diff --git a/src/secp256k1/src/scalar_low_impl.h b/src/secp256k1/src/scalar_low_impl.h index c80e70c5a2..910ce3f493 100644 --- a/src/secp256k1/src/scalar_low_impl.h +++ b/src/secp256k1/src/scalar_low_impl.h @@ -1,114 +1,117 @@ /********************************************************************** * Copyright (c) 2015 Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_IMPL_H #define SECP256K1_SCALAR_REPR_IMPL_H #include "scalar.h" #include SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { return !(*a & 1); } SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { *r = 0; } SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { *r = v; } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { if (offset < 32) return ((*a >> offset) & ((((uint32_t)1) << count) - 1)); else return 0; } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { return secp256k1_scalar_get_bits(a, offset, count); } SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { return *a >= EXHAUSTIVE_TEST_ORDER; } static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { *r = (*a + *b) % EXHAUSTIVE_TEST_ORDER; return *r < *b; } static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { if (flag && bit < 32) - *r += (1 << bit); + *r += ((uint32_t)1 << bit); #ifdef VERIFY + VERIFY_CHECK(bit < 32); + /* Verify that adding (1 << bit) will not overflow any in-range scalar *r by overflowing the underlying uint32_t. */ + VERIFY_CHECK(((uint32_t)1 << bit) - 1 <= UINT32_MAX - EXHAUSTIVE_TEST_ORDER); VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); #endif } static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { const int base = 0x100 % EXHAUSTIVE_TEST_ORDER; int i; *r = 0; for (i = 0; i < 32; i++) { *r = ((*r * base) + b32[i]) % EXHAUSTIVE_TEST_ORDER; } /* just deny overflow, it basically always happens */ if (overflow) *overflow = 0; } static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { memset(bin, 0, 32); bin[28] = *a >> 24; bin[29] = *a >> 16; bin[30] = *a >> 8; bin[31] = *a; } SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { return *a == 0; } static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { if (*a == 0) { *r = 0; } else { *r = EXHAUSTIVE_TEST_ORDER - *a; } } SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { return *a == 1; } static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { return *a > EXHAUSTIVE_TEST_ORDER / 2; } static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { if (flag) secp256k1_scalar_negate(r, r); return flag ? -1 : 1; } static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { *r = (*a * *b) % EXHAUSTIVE_TEST_ORDER; } static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { int ret; VERIFY_CHECK(n > 0); VERIFY_CHECK(n < 16); ret = *r & ((1 << n) - 1); *r >>= n; return ret; } static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { *r = (*a * *a) % EXHAUSTIVE_TEST_ORDER; } static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { *r1 = *a; *r2 = 0; } SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { return *a == *b; } #endif /* SECP256K1_SCALAR_REPR_IMPL_H */