diff --git a/src/netaddress.cpp b/src/netaddress.cpp index 16084d43e2..53410f6307 100644 --- a/src/netaddress.cpp +++ b/src/netaddress.cpp @@ -1,735 +1,739 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include static const uint8_t pchIPv4[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}; static const uint8_t pchOnionCat[] = {0xFD, 0x87, 0xD8, 0x7E, 0xEB, 0x43}; // 0xFD + sha256("bitcoin")[0:5] static const uint8_t g_internal_prefix[] = {0xFD, 0x6B, 0x88, 0xC0, 0x87, 0x24}; CNetAddr::CNetAddr() { memset(ip, 0, sizeof(ip)); } void CNetAddr::SetIP(const CNetAddr &ipIn) { memcpy(ip, ipIn.ip, sizeof(ip)); } void CNetAddr::SetRaw(Network network, const uint8_t *ip_in) { switch (network) { case NET_IPV4: memcpy(ip, pchIPv4, 12); memcpy(ip + 12, ip_in, 4); break; case NET_IPV6: memcpy(ip, ip_in, 16); break; default: assert(!"invalid network"); } } bool CNetAddr::SetInternal(const std::string &name) { if (name.empty()) { return false; } uint8_t hash[32] = {}; CSHA256().Write((const uint8_t *)name.data(), name.size()).Finalize(hash); memcpy(ip, g_internal_prefix, sizeof(g_internal_prefix)); memcpy(ip + sizeof(g_internal_prefix), hash, sizeof(ip) - sizeof(g_internal_prefix)); return true; } bool CNetAddr::SetSpecial(const std::string &strName) { if (strName.size() > 6 && strName.substr(strName.size() - 6, 6) == ".onion") { std::vector vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str()); if (vchAddr.size() != 16 - sizeof(pchOnionCat)) { return false; } memcpy(ip, pchOnionCat, sizeof(pchOnionCat)); for (unsigned int i = 0; i < 16 - sizeof(pchOnionCat); i++) { ip[i + sizeof(pchOnionCat)] = vchAddr[i]; } return true; } return false; } CNetAddr::CNetAddr(const struct in_addr &ipv4Addr) { SetRaw(NET_IPV4, (const uint8_t *)&ipv4Addr); } CNetAddr::CNetAddr(const struct in6_addr &ipv6Addr, const uint32_t scope) { SetRaw(NET_IPV6, (const uint8_t *)&ipv6Addr); scopeId = scope; } unsigned int CNetAddr::GetByte(int n) const { return ip[15 - n]; } bool CNetAddr::IsIPv4() const { return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0); } bool CNetAddr::IsIPv6() const { return !IsIPv4() && !IsTor() && !IsInternal(); } bool CNetAddr::IsRFC1918() const { return IsIPv4() && (GetByte(3) == 10 || (GetByte(3) == 192 && GetByte(2) == 168) || (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31))); } bool CNetAddr::IsRFC2544() const { return IsIPv4() && GetByte(3) == 198 && (GetByte(2) == 18 || GetByte(2) == 19); } bool CNetAddr::IsRFC3927() const { return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254); } bool CNetAddr::IsRFC6598() const { return IsIPv4() && GetByte(3) == 100 && GetByte(2) >= 64 && GetByte(2) <= 127; } bool CNetAddr::IsRFC5737() const { return IsIPv4() && ((GetByte(3) == 192 && GetByte(2) == 0 && GetByte(1) == 2) || (GetByte(3) == 198 && GetByte(2) == 51 && GetByte(1) == 100) || (GetByte(3) == 203 && GetByte(2) == 0 && GetByte(1) == 113)); } bool CNetAddr::IsRFC3849() const { return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8; } bool CNetAddr::IsRFC3964() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x02); } bool CNetAddr::IsRFC6052() const { static const uint8_t pchRFC6052[] = {0, 0x64, 0xFF, 0x9B, 0, 0, 0, 0, 0, 0, 0, 0}; return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0); } bool CNetAddr::IsRFC4380() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0); } bool CNetAddr::IsRFC4862() const { static const uint8_t pchRFC4862[] = {0xFE, 0x80, 0, 0, 0, 0, 0, 0}; return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0); } bool CNetAddr::IsRFC4193() const { return ((GetByte(15) & 0xFE) == 0xFC); } bool CNetAddr::IsRFC6145() const { static const uint8_t pchRFC6145[] = {0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0, 0}; return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0); } bool CNetAddr::IsRFC4843() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10); } bool CNetAddr::IsTor() const { return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0); } bool CNetAddr::IsLocal() const { // IPv4 loopback - if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) return true; + if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) { + return true; + } // IPv6 loopback (::1/128) static const uint8_t pchLocal[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; - if (memcmp(ip, pchLocal, 16) == 0) return true; + if (memcmp(ip, pchLocal, 16) == 0) { + return true; + } return false; } bool CNetAddr::IsValid() const { // Cleanup 3-byte shifted addresses caused by garbage in size field of addr // messages from versions before 0.2.9 checksum. // Two consecutive addr messages look like this: // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 // addr26 addr26... so if the first length field is garbled, it reads the // second batch of addr misaligned by 3 bytes. if (memcmp(ip, pchIPv4 + 3, sizeof(pchIPv4) - 3) == 0) { return false; } // unspecified IPv6 address (::/128) uint8_t ipNone6[16] = {}; if (memcmp(ip, ipNone6, 16) == 0) { return false; } // documentation IPv6 address if (IsRFC3849()) { return false; } if (IsInternal()) { return false; } if (IsIPv4()) { // INADDR_NONE uint32_t ipNone = INADDR_NONE; if (memcmp(ip + 12, &ipNone, 4) == 0) { return false; } // 0 ipNone = 0; if (memcmp(ip + 12, &ipNone, 4) == 0) { return false; } } return true; } bool CNetAddr::IsRoutable() const { return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsLocal() || IsInternal()); } bool CNetAddr::IsInternal() const { return memcmp(ip, g_internal_prefix, sizeof(g_internal_prefix)) == 0; } enum Network CNetAddr::GetNetwork() const { if (IsInternal()) { return NET_INTERNAL; } if (!IsRoutable()) { return NET_UNROUTABLE; } if (IsIPv4()) { return NET_IPV4; } if (IsTor()) { return NET_ONION; } return NET_IPV6; } std::string CNetAddr::ToStringIP() const { if (IsTor()) { return EncodeBase32(&ip[6], 10) + ".onion"; } if (IsInternal()) { return EncodeBase32(ip + sizeof(g_internal_prefix), sizeof(ip) - sizeof(g_internal_prefix)) + ".internal"; } CService serv(*this, 0); struct sockaddr_storage sockaddr; socklen_t socklen = sizeof(sockaddr); if (serv.GetSockAddr((struct sockaddr *)&sockaddr, &socklen)) { char name[1025] = ""; if (!getnameinfo((const struct sockaddr *)&sockaddr, socklen, name, sizeof(name), nullptr, 0, NI_NUMERICHOST)) { return std::string(name); } } if (IsIPv4()) { return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0)); } return strprintf("%x:%x:%x:%x:%x:%x:%x:%x", GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12), GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8), GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4), GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0)); } std::string CNetAddr::ToString() const { return ToStringIP(); } bool operator==(const CNetAddr &a, const CNetAddr &b) { return (memcmp(a.ip, b.ip, 16) == 0); } bool operator<(const CNetAddr &a, const CNetAddr &b) { return (memcmp(a.ip, b.ip, 16) < 0); } bool CNetAddr::GetInAddr(struct in_addr *pipv4Addr) const { if (!IsIPv4()) { return false; } memcpy(pipv4Addr, ip + 12, 4); return true; } bool CNetAddr::GetIn6Addr(struct in6_addr *pipv6Addr) const { memcpy(pipv6Addr, ip, 16); return true; } // get canonical identifier of an address' group no two connections will be // attempted to addresses with the same group std::vector CNetAddr::GetGroup() const { std::vector vchRet; int nClass = NET_IPV6; int nStartByte = 0; int nBits = 16; // all local addresses belong to the same group if (IsLocal()) { nClass = 255; nBits = 0; } if (IsInternal()) { // all internal-usage addresses get their own group nClass = NET_INTERNAL; nStartByte = sizeof(g_internal_prefix); nBits = (sizeof(ip) - sizeof(g_internal_prefix)) * 8; } else if (!IsRoutable()) { // all other unroutable addresses belong to the same group nClass = NET_UNROUTABLE; nBits = 0; } else if (IsIPv4() || IsRFC6145() || IsRFC6052()) { // for IPv4 addresses, '1' + the 16 higher-order bits of the IP includes // mapped IPv4, SIIT translated IPv4, and the well-known prefix nClass = NET_IPV4; nStartByte = 12; } else if (IsRFC3964()) { // for 6to4 tunnelled addresses, use the encapsulated IPv4 address nClass = NET_IPV4; nStartByte = 2; } else if (IsRFC4380()) { // for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 // address vchRet.push_back(NET_IPV4); vchRet.push_back(GetByte(3) ^ 0xFF); vchRet.push_back(GetByte(2) ^ 0xFF); return vchRet; } else if (IsTor()) { nClass = NET_ONION; nStartByte = 6; nBits = 4; } else if (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70) { // for he.net, use /36 groups nBits = 36; } else { // for the rest of the IPv6 network, use /32 groups nBits = 32; } vchRet.push_back(nClass); while (nBits >= 8) { vchRet.push_back(GetByte(15 - nStartByte)); nStartByte++; nBits -= 8; } if (nBits > 0) { vchRet.push_back(GetByte(15 - nStartByte) | ((1 << (8 - nBits)) - 1)); } return vchRet; } uint64_t CNetAddr::GetHash() const { uint256 hash = Hash(&ip[0], &ip[16]); uint64_t nRet; memcpy(&nRet, &hash, sizeof(nRet)); return nRet; } // private extensions to enum Network, only returned by GetExtNetwork, and only // used in GetReachabilityFrom static const int NET_UNKNOWN = NET_MAX + 0; static const int NET_TEREDO = NET_MAX + 1; static int GetExtNetwork(const CNetAddr *addr) { if (addr == nullptr) { return NET_UNKNOWN; } if (addr->IsRFC4380()) { return NET_TEREDO; } return addr->GetNetwork(); } /** Calculates a metric for how reachable (*this) is from a given partner */ int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const { enum Reachability { REACH_UNREACHABLE, REACH_DEFAULT, REACH_TEREDO, REACH_IPV6_WEAK, REACH_IPV4, REACH_IPV6_STRONG, REACH_PRIVATE }; if (!IsRoutable() || IsInternal()) { return REACH_UNREACHABLE; } int ourNet = GetExtNetwork(this); int theirNet = GetExtNetwork(paddrPartner); bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); switch (theirNet) { case NET_IPV4: switch (ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; } case NET_IPV6: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV4: return REACH_IPV4; // only prefer giving our IPv6 address if it's not tunnelled case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; } case NET_ONION: switch (ourNet) { default: return REACH_DEFAULT; // Tor users can connect to IPv4 as well case NET_IPV4: return REACH_IPV4; case NET_ONION: return REACH_PRIVATE; } case NET_TEREDO: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; } case NET_UNKNOWN: case NET_UNROUTABLE: default: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; // either from Tor, or don't care about our address case NET_ONION: return REACH_PRIVATE; } } } CService::CService() : port(0) {} CService::CService(const CNetAddr &cip, unsigned short portIn) : CNetAddr(cip), port(portIn) {} CService::CService(const struct in_addr &ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn) {} CService::CService(const struct in6_addr &ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn) {} CService::CService(const struct sockaddr_in &addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) { assert(addr.sin_family == AF_INET); } CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port)) { assert(addr.sin6_family == AF_INET6); } bool CService::SetSockAddr(const struct sockaddr *paddr) { switch (paddr->sa_family) { case AF_INET: *this = CService(*reinterpret_cast(paddr)); return true; case AF_INET6: *this = CService(*reinterpret_cast(paddr)); return true; default: return false; } } unsigned short CService::GetPort() const { return port; } bool operator==(const CService &a, const CService &b) { return static_cast(a) == static_cast(b) && a.port == b.port; } bool operator<(const CService &a, const CService &b) { return static_cast(a) < static_cast(b) || (static_cast(a) == static_cast(b) && a.port < b.port); } bool CService::GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const { if (IsIPv4()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) { return false; } *addrlen = sizeof(struct sockaddr_in); struct sockaddr_in *paddrin = reinterpret_cast(paddr); memset(paddrin, 0, *addrlen); if (!GetInAddr(&paddrin->sin_addr)) { return false; } paddrin->sin_family = AF_INET; paddrin->sin_port = htons(port); return true; } if (IsIPv6()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) { return false; } *addrlen = sizeof(struct sockaddr_in6); struct sockaddr_in6 *paddrin6 = reinterpret_cast(paddr); memset(paddrin6, 0, *addrlen); if (!GetIn6Addr(&paddrin6->sin6_addr)) { return false; } paddrin6->sin6_scope_id = scopeId; paddrin6->sin6_family = AF_INET6; paddrin6->sin6_port = htons(port); return true; } return false; } std::vector CService::GetKey() const { std::vector vKey; vKey.resize(18); memcpy(vKey.data(), ip, 16); vKey[16] = port / 0x100; vKey[17] = port & 0x0FF; return vKey; } std::string CService::ToStringPort() const { return strprintf("%u", port); } std::string CService::ToStringIPPort() const { if (IsIPv4() || IsTor() || IsInternal()) { return ToStringIP() + ":" + ToStringPort(); } else { return "[" + ToStringIP() + "]:" + ToStringPort(); } } std::string CService::ToString() const { return ToStringIPPort(); } CSubNet::CSubNet() : valid(false) { memset(netmask, 0, sizeof(netmask)); } CSubNet::CSubNet(const CNetAddr &addr, int32_t mask) { valid = true; network = addr; // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address memset(netmask, 255, sizeof(netmask)); // IPv4 addresses start at offset 12, and first 12 bytes must match, so just // offset n const int astartofs = network.IsIPv4() ? 12 : 0; // Only valid if in range of bits of address int32_t n = mask; if (n >= 0 && n <= (128 - astartofs * 8)) { n += astartofs * 8; // Clear bits [n..127] for (; n < 128; ++n) { netmask[n >> 3] &= ~(1 << (7 - (n & 7))); } } else { valid = false; } // Normalize network according to netmask for (int x = 0; x < 16; ++x) { network.ip[x] &= netmask[x]; } } CSubNet::CSubNet(const CNetAddr &addr, const CNetAddr &mask) { valid = true; network = addr; // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address memset(netmask, 255, sizeof(netmask)); // IPv4 addresses start at offset 12, and first 12 bytes must match, so just // offset n const int astartofs = network.IsIPv4() ? 12 : 0; for (int x = astartofs; x < 16; ++x) { netmask[x] = mask.ip[x]; } // Normalize network according to netmask for (int x = 0; x < 16; ++x) { network.ip[x] &= netmask[x]; } } CSubNet::CSubNet(const CNetAddr &addr) : valid(addr.IsValid()) { memset(netmask, 255, sizeof(netmask)); network = addr; } bool CSubNet::Match(const CNetAddr &addr) const { if (!valid || !addr.IsValid()) { return false; } for (int x = 0; x < 16; ++x) { if ((addr.ip[x] & netmask[x]) != network.ip[x]) { return false; } } return true; } static inline int NetmaskBits(uint8_t x) { switch (x) { case 0x00: return 0; case 0x80: return 1; case 0xc0: return 2; case 0xe0: return 3; case 0xf0: return 4; case 0xf8: return 5; case 0xfc: return 6; case 0xfe: return 7; case 0xff: return 8; default: return -1; } } std::string CSubNet::ToString() const { /* Parse binary 1{n}0{N-n} to see if mask can be represented as /n */ int cidr = 0; bool valid_cidr = true; int n = network.IsIPv4() ? 12 : 0; for (; n < 16 && netmask[n] == 0xff; ++n) { cidr += 8; } if (n < 16) { int bits = NetmaskBits(netmask[n]); if (bits < 0) { valid_cidr = false; } else { cidr += bits; } ++n; } for (; n < 16 && valid_cidr; ++n) { if (netmask[n] != 0x00) { valid_cidr = false; } } /* Format output */ std::string strNetmask; if (valid_cidr) { strNetmask = strprintf("%u", cidr); } else { if (network.IsIPv4()) { strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]); } else { strNetmask = strprintf( "%x:%x:%x:%x:%x:%x:%x:%x", netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3], netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7], netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11], netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]); } } return network.ToString() + "/" + strNetmask; } bool CSubNet::IsValid() const { return valid; } bool operator==(const CSubNet &a, const CSubNet &b) { return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16); } bool operator<(const CSubNet &a, const CSubNet &b) { return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0)); }