 10 BTC with subtract fee from amount + # Sendmany 10 BCH with subtract fee from amount txid = self.nodes[2].sendmany('from1', {address: 10}, 0, "", [address]) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) ctx = FromHex(CTransaction(), self.nodes[2].getrawtransaction(txid)) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance( ), node_0_bal + Decimal('10'), fee_per_byte, ctx.billable_size()) # Test ResendWalletTransactions: # Create a couple of transactions, then start up a fourth # node (nodes[3]) and ask nodes[0] to rebroadcast. # EXPECT: nodes[3] should have those transactions in its mempool. txid1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) txid2 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1) sync_mempools(self.nodes[0:2]) self.start_node(3) connect_nodes_bi(self.nodes[0], self.nodes[3]) sync_blocks(self.nodes) relayed = self.nodes[0].resendwallettransactions() assert_equal(set(relayed), {txid1, txid2}) sync_mempools(self.nodes) assert(txid1 in self.nodes[3].getrawmempool()) # Exercise balance rpcs assert_equal(self.nodes[0].getwalletinfo()["unconfirmed_balance"], 1) assert_equal(self.nodes[0].getunconfirmedbalance(), 1) # check if we can list zero value tx as available coins # 1. create rawtx # 2. hex-changed one output to 0.0 # 3. sign and send # 4. check if recipient (node0) can list the zero value tx usp = self.nodes[1].listunspent() inputs = [{"txid": usp[0]['txid'], "vout":usp[0]['vout']}] outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11} rawTx = self.nodes[1].createrawtransaction(inputs, outputs).replace( "c0833842", "00000000") # replace 11.11 with 0.0 (int32) decRawTx = self.nodes[1].decoderawtransaction(rawTx) signedRawTx = self.nodes[1].signrawtransactionwithwallet(rawTx) decRawTx = self.nodes[1].decoderawtransaction(signedRawTx['hex']) zeroValueTxid = decRawTx['txid'] self.nodes[1].sendrawtransaction(signedRawTx['hex']) self.sync_all() self.nodes[1].generate(1) # mine a block self.sync_all() # zero value tx must be in listunspents output unspentTxs = self.nodes[0].listunspent() found = False for uTx in unspentTxs: if uTx['txid'] == zeroValueTxid: found = True assert_equal(uTx['amount'], Decimal('0')) assert(found) # do some -walletbroadcast tests self.stop_nodes() self.start_node(0, ["-walletbroadcast=0"]) self.start_node(1, ["-walletbroadcast=0"]) self.start_node(2, ["-walletbroadcast=0"]) connect_nodes_bi(self.nodes[0], self.nodes[1]) connect_nodes_bi(self.nodes[1], self.nodes[2]) connect_nodes_bi(self.nodes[0], self.nodes[2]) self.sync_all([self.nodes[0:3]]) txIdNotBroadcasted = self.nodes[0].sendtoaddress( self.nodes[2].getnewaddress(), 2) txObjNotBroadcasted = self.nodes[0].gettransaction(txIdNotBroadcasted) self.nodes[1].generate(1) # mine a block, tx should not be in there self.sync_all([self.nodes[0:3]]) # should not be changed because tx was not broadcasted assert_equal(self.nodes[2].getbalance(), node_2_bal) # now broadcast from another node, mine a block, sync, and check the balance self.nodes[1].sendrawtransaction(txObjNotBroadcasted['hex']) self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal += 2 txObjNotBroadcasted = self.nodes[0].gettransaction(txIdNotBroadcasted) assert_equal(self.nodes[2].getbalance(), node_2_bal) # create another tx txIdNotBroadcasted = self.nodes[0].sendtoaddress( self.nodes[2].getnewaddress(), 2) # restart the nodes with -walletbroadcast=1 self.stop_nodes() self.start_node(0) self.start_node(1) self.start_node(2) connect_nodes_bi(self.nodes[0], self.nodes[1]) connect_nodes_bi(self.nodes[1], self.nodes[2]) connect_nodes_bi(self.nodes[0], self.nodes[2]) sync_blocks(self.nodes[0:3]) self.nodes[0].generate(1) sync_blocks(self.nodes[0:3]) node_2_bal += 2 # tx should be added to balance because after restarting the nodes tx should be broadcasted assert_equal(self.nodes[2].getbalance(), node_2_bal) # send a tx with value in a string (PR#6380 +) txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2") txObj = self.nodes[0].gettransaction(txId) assert_equal(txObj['amount'], Decimal('-2')) txId = self.nodes[0].sendtoaddress( self.nodes[2].getnewaddress(), "0.0001") txObj = self.nodes[0].gettransaction(txId) assert_equal(txObj['amount'], Decimal('-0.0001')) # check if JSON parser can handle scientific notation in strings txId = self.nodes[0].sendtoaddress( self.nodes[2].getnewaddress(), "1e-4") txObj = self.nodes[0].gettransaction(txId) assert_equal(txObj['amount'], Decimal('-0.0001')) # This will raise an exception because the amount type is wrong assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4") # This will raise an exception since generate does not accept a string assert_raises_rpc_error(-1, "not an integer", self.nodes[0].generate, "2") # Import address and private key to check correct behavior of spendable unspents # 1. Send some coins to generate new UTXO address_to_import = self.nodes[2].getnewaddress() txid = self.nodes[0].sendtoaddress(address_to_import, 1) self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # 2. Import address from node2 to node1 self.nodes[1].importaddress(address_to_import) # 3. Validate that the imported address is watch-only on node1 assert(self.nodes[1].getaddressinfo(address_to_import)["iswatchonly"]) # 4. Check that the unspents after import are not spendable assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": False}) # 5. Import private key of the previously imported address on node1 priv_key = self.nodes[2].dumpprivkey(address_to_import) self.nodes[1].importprivkey(priv_key) # 6. Check that the unspents are now spendable on node1 assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": True}) # Mine a block from node0 to an address from node1 cbAddr = self.nodes[1].getnewaddress() blkHash = self.nodes[0].generatetoaddress(1, cbAddr)[0] cbTxId = self.nodes[0].getblock(blkHash)['tx'][0] self.sync_all([self.nodes[0:3]]) # Check that the txid and balance is found by node1 self.nodes[1].gettransaction(cbTxId) # check if wallet or blockchain maintenance changes the balance self.sync_all([self.nodes[0:3]]) blocks = self.nodes[0].generate(2) self.sync_all([self.nodes[0:3]]) balance_nodes = [self.nodes[i].getbalance() for i in range(3)] block_count = self.nodes[0].getblockcount() # Check modes: # - True: unicode escaped as \u.... # - False: unicode directly as UTF-8 for mode in [True, False]: self.nodes[0].ensure_ascii = mode # unicode check: Basic Multilingual Plane, Supplementary Plane respectively for s in [u'рыба', u'𝅘𝅥𝅯']: addr = self.nodes[0].getaccountaddress(s) label = self.nodes[0].getaccount(addr) assert_equal(label, s) assert(s in self.nodes[0].listaccounts().keys()) self.nodes[0].ensure_ascii = True # restore to default # maintenance tests maintenance = [ '-rescan', '-reindex', '-zapwallettxes=1', '-zapwallettxes=2', # disabled until issue is fixed: https://github.com/bitcoin/bitcoin/issues/7463 # '-salvagewallet', ] chainlimit = 6 for m in maintenance: self.log.info("check " + m) self.stop_nodes() # set lower ancestor limit for later self.start_node(0, [m, "-limitancestorcount=" + str(chainlimit)]) self.start_node(1, [m, "-limitancestorcount=" + str(chainlimit)]) self.start_node(2, [m, "-limitancestorcount=" + str(chainlimit)]) while m == '-reindex' and [block_count] * 3 != [self.nodes[i].getblockcount() for i in range(3)]: # reindex will leave rpc warm up "early"; Wait for it to finish time.sleep(0.1) assert_equal(balance_nodes, [ self.nodes[i].getbalance() for i in range(3)]) # Exercise listsinceblock with the last two blocks coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0]) assert_equal(coinbase_tx_1["lastblock"], blocks[1]) assert_equal(len(coinbase_tx_1["transactions"]), 1) assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1]) assert_equal(len(self.nodes[0].listsinceblock( blocks[1])["transactions"]), 0) # ==Check that wallet prefers to use coins that don't exceed mempool limits ===== # Get all non-zero utxos together chain_addrs = [self.nodes[0].getnewaddress( ), self.nodes[0].getnewaddress()] singletxid = self.nodes[0].sendtoaddress( chain_addrs[0], self.nodes[0].getbalance(), "", "", True) self.nodes[0].generate(1) node0_balance = self.nodes[0].getbalance() # Split into two chains rawtx = self.nodes[0].createrawtransaction([{"txid": singletxid, "vout": 0}], { chain_addrs[0]: node0_balance / 2 - Decimal('0.01'), chain_addrs[1]: node0_balance / 2 - Decimal('0.01')}) signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx) singletxid = self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) # Make a long chain of unconfirmed payments without hitting mempool limit # Each tx we make leaves only one output of change on a chain 1 longer # Since the amount to send is always much less than the outputs, we only ever need one output # So we should be able to generate exactly chainlimit txs for each original output sending_addr = self.nodes[1].getnewaddress() txid_list = [] for i in range(chainlimit * 2): txid_list.append(self.nodes[0].sendtoaddress( sending_addr, Decimal('0.0001'))) assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit * 2) assert_equal(len(txid_list), chainlimit * 2) # Without walletrejectlongchains, we will still generate a txid # The tx will be stored in the wallet but not accepted to the mempool extra_txid = self.nodes[0].sendtoaddress( sending_addr, Decimal('0.0001')) assert(extra_txid not in self.nodes[0].getrawmempool()) assert(extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()]) self.nodes[0].abandontransaction(extra_txid) total_txs = len(self.nodes[0].listtransactions("*", 99999)) # Try with walletrejectlongchains # Double chain limit but require combining inputs, so we pass SelectCoinsMinConf self.stop_node(0) self.start_node(0, extra_args=[ "-walletrejectlongchains", "-limitancestorcount=" + str(2 * chainlimit)]) # wait for loadmempool timeout = 10 while (timeout > 0 and len(self.nodes[0].getrawmempool()) < chainlimit * 2): time.sleep(0.5) timeout -= 0.5 assert_equal(len(self.nodes[0].getrawmempool()), chainlimit * 2) node0_balance = self.nodes[0].getbalance() # With walletrejectlongchains we will not create the tx and store it in our wallet. assert_raises_rpc_error(-4, "Transaction has too long of a mempool chain", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01')) # Verify nothing new in wallet assert_equal(total_txs, len( self.nodes[0].listtransactions("*", 99999))) # Test getaddressinfo. Note that these addresses are taken from disablewallet.py assert_raises_rpc_error(-5, "Invalid address", self.nodes[0].getaddressinfo, "3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy") address_info = self.nodes[0].getaddressinfo( "mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ") assert_equal(address_info['address'], "bchreg:qp8rs4qyd3aazk22eyzwg7fmdfzmxm02pywavdajx4") assert_equal(address_info["scriptPubKey"], "76a9144e3854046c7bd1594ac904e4793b6a45b36dea0988ac") assert not address_info["ismine"] assert not address_info["iswatchonly"] assert not address_info["isscript"] if __name__ == '__main__': WalletTest().main() diff --git a/test/functional/wallet_import_rescan.py b/test/functional/wallet_import_rescan.py index b4799d1443..1986fc3c01 100755 --- a/test/functional/wallet_import_rescan.py +++ b/test/functional/wallet_import_rescan.py @@ -1,204 +1,204 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Test rescan behavior of importaddress, importpubkey, importprivkey, and importmulti RPCs with different types of keys and rescan options. In the first part of the test, node 0 creates an address for each type of -import RPC call and node 0 sends BTC to it. Then other nodes import the +import RPC call and node 0 sends BCH to it. Then other nodes import the addresses, and the test makes listtransactions and getbalance calls to confirm that the importing node either did or did not execute rescans picking up the send transactions. -In the second part of the test, node 0 sends more BTC to each address, and the +In the second part of the test, node 0 sends more BCH to each address, and the test makes more listtransactions and getbalance calls to confirm that the importing nodes pick up the new transactions regardless of whether rescans happened previously. ''' import collections import enum import itertools from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, connect_nodes, set_node_times, sync_blocks, ) Call = enum.Enum("Call", "single multi") Data = enum.Enum("Data", "address pub priv") Rescan = enum.Enum("Rescan", "no yes late_timestamp") class Variant(collections.namedtuple("Variant", "call data rescan prune")): """Helper for importing one key and verifying scanned transactions.""" def try_rpc(self, func, *args, **kwargs): if self.expect_disabled: assert_raises_rpc_error(-4, "Rescan is disabled in pruned mode", func, *args, **kwargs) else: return func(*args, **kwargs) def do_import(self, timestamp): """Call one key import RPC.""" if self.call == Call.single: if self.data == Data.address: response = self.try_rpc(self.node.importaddress, self.address["address"], self.label, self.rescan == Rescan.yes) elif self.data == Data.pub: response = self.try_rpc(self.node.importpubkey, self.address["pubkey"], self.label, self.rescan == Rescan.yes) elif self.data == Data.priv: response = self.try_rpc( self.node.importprivkey, self.key, self.label, self.rescan == Rescan.yes) assert_equal(response, None) elif self.call == Call.multi: response = self.node.importmulti([{ "scriptPubKey": { "address": self.address["address"] }, "timestamp": timestamp + TIMESTAMP_WINDOW + (1 if self.rescan == Rescan.late_timestamp else 0), "pubkeys": [self.address["pubkey"]] if self.data == Data.pub else [], "keys": [self.key] if self.data == Data.priv else [], "label": self.label, "watchonly": self.data != Data.priv }], {"rescan": self.rescan in (Rescan.yes, Rescan.late_timestamp)}) assert_equal(response, [{"success": True}]) def check(self, txid=None, amount=None, confirmations=None): """Verify that getbalance/listtransactions return expected values.""" balance = self.node.getbalance(self.label, 0, True) assert_equal(balance, self.expected_balance) txs = self.node.listtransactions(self.label, 10000, 0, True) assert_equal(len(txs), self.expected_txs) if txid is not None: tx, = [tx for tx in txs if tx["txid"] == txid] assert_equal(tx["label"], self.label) assert_equal(tx["address"], self.address["address"]) assert_equal(tx["amount"], amount) assert_equal(tx["category"], "receive") assert_equal(tx["label"], self.label) assert_equal(tx["txid"], txid) assert_equal(tx["confirmations"], confirmations) assert_equal("trusted" not in tx, True) # Verify the transaction is correctly marked watchonly depending on # whether the transaction pays to an imported public key or # imported private key. The test setup ensures that transaction # inputs will not be from watchonly keys (important because # involvesWatchonly will be true if either the transaction output # or inputs are watchonly). if self.data != Data.priv: assert_equal(tx["involvesWatchonly"], True) else: assert_equal("involvesWatchonly" not in tx, True) # List of Variants for each way a key or address could be imported. IMPORT_VARIANTS = [Variant(*variants) for variants in itertools.product(Call, Data, Rescan, (False, True))] # List of nodes to import keys to. Half the nodes will have pruning disabled, # half will have it enabled. Different nodes will be used for imports that are # expected to cause rescans, and imports that are not expected to cause # rescans, in order to prevent rescans during later imports picking up # transactions associated with earlier imports. This makes it easier to keep # track of expected balances and transactions. ImportNode = collections.namedtuple("ImportNode", "prune rescan") IMPORT_NODES = [ImportNode(*fields) for fields in itertools.product((False, True), repeat=2)] # Rescans start at the earliest block up to 2 hours before the key timestamp. TIMESTAMP_WINDOW = 2 * 60 * 60 class ImportRescanTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 + len(IMPORT_NODES) def setup_network(self): extra_args = [[] for _ in range(self.num_nodes)] for i, import_node in enumerate(IMPORT_NODES, 2): if import_node.prune: extra_args[i] += ["-prune=1"] self.add_nodes(self.num_nodes, extra_args=extra_args) self.start_nodes() for i in range(1, self.num_nodes): connect_nodes(self.nodes[i], self.nodes[0]) def run_test(self): # Create one transaction on node 0 with a unique amount and label for # each possible type of wallet import RPC. for i, variant in enumerate(IMPORT_VARIANTS): variant.label = "label {} {}".format(i, variant) variant.address = self.nodes[1].getaddressinfo( self.nodes[1].getnewaddress(variant.label)) variant.key = self.nodes[1].dumpprivkey(variant.address["address"]) variant.initial_amount = 10 - (i + 1) / 4.0 variant.initial_txid = self.nodes[0].sendtoaddress( variant.address["address"], variant.initial_amount) # Generate a block containing the initial transactions, then another # block further in the future (past the rescan window). self.nodes[0].generate(1) assert_equal(self.nodes[0].getrawmempool(), []) timestamp = self.nodes[0].getblockheader( self.nodes[0].getbestblockhash())["time"] set_node_times(self.nodes, timestamp + TIMESTAMP_WINDOW + 1) self.nodes[0].generate(1) sync_blocks(self.nodes) # For each variation of wallet key import, invoke the import RPC and # check the results from getbalance and listtransactions. for variant in IMPORT_VARIANTS: variant.expect_disabled = variant.rescan == Rescan.yes and variant.prune and variant.call == Call.single expect_rescan = variant.rescan == Rescan.yes and not variant.expect_disabled variant.node = self.nodes[ 2 + IMPORT_NODES.index(ImportNode(variant.prune, expect_rescan))] variant.do_import(timestamp) if expect_rescan: variant.expected_balance = variant.initial_amount variant.expected_txs = 1 variant.check(variant.initial_txid, variant.initial_amount, 2) else: variant.expected_balance = 0 variant.expected_txs = 0 variant.check() # Create new transactions sending to each address. for i, variant in enumerate(IMPORT_VARIANTS): variant.sent_amount = 10 - (2 * i + 1) / 8.0 variant.sent_txid = self.nodes[0].sendtoaddress( variant.address["address"], variant.sent_amount) # Generate a block containing the new transactions. self.nodes[0].generate(1) assert_equal(self.nodes[0].getrawmempool(), []) sync_blocks(self.nodes) # Check the latest results from getbalance and listtransactions. for variant in IMPORT_VARIANTS: if not variant.expect_disabled: variant.expected_balance += variant.sent_amount variant.expected_txs += 1 variant.check(variant.sent_txid, variant.sent_amount, 1) else: variant.check() if __name__ == "__main__": ImportRescanTest().main() diff --git a/test/functional/wallet_txn_clone.py b/test/functional/wallet_txn_clone.py index 1f7cd1e207..cd05e4d877 100755 --- a/test/functional/wallet_txn_clone.py +++ b/test/functional/wallet_txn_clone.py @@ -1,178 +1,178 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet accounts properly when there are cloned transactions with malleated scriptsigs.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, disconnect_nodes, sync_blocks, ) class TxnMallTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.extra_args = [["-noparkdeepreorg"], ["-noparkdeepreorg"], [], []] def add_options(self, parser): parser.add_argument("--mineblock", dest="mine_block", default=False, action="store_true", help="Test double-spend of 1-confirmed transaction") def setup_network(self): # Start with split network: super(TxnMallTest, self).setup_network() disconnect_nodes(self.nodes[1], self.nodes[2]) disconnect_nodes(self.nodes[2], self.nodes[1]) def run_test(self): output_type = "legacy" - # All nodes should start with 1,250 BTC: + # All nodes should start with 1,250 BCH: starting_balance = 1250 for i in range(4): assert_equal(self.nodes[i].getbalance(), starting_balance) # bug workaround, coins generated assigned to first getnewaddress! self.nodes[i].getnewaddress("") # Assign coins to foo and bar accounts: self.nodes[0].settxfee(.001) node0_address_foo = self.nodes[0].getnewaddress("foo", output_type) fund_foo_txid = self.nodes[0].sendfrom("", node0_address_foo, 1219) fund_foo_tx = self.nodes[0].gettransaction(fund_foo_txid) node0_address_bar = self.nodes[0].getnewaddress("bar", output_type) fund_bar_txid = self.nodes[0].sendfrom("", node0_address_bar, 29) fund_bar_tx = self.nodes[0].gettransaction(fund_bar_txid) assert_equal(self.nodes[0].getbalance(""), starting_balance - 1219 - 29 + fund_foo_tx["fee"] + fund_bar_tx["fee"]) # Coins are sent to node1_address node1_address = self.nodes[1].getnewaddress("from0") # Send tx1, and another transaction tx2 that won't be cloned txid1 = self.nodes[0].sendfrom("foo", node1_address, 40, 0) txid2 = self.nodes[0].sendfrom("bar", node1_address, 20, 0) # Construct a clone of tx1, to be malleated rawtx1 = self.nodes[0].getrawtransaction(txid1, 1) clone_inputs = [{"txid": rawtx1["vin"][0] ["txid"], "vout":rawtx1["vin"][0]["vout"]}] clone_outputs = {rawtx1["vout"][0]["scriptPubKey"]["addresses"][0]: rawtx1["vout"][0]["value"], rawtx1["vout"][1]["scriptPubKey"]["addresses"][0]: rawtx1["vout"][1]["value"]} clone_locktime = rawtx1["locktime"] clone_raw = self.nodes[0].createrawtransaction( clone_inputs, clone_outputs, clone_locktime) # createrawtransaction randomizes the order of its outputs, so swap them if necessary. # output 0 is at version+#inputs+input+sigstub+sequence+#outputs - # 40 BTC serialized is 00286bee00000000 + # 40 BCH serialized is 00286bee00000000 pos0 = 2 * (4 + 1 + 36 + 1 + 4 + 1) hex40 = "00286bee00000000" output_len = 16 + 2 + 2 * \ int("0x" + clone_raw[pos0 + 16: pos0 + 16 + 2], 0) if (rawtx1["vout"][0]["value"] == 40 and clone_raw[pos0: pos0 + 16] != hex40 or rawtx1["vout"][0]["value"] != 40 and clone_raw[pos0: pos0 + 16] == hex40): output0 = clone_raw[pos0: pos0 + output_len] output1 = clone_raw[pos0 + output_len: pos0 + 2 * output_len] clone_raw = clone_raw[:pos0] + output1 + \ output0 + clone_raw[pos0 + 2 * output_len:] # Use a different signature hash type to sign. This creates an equivalent but malleated clone. # Don't send the clone anywhere yet tx1_clone = self.nodes[0].signrawtransactionwithwallet( clone_raw, None, "ALL|FORKID|ANYONECANPAY") assert_equal(tx1_clone["complete"], True) # Have node0 mine a block, if requested: if (self.options.mine_block): self.nodes[0].generate(1) sync_blocks(self.nodes[0:2]) tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Node0's balance should be starting balance, plus 50BTC for another # matured block, minus tx1 and tx2 amounts, and minus transaction fees: expected = starting_balance + fund_foo_tx["fee"] + fund_bar_tx["fee"] if self.options.mine_block: expected += 50 expected += tx1["amount"] + tx1["fee"] expected += tx2["amount"] + tx2["fee"] assert_equal(self.nodes[0].getbalance(), expected) # foo and bar accounts should be debited: assert_equal(self.nodes[0].getbalance("foo", 0), 1219 + tx1["amount"] + tx1["fee"]) assert_equal(self.nodes[0].getbalance("bar", 0), 29 + tx2["amount"] + tx2["fee"]) if self.options.mine_block: assert_equal(tx1["confirmations"], 1) assert_equal(tx2["confirmations"], 1) # Node1's "from0" balance should be both transaction amounts: assert_equal(self.nodes[1].getbalance( "from0"), -(tx1["amount"] + tx2["amount"])) else: assert_equal(tx1["confirmations"], 0) assert_equal(tx2["confirmations"], 0) # Send clone and its parent to miner self.nodes[2].sendrawtransaction(fund_foo_tx["hex"]) txid1_clone = self.nodes[2].sendrawtransaction(tx1_clone["hex"]) # ... mine a block... self.nodes[2].generate(1) # Reconnect the split network, and sync chain: connect_nodes(self.nodes[1], self.nodes[2]) self.nodes[2].sendrawtransaction(fund_bar_tx["hex"]) self.nodes[2].sendrawtransaction(tx2["hex"]) self.nodes[2].generate(1) # Mine another block to make sure we sync sync_blocks(self.nodes) # Re-fetch transaction info: tx1 = self.nodes[0].gettransaction(txid1) tx1_clone = self.nodes[0].gettransaction(txid1_clone) tx2 = self.nodes[0].gettransaction(txid2) # Verify expected confirmations assert_equal(tx1["confirmations"], -2) assert_equal(tx1_clone["confirmations"], 2) assert_equal(tx2["confirmations"], 1) - # Check node0's total balance; should be same as before the clone, + 100 BTC for 2 matured, + # Check node0's total balance; should be same as before the clone, + 100 BCH for 2 matured, # less possible orphaned matured subsidy expected += 100 if (self.options.mine_block): expected -= 50 assert_equal(self.nodes[0].getbalance(), expected) assert_equal(self.nodes[0].getbalance("*", 0), expected) # Check node0's individual account balances. # "foo" should have been debited by the equivalent clone of tx1 assert_equal(self.nodes[0].getbalance("foo"), 1219 + tx1["amount"] + tx1["fee"]) # "bar" should have been debited by (possibly unconfirmed) tx2 assert_equal(self.nodes[0].getbalance("bar", 0), 29 + tx2["amount"] + tx2["fee"]) # "" should have starting balance, less funding txes, plus subsidies assert_equal(self.nodes[0].getbalance("", 0), starting_balance - 1219 + fund_foo_tx["fee"] - 29 + fund_bar_tx["fee"] + 100) # Node1's "from0" account balance assert_equal(self.nodes[1].getbalance( "from0", 0), -(tx1["amount"] + tx2["amount"])) if __name__ == '__main__': TxnMallTest().main() diff --git a/test/functional/wallet_txn_doublespend.py b/test/functional/wallet_txn_doublespend.py index 6795119827..99dfd6daf9 100755 --- a/test/functional/wallet_txn_doublespend.py +++ b/test/functional/wallet_txn_doublespend.py @@ -1,159 +1,159 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet accounts properly when there is a double-spend conflict.""" from decimal import Decimal from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, disconnect_nodes, find_output, sync_blocks, ) class TxnMallTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.extra_args = [["-noparkdeepreorg"], ["-noparkdeepreorg"], [], []] def add_options(self, parser): parser.add_argument("--mineblock", dest="mine_block", default=False, action="store_true", help="Test double-spend of 1-confirmed transaction") def setup_network(self): # Start with split network: super().setup_network() disconnect_nodes(self.nodes[1], self.nodes[2]) disconnect_nodes(self.nodes[2], self.nodes[1]) def run_test(self): - # All nodes should start with 1,250 BTC: + # All nodes should start with 1,250 BCH: starting_balance = 1250 for i in range(4): assert_equal(self.nodes[i].getbalance(), starting_balance) # bug workaround, coins generated assigned to first getnewaddress! self.nodes[i].getnewaddress("") # Assign coins to foo and bar accounts: node0_address_foo = self.nodes[0].getnewaddress("foo") fund_foo_txid = self.nodes[0].sendfrom("", node0_address_foo, 1219) fund_foo_tx = self.nodes[0].gettransaction(fund_foo_txid) node0_address_bar = self.nodes[0].getnewaddress("bar") fund_bar_txid = self.nodes[0].sendfrom("", node0_address_bar, 29) fund_bar_tx = self.nodes[0].gettransaction(fund_bar_txid) assert_equal(self.nodes[0].getbalance(""), starting_balance - 1219 - 29 + fund_foo_tx["fee"] + fund_bar_tx["fee"]) # Coins are sent to node1_address node1_address = self.nodes[1].getnewaddress("from0") - # First: use raw transaction API to send 1240 BTC to node1_address, + # First: use raw transaction API to send 1240 BCH to node1_address, # but don't broadcast: doublespend_fee = Decimal('-.02') rawtx_input_0 = {} rawtx_input_0["txid"] = fund_foo_txid rawtx_input_0["vout"] = find_output(self.nodes[0], fund_foo_txid, 1219) rawtx_input_1 = {} rawtx_input_1["txid"] = fund_bar_txid rawtx_input_1["vout"] = find_output(self.nodes[0], fund_bar_txid, 29) inputs = [rawtx_input_0, rawtx_input_1] change_address = self.nodes[0].getnewaddress() outputs = {} outputs[node1_address] = 1240 outputs[change_address] = 1248 - 1240 + doublespend_fee rawtx = self.nodes[0].createrawtransaction(inputs, outputs) doublespend = self.nodes[0].signrawtransactionwithwallet(rawtx) assert_equal(doublespend["complete"], True) - # Create two spends using 1 50 BTC coin each + # Create two spends using 1 50 BCH coin each txid1 = self.nodes[0].sendfrom("foo", node1_address, 40, 0) txid2 = self.nodes[0].sendfrom("bar", node1_address, 20, 0) # Have node0 mine a block: if (self.options.mine_block): self.nodes[0].generate(1) sync_blocks(self.nodes[0:2]) tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Node0's balance should be starting balance, plus 50BTC for another # matured block, minus 40, minus 20, and minus transaction fees: expected = starting_balance + fund_foo_tx["fee"] + fund_bar_tx["fee"] if self.options.mine_block: expected += 50 expected += tx1["amount"] + tx1["fee"] expected += tx2["amount"] + tx2["fee"] assert_equal(self.nodes[0].getbalance(), expected) # foo and bar accounts should be debited: assert_equal(self.nodes[0].getbalance("foo", 0), 1219 + tx1["amount"] + tx1["fee"]) assert_equal(self.nodes[0].getbalance("bar", 0), 29 + tx2["amount"] + tx2["fee"]) if self.options.mine_block: assert_equal(tx1["confirmations"], 1) assert_equal(tx2["confirmations"], 1) # Node1's "from0" balance should be both transaction amounts: assert_equal(self.nodes[1].getbalance( "from0"), -(tx1["amount"] + tx2["amount"])) else: assert_equal(tx1["confirmations"], 0) assert_equal(tx2["confirmations"], 0) # Now give doublespend and its parents to miner: self.nodes[2].sendrawtransaction(fund_foo_tx["hex"]) self.nodes[2].sendrawtransaction(fund_bar_tx["hex"]) doublespend_txid = self.nodes[2].sendrawtransaction(doublespend["hex"]) # ... mine a block... self.nodes[2].generate(1) # Reconnect the split network, and sync chain: connect_nodes(self.nodes[1], self.nodes[2]) self.nodes[2].generate(1) # Mine another block to make sure we sync sync_blocks(self.nodes) assert_equal(self.nodes[0].gettransaction( doublespend_txid)["confirmations"], 2) # Re-fetch transaction info: tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Both transactions should be conflicted assert_equal(tx1["confirmations"], -2) assert_equal(tx2["confirmations"], -2) # Node0's total balance should be starting balance, plus 100BTC for # two more matured blocks, minus 1240 for the double-spend, plus fees (which are # negative): expected = starting_balance + 100 - 1240 + \ fund_foo_tx["fee"] + fund_bar_tx["fee"] + doublespend_fee assert_equal(self.nodes[0].getbalance(), expected) assert_equal(self.nodes[0].getbalance("*"), expected) # Final "" balance is starting_balance - amount moved to accounts - doublespend + subsidies + # fees (which are negative) assert_equal(self.nodes[0].getbalance("foo"), 1219) assert_equal(self.nodes[0].getbalance("bar"), 29) assert_equal(self.nodes[0].getbalance(""), starting_balance - 1219 - 29 - 1240 + 100 + fund_foo_tx["fee"] + fund_bar_tx["fee"] + doublespend_fee) # Node1's "from0" account balance should be just the doublespend: assert_equal(self.nodes[1].getbalance("from0"), 1240) if __name__ == '__main__': TxnMallTest().main()