Page MenuHomePhabricator

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/src/net.cpp b/src/net.cpp
index 5e90e5346..0c3e773f4 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -1,3351 +1,3370 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <net.h>
#include <avalanche/avalanche.h>
#include <banman.h>
#include <clientversion.h>
#include <config.h>
#include <consensus/consensus.h>
#include <crypto/sha256.h>
#include <dnsseeds.h>
#include <netbase.h>
#include <node/ui_interface.h>
#include <protocol.h>
#include <random.h>
#include <scheduler.h>
#include <util/strencodings.h>
#include <util/translation.h>
#ifdef WIN32
#include <cstring>
#else
#include <fcntl.h>
#endif
#ifdef USE_POLL
#include <poll.h>
#endif
#ifdef USE_UPNP
#include <miniupnpc/miniupnpc.h>
#include <miniupnpc/upnpcommands.h>
#include <miniupnpc/upnperrors.h>
// The minimum supported miniUPnPc API version is set to 10. This keeps
// compatibility with Ubuntu 16.04 LTS and Debian 8 libminiupnpc-dev packages.
static_assert(MINIUPNPC_API_VERSION >= 10,
"miniUPnPc API version >= 10 assumed");
#endif
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <limits>
#include <optional>
#include <unordered_map>
// How often to dump addresses to peers.dat
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
/**
* Number of DNS seeds to query when the number of connections is low.
*/
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
/**
* How long to delay before querying DNS seeds
*
* If we have more than THRESHOLD entries in addrman, then it's likely
* that we got those addresses from having previously connected to the P2P
* network, and that we'll be able to successfully reconnect to the P2P
* network via contacting one of them. So if that's the case, spend a
* little longer trying to connect to known peers before querying the
* DNS seeds.
*/
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
// "many" vs "few" peers
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000;
// We add a random period time (0 to 1 seconds) to feeler connections to prevent
// synchronization.
#define FEELER_SLEEP_WINDOW 1
// MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define
// it as 0
#if !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
// MSG_DONTWAIT is not available on some platforms, if it doesn't exist define
// it as 0
#if !defined(MSG_DONTWAIT)
#define MSG_DONTWAIT 0
#endif
/** Used to pass flags to the Bind() function */
enum BindFlags {
BF_NONE = 0,
BF_EXPLICIT = (1U << 0),
BF_REPORT_ERROR = (1U << 1),
};
// The set of sockets cannot be modified while waiting
// The sleep time needs to be small to avoid new sockets stalling
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
const std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
// SHA256("netgroup")[0:8]
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL;
// SHA256("localhostnonce")[0:8]
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL;
// SHA256("localhostnonce")[8:16]
static const uint64_t RANDOMIZER_ID_EXTRAENTROPY = 0x94b05d41679a4ff7ULL;
// SHA256("addrcache")[0:8]
static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL;
//
// Global state variables
//
bool fDiscover = true;
bool fListen = true;
bool g_relay_txes = !DEFAULT_BLOCKSONLY;
RecursiveMutex cs_mapLocalHost;
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
void CConnman::AddAddrFetch(const std::string &strDest) {
LOCK(m_addr_fetches_mutex);
m_addr_fetches.push_back(strDest);
}
uint16_t GetListenPort() {
return uint16_t(gArgs.GetArg("-port", Params().GetDefaultPort()));
}
// find 'best' local address for a particular peer
bool GetLocal(CService &addr, const CNetAddr *paddrPeer) {
if (!fListen) {
return false;
}
int nBestScore = -1;
int nBestReachability = -1;
{
LOCK(cs_mapLocalHost);
for (const auto &entry : mapLocalHost) {
int nScore = entry.second.nScore;
int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
if (nReachability > nBestReachability ||
(nReachability == nBestReachability && nScore > nBestScore)) {
addr = CService(entry.first, entry.second.nPort);
nBestReachability = nReachability;
nBestScore = nScore;
}
}
}
return nBestScore >= 0;
}
//! Convert the pnSeed6 array into usable address objects.
static std::vector<CAddress>
convertSeed6(const std::vector<SeedSpec6> &vSeedsIn) {
// It'll only connect to one or two seed nodes because once it connects,
// it'll get a pile of addresses with newer timestamps. Seed nodes are given
// a random 'last seen time' of between one and two weeks ago.
const int64_t nOneWeek = 7 * 24 * 60 * 60;
std::vector<CAddress> vSeedsOut;
vSeedsOut.reserve(vSeedsIn.size());
FastRandomContext rng;
for (const auto &seed_in : vSeedsIn) {
struct in6_addr ip;
memcpy(&ip, seed_in.addr, sizeof(ip));
CAddress addr(CService(ip, seed_in.port),
GetDesirableServiceFlags(NODE_NONE));
addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
vSeedsOut.push_back(addr);
}
return vSeedsOut;
}
// Get best local address for a particular peer as a CAddress. Otherwise, return
// the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP
// may be changed to a useful one by discovery.
CAddress GetLocalAddress(const CNetAddr *paddrPeer,
ServiceFlags nLocalServices) {
CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices);
CService addr;
if (GetLocal(addr, paddrPeer)) {
ret = CAddress(addr, nLocalServices);
}
ret.nTime = GetAdjustedTime();
return ret;
}
static int GetnScore(const CService &addr) {
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == 0) {
return 0;
}
return mapLocalHost[addr].nScore;
}
// Is our peer's addrLocal potentially useful as an external IP source?
bool IsPeerAddrLocalGood(CNode *pnode) {
CService addrLocal = pnode->GetAddrLocal();
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
IsReachable(addrLocal.GetNetwork());
}
// Pushes our own address to a peer.
void AdvertiseLocal(CNode *pnode) {
if (fListen && pnode->fSuccessfullyConnected) {
CAddress addrLocal =
GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
if (gArgs.GetBoolArg("-addrmantest", false)) {
// use IPv4 loopback during addrmantest
addrLocal =
CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())),
pnode->GetLocalServices());
}
// If discovery is enabled, sometimes give our peer the address it
// tells us that it sees us as in case it has a better idea of our
// address than we do.
FastRandomContext rng;
if (IsPeerAddrLocalGood(pnode) &&
(!addrLocal.IsRoutable() ||
rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) ==
0)) {
addrLocal.SetIP(pnode->GetAddrLocal());
}
if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) {
LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n",
addrLocal.ToString());
pnode->PushAddress(addrLocal, rng);
}
}
}
// Learn a new local address.
bool AddLocal(const CService &addr, int nScore) {
if (!addr.IsRoutable()) {
return false;
}
if (!fDiscover && nScore < LOCAL_MANUAL) {
return false;
}
if (!IsReachable(addr)) {
return false;
}
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
{
LOCK(cs_mapLocalHost);
bool fAlready = mapLocalHost.count(addr) > 0;
LocalServiceInfo &info = mapLocalHost[addr];
if (!fAlready || nScore >= info.nScore) {
info.nScore = nScore + (fAlready ? 1 : 0);
info.nPort = addr.GetPort();
}
}
return true;
}
bool AddLocal(const CNetAddr &addr, int nScore) {
return AddLocal(CService(addr, GetListenPort()), nScore);
}
void RemoveLocal(const CService &addr) {
LOCK(cs_mapLocalHost);
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
mapLocalHost.erase(addr);
}
void SetReachable(enum Network net, bool reachable) {
if (net == NET_UNROUTABLE || net == NET_INTERNAL) {
return;
}
LOCK(cs_mapLocalHost);
vfLimited[net] = !reachable;
}
bool IsReachable(enum Network net) {
LOCK(cs_mapLocalHost);
return !vfLimited[net];
}
bool IsReachable(const CNetAddr &addr) {
return IsReachable(addr.GetNetwork());
}
/** vote for a local address */
bool SeenLocal(const CService &addr) {
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == 0) {
return false;
}
mapLocalHost[addr].nScore++;
return true;
}
/** check whether a given address is potentially local */
bool IsLocal(const CService &addr) {
LOCK(cs_mapLocalHost);
return mapLocalHost.count(addr) > 0;
}
CNode *CConnman::FindNode(const CNetAddr &ip) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (static_cast<CNetAddr>(pnode->addr) == ip) {
return pnode;
}
}
return nullptr;
}
CNode *CConnman::FindNode(const CSubNet &subNet) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
return pnode;
}
}
return nullptr;
}
CNode *CConnman::FindNode(const std::string &addrName) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (pnode->GetAddrName() == addrName) {
return pnode;
}
}
return nullptr;
}
CNode *CConnman::FindNode(const CService &addr) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (static_cast<CService>(pnode->addr) == addr) {
return pnode;
}
}
return nullptr;
}
bool CConnman::CheckIncomingNonce(uint64_t nonce) {
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() &&
pnode->GetLocalNonce() == nonce) {
return false;
}
}
return true;
}
/** Get the bind address for a socket as CAddress */
static CAddress GetBindAddress(SOCKET sock) {
CAddress addr_bind;
struct sockaddr_storage sockaddr_bind;
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
if (sock != INVALID_SOCKET) {
if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind,
&sockaddr_bind_len)) {
addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind);
} else {
LogPrint(BCLog::NET, "Warning: getsockname failed\n");
}
}
return addr_bind;
}
CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest,
bool fCountFailure, ConnectionType conn_type) {
assert(conn_type != ConnectionType::INBOUND);
if (pszDest == nullptr) {
if (IsLocal(addrConnect)) {
return nullptr;
}
// Look for an existing connection
CNode *pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode) {
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
/// debug print
LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
pszDest ? pszDest : addrConnect.ToString(),
pszDest
? 0.0
: (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0);
// Resolve
const int default_port = Params().GetDefaultPort();
if (pszDest) {
std::vector<CService> resolved;
if (Lookup(pszDest, resolved, default_port,
fNameLookup && !HaveNameProxy(), 256) &&
!resolved.empty()) {
addrConnect =
CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
if (!addrConnect.IsValid()) {
LogPrint(BCLog::NET,
"Resolver returned invalid address %s for %s\n",
addrConnect.ToString(), pszDest);
return nullptr;
}
// It is possible that we already have a connection to the IP/port
// pszDest resolved to. In that case, drop the connection that was
// just created, and return the existing CNode instead. Also store
// the name we used to connect in that CNode, so that future
// FindNode() calls to that name catch this early.
LOCK(cs_vNodes);
CNode *pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode) {
pnode->MaybeSetAddrName(std::string(pszDest));
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
}
// Connect
bool connected = false;
SOCKET hSocket = INVALID_SOCKET;
proxyType proxy;
if (addrConnect.IsValid()) {
bool proxyConnectionFailed = false;
if (GetProxy(addrConnect.GetNetwork(), proxy)) {
hSocket = CreateSocket(proxy.proxy);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
connected = ConnectThroughProxy(
proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket,
nConnectTimeout, proxyConnectionFailed);
} else {
// no proxy needed (none set for target network)
hSocket = CreateSocket(addrConnect);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
connected =
ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout,
conn_type == ConnectionType::MANUAL);
}
if (!proxyConnectionFailed) {
// If a connection to the node was attempted, and failure (if any)
// is not caused by a problem connecting to the proxy, mark this as
// an attempt.
addrman.Attempt(addrConnect, fCountFailure);
}
} else if (pszDest && GetNameProxy(proxy)) {
hSocket = CreateSocket(proxy.proxy);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
std::string host;
int port = default_port;
SplitHostPort(std::string(pszDest), port, host);
bool proxyConnectionFailed;
connected = ConnectThroughProxy(proxy, host, port, hSocket,
nConnectTimeout, proxyConnectionFailed);
}
if (!connected) {
CloseSocket(hSocket);
return nullptr;
}
// Add node
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
.Write(id)
.Finalize();
uint64_t extra_entropy =
GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY)
.Write(id)
.Finalize();
CAddress addr_bind = GetBindAddress(hSocket);
CNode *pnode =
new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect,
CalculateKeyedNetGroup(addrConnect), nonce, extra_entropy,
addr_bind, pszDest ? pszDest : "", conn_type);
pnode->AddRef();
// We're making a new connection, harvest entropy from the time (and our
// peer count)
RandAddEvent(uint32_t(id));
return pnode;
}
void CNode::CloseSocketDisconnect() {
fDisconnect = true;
LOCK(cs_hSocket);
if (hSocket != INVALID_SOCKET) {
LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
CloseSocket(hSocket);
}
}
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags &flags,
const CNetAddr &addr) const {
for (const auto &subnet : vWhitelistedRange) {
if (subnet.m_subnet.Match(addr)) {
NetPermissions::AddFlag(flags, subnet.m_flags);
}
}
}
+std::string CNode::ConnectionTypeAsString() const {
+ switch (m_conn_type) {
+ case ConnectionType::INBOUND:
+ return "inbound";
+ case ConnectionType::MANUAL:
+ return "manual";
+ case ConnectionType::FEELER:
+ return "feeler";
+ case ConnectionType::OUTBOUND_FULL_RELAY:
+ return "outbound-full-relay";
+ case ConnectionType::BLOCK_RELAY:
+ return "block-relay-only";
+ case ConnectionType::ADDR_FETCH:
+ return "addr-fetch";
+ } // no default case, so the compiler can warn about missing cases
+
+ assert(false);
+}
+
std::string CNode::GetAddrName() const {
LOCK(cs_addrName);
return addrName;
}
void CNode::MaybeSetAddrName(const std::string &addrNameIn) {
LOCK(cs_addrName);
if (addrName.empty()) {
addrName = addrNameIn;
}
}
CService CNode::GetAddrLocal() const {
LOCK(cs_addrLocal);
return addrLocal;
}
void CNode::SetAddrLocal(const CService &addrLocalIn) {
LOCK(cs_addrLocal);
if (addrLocal.IsValid()) {
error("Addr local already set for node: %i. Refusing to change from %s "
"to %s",
id, addrLocal.ToString(), addrLocalIn.ToString());
} else {
addrLocal = addrLocalIn;
}
}
void CNode::copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap) {
stats.nodeid = this->GetId();
stats.nServices = nServices;
stats.addr = addr;
stats.addrBind = addrBind;
stats.m_mapped_as = addr.GetMappedAS(m_asmap);
if (m_tx_relay != nullptr) {
LOCK(m_tx_relay->cs_filter);
stats.fRelayTxes = m_tx_relay->fRelayTxes;
} else {
stats.fRelayTxes = false;
}
stats.nLastSend = nLastSend;
stats.nLastRecv = nLastRecv;
stats.nLastTXTime = nLastTXTime;
stats.nLastProofTime = nLastProofTime;
stats.nLastBlockTime = nLastBlockTime;
stats.nTimeConnected = nTimeConnected;
stats.nTimeOffset = nTimeOffset;
stats.addrName = GetAddrName();
stats.nVersion = nVersion;
{
LOCK(cs_SubVer);
stats.cleanSubVer = cleanSubVer;
}
stats.fInbound = IsInboundConn();
stats.m_manual_connection = IsManualConn();
stats.nStartingHeight = nStartingHeight;
{
LOCK(cs_vSend);
stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd;
stats.nSendBytes = nSendBytes;
}
{
LOCK(cs_vRecv);
stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd;
stats.nRecvBytes = nRecvBytes;
}
stats.m_legacyWhitelisted = m_legacyWhitelisted;
stats.m_permissionFlags = m_permissionFlags;
if (m_tx_relay != nullptr) {
LOCK(m_tx_relay->cs_feeFilter);
stats.minFeeFilter = m_tx_relay->minFeeFilter;
} else {
stats.minFeeFilter = Amount::zero();
}
// It is common for nodes with good ping times to suddenly become lagged,
// due to a new block arriving or other large transfer. Merely reporting
// pingtime might fool the caller into thinking the node was still
// responsive, since pingtime does not update until the ping is complete,
// which might take a while. So, if a ping is taking an unusually long time
// in flight, the caller can immediately detect that this is happening.
std::chrono::microseconds ping_wait{0};
if ((0 != nPingNonceSent) && (0 != m_ping_start.load().count())) {
ping_wait = GetTime<std::chrono::microseconds>() - m_ping_start.load();
}
// Raw ping time is in microseconds, but show it to user as whole seconds
// (Bitcoin users should be well used to small numbers with many decimal
// places by now :)
stats.m_ping_usec = nPingUsecTime;
stats.m_min_ping_usec = nMinPingUsecTime;
stats.m_ping_wait_usec = count_microseconds(ping_wait);
// Leave string empty if addrLocal invalid (not filled in yet)
CService addrLocalUnlocked = GetAddrLocal();
stats.addrLocal =
addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
}
bool CNode::ReceiveMsgBytes(const Config &config, const char *pch,
uint32_t nBytes, bool &complete) {
complete = false;
const auto time = GetTime<std::chrono::microseconds>();
LOCK(cs_vRecv);
nLastRecv = std::chrono::duration_cast<std::chrono::seconds>(time).count();
nRecvBytes += nBytes;
while (nBytes > 0) {
// Absorb network data.
int handled = m_deserializer->Read(config, pch, nBytes);
if (handled < 0) {
return false;
}
pch += handled;
nBytes -= handled;
if (m_deserializer->Complete()) {
// decompose a transport agnostic CNetMessage from the deserializer
CNetMessage msg = m_deserializer->GetMessage(config, time);
// Store received bytes per message command to prevent a memory DOS,
// only allow valid commands.
mapMsgCmdSize::iterator i =
mapRecvBytesPerMsgCmd.find(msg.m_command);
if (i == mapRecvBytesPerMsgCmd.end()) {
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
}
assert(i != mapRecvBytesPerMsgCmd.end());
i->second += msg.m_raw_message_size;
// push the message to the process queue,
vRecvMsg.push_back(std::move(msg));
complete = true;
}
}
return true;
}
int V1TransportDeserializer::readHeader(const Config &config, const char *pch,
uint32_t nBytes) {
// copy data to temporary parsing buffer
uint32_t nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
uint32_t nCopy = std::min(nRemaining, nBytes);
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
nHdrPos += nCopy;
// if header incomplete, exit
if (nHdrPos < CMessageHeader::HEADER_SIZE) {
return nCopy;
}
// deserialize to CMessageHeader
try {
hdrbuf >> hdr;
} catch (const std::exception &) {
return -1;
}
// Reject oversized messages
if (hdr.IsOversized(config)) {
LogPrint(BCLog::NET, "Oversized header detected\n");
return -1;
}
// switch state to reading message data
in_data = true;
return nCopy;
}
int V1TransportDeserializer::readData(const char *pch, uint32_t nBytes) {
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
if (vRecv.size() < nDataPos + nCopy) {
// Allocate up to 256 KiB ahead, but never more than the total message
// size.
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
}
hasher.Write({(const uint8_t *)pch, nCopy});
memcpy(&vRecv[nDataPos], pch, nCopy);
nDataPos += nCopy;
return nCopy;
}
const uint256 &V1TransportDeserializer::GetMessageHash() const {
assert(Complete());
if (data_hash.IsNull()) {
hasher.Finalize(data_hash);
}
return data_hash;
}
CNetMessage
V1TransportDeserializer::GetMessage(const Config &config,
const std::chrono::microseconds time) {
// decompose a single CNetMessage from the TransportDeserializer
CNetMessage msg(std::move(vRecv));
// store state about valid header, netmagic and checksum
msg.m_valid_header = hdr.IsValid(config);
// FIXME Split CheckHeaderMagicAndCommand() into CheckHeaderMagic() and
// CheckCommand() to prevent the net magic check code duplication.
msg.m_valid_netmagic =
(memcmp(std::begin(hdr.pchMessageStart),
std::begin(config.GetChainParams().NetMagic()),
CMessageHeader::MESSAGE_START_SIZE) == 0);
uint256 hash = GetMessageHash();
// store command string, payload size
msg.m_command = hdr.GetCommand();
msg.m_message_size = hdr.nMessageSize;
msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
// We just received a message off the wire, harvest entropy from the time
// (and the message checksum)
RandAddEvent(ReadLE32(hash.begin()));
msg.m_valid_checksum = (memcmp(hash.begin(), hdr.pchChecksum,
CMessageHeader::CHECKSUM_SIZE) == 0);
if (!msg.m_valid_checksum) {
LogPrint(
BCLog::NET, "CHECKSUM ERROR (%s, %u bytes), expected %s was %s\n",
SanitizeString(msg.m_command), msg.m_message_size,
HexStr(Span<uint8_t>(hash.begin(),
hash.begin() + CMessageHeader::CHECKSUM_SIZE)),
HexStr(hdr.pchChecksum));
}
// store receive time
msg.m_time = time;
// reset the network deserializer (prepare for the next message)
Reset();
return msg;
}
void V1TransportSerializer::prepareForTransport(const Config &config,
CSerializedNetMsg &msg,
std::vector<uint8_t> &header) {
// create dbl-sha256 checksum
uint256 hash = Hash(msg.data);
// create header
CMessageHeader hdr(config.GetChainParams().NetMagic(), msg.m_type.c_str(),
msg.data.size());
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
// serialize header
header.reserve(CMessageHeader::HEADER_SIZE);
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
}
size_t CConnman::SocketSendData(CNode *pnode) const
EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend) {
size_t nSentSize = 0;
size_t nMsgCount = 0;
for (const auto &data : pnode->vSendMsg) {
assert(data.size() > pnode->nSendOffset);
int nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
break;
}
nBytes = send(pnode->hSocket,
reinterpret_cast<const char *>(data.data()) +
pnode->nSendOffset,
data.size() - pnode->nSendOffset,
MSG_NOSIGNAL | MSG_DONTWAIT);
}
if (nBytes == 0) {
// couldn't send anything at all
break;
}
if (nBytes < 0) {
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
pnode->CloseSocketDisconnect();
}
break;
}
assert(nBytes > 0);
pnode->nLastSend = GetSystemTimeInSeconds();
pnode->nSendBytes += nBytes;
pnode->nSendOffset += nBytes;
nSentSize += nBytes;
if (pnode->nSendOffset != data.size()) {
// could not send full message; stop sending more
break;
}
pnode->nSendOffset = 0;
pnode->nSendSize -= data.size();
pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
nMsgCount++;
}
pnode->vSendMsg.erase(pnode->vSendMsg.begin(),
pnode->vSendMsg.begin() + nMsgCount);
if (pnode->vSendMsg.empty()) {
assert(pnode->nSendOffset == 0);
assert(pnode->nSendSize == 0);
}
return nSentSize;
}
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
return a.nMinPingUsecTime > b.nMinPingUsecTime;
}
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareLocalHostTimeConnected(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
if (a.m_is_local != b.m_is_local) {
return b.m_is_local;
}
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
return a.nKeyedNetGroup < b.nKeyedNetGroup;
}
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
// There is a fall-through here because it is common for a node to have many
// peers which have not yet relayed a block.
if (a.nLastBlockTime != b.nLastBlockTime) {
return a.nLastBlockTime < b.nLastBlockTime;
}
if (a.fRelevantServices != b.fRelevantServices) {
return b.fRelevantServices;
}
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNodeTXTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
// There is a fall-through here because it is common for a node to have more
// than a few peers that have not yet relayed txn.
if (a.nLastTXTime != b.nLastTXTime) {
return a.nLastTXTime < b.nLastTXTime;
}
if (a.fRelayTxes != b.fRelayTxes) {
return b.fRelayTxes;
}
if (a.fBloomFilter != b.fBloomFilter) {
return a.fBloomFilter;
}
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNodeProofTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
// There is a fall-through here because it is common for a node to have more
// than a few peers that have not yet relayed proofs. This fallback is also
// used in the case avalanche is not enabled.
if (a.nLastProofTime != b.nLastProofTime) {
return a.nLastProofTime < b.nLastProofTime;
}
return a.nTimeConnected > b.nTimeConnected;
}
// Pick out the potential block-relay only peers, and sort them by last block
// time.
static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
if (a.fRelayTxes != b.fRelayTxes) {
return a.fRelayTxes;
}
if (a.nLastBlockTime != b.nLastBlockTime) {
return a.nLastBlockTime < b.nLastBlockTime;
}
if (a.fRelevantServices != b.fRelevantServices) {
return b.fRelevantServices;
}
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNodeAvailabilityScore(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
// Equality can happen if the nodes have no score or it has not been
// computed yet.
if (a.availabilityScore != b.availabilityScore) {
return a.availabilityScore < b.availabilityScore;
}
return a.nTimeConnected > b.nTimeConnected;
}
//! Sort an array by the specified comparator, then erase the last K elements.
template <typename T, typename Comparator>
static void EraseLastKElements(std::vector<T> &elements, Comparator comparator,
size_t k) {
std::sort(elements.begin(), elements.end(), comparator);
size_t eraseSize = std::min(k, elements.size());
elements.erase(elements.end() - eraseSize, elements.end());
}
//! Sort an array by the specified comparator, then erase up to K last elements
//! which verify the condition.
template <typename T, typename Comparator, typename Condition>
static void EraseLastKElementsIf(std::vector<T> &elements,
Comparator comparator, size_t k,
Condition cond) {
std::sort(elements.begin(), elements.end(), comparator);
size_t eraseSize = std::min(k, elements.size());
elements.erase(
std::remove_if(elements.end() - eraseSize, elements.end(), cond),
elements.end());
}
[[nodiscard]] std::optional<NodeId>
SelectNodeToEvict(std::vector<NodeEvictionCandidate> &&vEvictionCandidates) {
// Protect connections with certain characteristics
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
// Protect the 8 nodes with the lowest minimum ping time.
// An attacker cannot manipulate this metric without physically moving nodes
// closer to the target.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
// Protect 4 nodes that most recently sent us novel transactions accepted
// into our mempool. An attacker cannot manipulate this metric without
// performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
// Protect 4 nodes that most recently sent us novel proofs accepted
// into our proof pool. An attacker cannot manipulate this metric without
// performing useful work.
// TODO this filter must happen before the last tx time once avalanche is
// enabled for pre-consensus.
EraseLastKElements(vEvictionCandidates, CompareNodeProofTime, 4);
// Protect up to 8 non-tx-relay peers that have sent us novel blocks.
EraseLastKElementsIf(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
[](NodeEvictionCandidate const &n) {
return !n.fRelayTxes && n.fRelevantServices;
});
// Protect 4 nodes that most recently sent us novel blocks.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
// Protect up to 128 nodes that have the highest avalanche availability
// score.
EraseLastKElementsIf(vEvictionCandidates, CompareNodeAvailabilityScore, 128,
[](NodeEvictionCandidate const &n) {
return n.availabilityScore > 0.;
});
// Protect the half of the remaining nodes which have been connected the
// longest. This replicates the non-eviction implicit behavior, and
// precludes attacks that start later.
// Reserve half of these protected spots for localhost peers, even if
// they're not longest-uptime overall. This helps protect tor peers, which
// tend to be otherwise disadvantaged under our eviction criteria.
size_t initial_size = vEvictionCandidates.size();
size_t total_protect_size = initial_size / 2;
// Pick out up to 1/4 peers that are localhost, sorted by longest uptime.
EraseLastKElementsIf(
vEvictionCandidates, CompareLocalHostTimeConnected,
total_protect_size / 2,
[](NodeEvictionCandidate const &n) { return n.m_is_local; });
// Calculate how many we removed, and update our total number of peers that
// we want to protect based on uptime accordingly.
total_protect_size -= initial_size - vEvictionCandidates.size();
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected,
total_protect_size);
if (vEvictionCandidates.empty()) {
return std::nullopt;
}
// If any remaining peers are preferred for eviction consider only them.
// This happens after the other preferences since if a peer is really the
// best by other criteria (esp relaying blocks)
// then we probably don't want to evict it no matter what.
if (std::any_of(
vEvictionCandidates.begin(), vEvictionCandidates.end(),
[](NodeEvictionCandidate const &n) { return n.prefer_evict; })) {
vEvictionCandidates.erase(
std::remove_if(
vEvictionCandidates.begin(), vEvictionCandidates.end(),
[](NodeEvictionCandidate const &n) { return !n.prefer_evict; }),
vEvictionCandidates.end());
}
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
uint64_t naMostConnections;
unsigned int nMostConnections = 0;
int64_t nMostConnectionsTime = 0;
std::map<uint64_t, std::vector<NodeEvictionCandidate>> mapNetGroupNodes;
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
std::vector<NodeEvictionCandidate> &group =
mapNetGroupNodes[node.nKeyedNetGroup];
group.push_back(node);
int64_t grouptime = group[0].nTimeConnected;
size_t group_size = group.size();
if (group_size > nMostConnections ||
(group_size == nMostConnections &&
grouptime > nMostConnectionsTime)) {
nMostConnections = group_size;
nMostConnectionsTime = grouptime;
naMostConnections = node.nKeyedNetGroup;
}
}
// Reduce to the network group with the most connections
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
// Disconnect from the network group with the most connections
return vEvictionCandidates.front().id;
}
/** Try to find a connection to evict when the node is full.
* Extreme care must be taken to avoid opening the node to attacker
* triggered network partitioning.
* The strategy used here is to protect a small number of peers
* for each of several distinct characteristics which are difficult
* to forge. In order to partition a node the attacker must be
* simultaneously better at all of them than honest peers.
*/
bool CConnman::AttemptToEvictConnection() {
std::vector<NodeEvictionCandidate> vEvictionCandidates;
{
LOCK(cs_vNodes);
for (const CNode *node : vNodes) {
if (node->HasPermission(PF_NOBAN)) {
continue;
}
if (!node->IsInboundConn()) {
continue;
}
if (node->fDisconnect) {
continue;
}
bool peer_relay_txes = false;
bool peer_filter_not_null = false;
if (node->m_tx_relay != nullptr) {
LOCK(node->m_tx_relay->cs_filter);
peer_relay_txes = node->m_tx_relay->fRelayTxes;
peer_filter_not_null = node->m_tx_relay->pfilter != nullptr;
}
NodeEvictionCandidate candidate = {
node->GetId(),
node->nTimeConnected,
node->nMinPingUsecTime,
node->nLastBlockTime,
node->nLastProofTime,
node->nLastTXTime,
HasAllDesirableServiceFlags(node->nServices),
peer_relay_txes,
peer_filter_not_null,
node->nKeyedNetGroup,
node->m_prefer_evict,
node->addr.IsLocal(),
node->m_avalanche_state
? node->m_avalanche_state->getAvailabilityScore()
: -std::numeric_limits<double>::infinity()};
vEvictionCandidates.push_back(candidate);
}
}
const std::optional<NodeId> node_id_to_evict =
SelectNodeToEvict(std::move(vEvictionCandidates));
if (!node_id_to_evict) {
return false;
}
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (pnode->GetId() == *node_id_to_evict) {
pnode->fDisconnect = true;
return true;
}
}
return false;
}
void CConnman::AcceptConnection(const ListenSocket &hListenSocket) {
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
SOCKET hSocket =
accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len);
CAddress addr;
int nInbound = 0;
int nMaxInbound = nMaxConnections - m_max_outbound;
if (hSocket != INVALID_SOCKET) {
if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) {
LogPrintf("Warning: Unknown socket family\n");
}
}
NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE;
hListenSocket.AddSocketPermissionFlags(permissionFlags);
AddWhitelistPermissionFlags(permissionFlags, addr);
bool legacyWhitelisted = false;
if (NetPermissions::HasFlag(permissionFlags,
NetPermissionFlags::PF_ISIMPLICIT)) {
NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT);
if (gArgs.GetBoolArg("-whitelistforcerelay",
DEFAULT_WHITELISTFORCERELAY)) {
NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY);
}
if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) {
NetPermissions::AddFlag(permissionFlags, PF_RELAY);
}
NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL);
NetPermissions::AddFlag(permissionFlags, PF_NOBAN);
legacyWhitelisted = true;
}
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (pnode->IsInboundConn()) {
nInbound++;
}
}
}
if (hSocket == INVALID_SOCKET) {
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK) {
LogPrintf("socket error accept failed: %s\n",
NetworkErrorString(nErr));
}
return;
}
if (!fNetworkActive) {
LogPrintf("connection from %s dropped: not accepting new connections\n",
addr.ToString());
CloseSocket(hSocket);
return;
}
if (!IsSelectableSocket(hSocket)) {
LogPrintf("connection from %s dropped: non-selectable socket\n",
addr.ToString());
CloseSocket(hSocket);
return;
}
// According to the internet TCP_NODELAY is not carried into accepted
// sockets on all platforms. Set it again here just to be sure.
SetSocketNoDelay(hSocket);
// Don't accept connections from banned peers.
bool banned = m_banman && m_banman->IsBanned(addr);
if (!NetPermissions::HasFlag(permissionFlags,
NetPermissionFlags::PF_NOBAN) &&
banned) {
LogPrint(BCLog::NET, "connection from %s dropped (banned)\n",
addr.ToString());
CloseSocket(hSocket);
return;
}
// Only accept connections from discouraged peers if our inbound slots
// aren't (almost) full.
bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
if (!NetPermissions::HasFlag(permissionFlags,
NetPermissionFlags::PF_NOBAN) &&
nInbound + 1 >= nMaxInbound && discouraged) {
LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n",
addr.ToString());
CloseSocket(hSocket);
return;
}
if (nInbound >= nMaxInbound) {
if (!AttemptToEvictConnection()) {
// No connection to evict, disconnect the new connection
LogPrint(BCLog::NET, "failed to find an eviction candidate - "
"connection dropped (full)\n");
CloseSocket(hSocket);
return;
}
}
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
.Write(id)
.Finalize();
uint64_t extra_entropy =
GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY)
.Write(id)
.Finalize();
CAddress addr_bind = GetBindAddress(hSocket);
ServiceFlags nodeServices = nLocalServices;
if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) {
nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
}
CNode *pnode = new CNode(id, nodeServices, GetBestHeight(), hSocket, addr,
CalculateKeyedNetGroup(addr), nonce, extra_entropy,
addr_bind, "", ConnectionType::INBOUND);
pnode->AddRef();
pnode->m_permissionFlags = permissionFlags;
// If this flag is present, the user probably expect that RPC and QT report
// it as whitelisted (backward compatibility)
pnode->m_legacyWhitelisted = legacyWhitelisted;
pnode->m_prefer_evict = discouraged;
m_msgproc->InitializeNode(*config, pnode);
LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
}
// We received a new connection, harvest entropy from the time (and our peer
// count)
RandAddEvent(uint32_t(id));
}
void CConnman::DisconnectNodes() {
{
LOCK(cs_vNodes);
if (!fNetworkActive) {
// Disconnect any connected nodes
for (CNode *pnode : vNodes) {
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET,
"Network not active, dropping peer=%d\n",
pnode->GetId());
pnode->fDisconnect = true;
}
}
}
// Disconnect unused nodes
std::vector<CNode *> vNodesCopy = vNodes;
for (CNode *pnode : vNodesCopy) {
if (pnode->fDisconnect) {
// remove from vNodes
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode),
vNodes.end());
// release outbound grant (if any)
pnode->grantOutbound.Release();
// close socket and cleanup
pnode->CloseSocketDisconnect();
// hold in disconnected pool until all refs are released
pnode->Release();
vNodesDisconnected.push_back(pnode);
}
}
}
{
// Delete disconnected nodes
std::list<CNode *> vNodesDisconnectedCopy = vNodesDisconnected;
for (CNode *pnode : vNodesDisconnectedCopy) {
// wait until threads are done using it
if (pnode->GetRefCount() <= 0) {
bool fDelete = false;
{
TRY_LOCK(pnode->cs_vSend, lockSend);
if (lockSend) {
fDelete = true;
}
}
if (fDelete) {
vNodesDisconnected.remove(pnode);
DeleteNode(pnode);
}
}
}
}
}
void CConnman::NotifyNumConnectionsChanged() {
size_t vNodesSize;
{
LOCK(cs_vNodes);
vNodesSize = vNodes.size();
}
if (vNodesSize != nPrevNodeCount) {
nPrevNodeCount = vNodesSize;
if (clientInterface) {
clientInterface->NotifyNumConnectionsChanged(vNodesSize);
}
}
}
void CConnman::InactivityCheck(CNode *pnode) {
int64_t nTime = GetSystemTimeInSeconds();
if (nTime - pnode->nTimeConnected > m_peer_connect_timeout) {
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) {
LogPrint(BCLog::NET,
"socket no message in first %i seconds, %d %d from %d\n",
m_peer_connect_timeout, pnode->nLastRecv != 0,
pnode->nLastSend != 0, pnode->GetId());
pnode->fDisconnect = true;
} else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) {
LogPrintf("socket sending timeout: %is\n",
nTime - pnode->nLastSend);
pnode->fDisconnect = true;
} else if (nTime - pnode->nLastRecv >
(pnode->GetCommonVersion() > BIP0031_VERSION
? TIMEOUT_INTERVAL
: 90 * 60)) {
LogPrintf("socket receive timeout: %is\n",
nTime - pnode->nLastRecv);
pnode->fDisconnect = true;
} else if (pnode->nPingNonceSent &&
pnode->m_ping_start.load() +
std::chrono::seconds{TIMEOUT_INTERVAL} <
GetTime<std::chrono::microseconds>()) {
LogPrintf("ping timeout: %fs\n",
0.000001 * count_microseconds(
GetTime<std::chrono::microseconds>() -
pnode->m_ping_start.load()));
pnode->fDisconnect = true;
} else if (!pnode->fSuccessfullyConnected) {
LogPrint(BCLog::NET, "version handshake timeout from %d\n",
pnode->GetId());
pnode->fDisconnect = true;
}
}
}
bool CConnman::GenerateSelectSet(std::set<SOCKET> &recv_set,
std::set<SOCKET> &send_set,
std::set<SOCKET> &error_set) {
for (const ListenSocket &hListenSocket : vhListenSocket) {
recv_set.insert(hListenSocket.socket);
}
{
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
// Implement the following logic:
// * If there is data to send, select() for sending data. As this
// only happens when optimistic write failed, we choose to first
// drain the write buffer in this case before receiving more. This
// avoids needlessly queueing received data, if the remote peer is
// not themselves receiving data. This means properly utilizing
// TCP flow control signalling.
// * Otherwise, if there is space left in the receive buffer,
// select() for receiving data.
// * Hand off all complete messages to the processor, to be handled
// without blocking here.
bool select_recv = !pnode->fPauseRecv;
bool select_send;
{
LOCK(pnode->cs_vSend);
select_send = !pnode->vSendMsg.empty();
}
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
continue;
}
error_set.insert(pnode->hSocket);
if (select_send) {
send_set.insert(pnode->hSocket);
continue;
}
if (select_recv) {
recv_set.insert(pnode->hSocket);
}
}
}
return !recv_set.empty() || !send_set.empty() || !error_set.empty();
}
#ifdef USE_POLL
void CConnman::SocketEvents(std::set<SOCKET> &recv_set,
std::set<SOCKET> &send_set,
std::set<SOCKET> &error_set) {
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
if (!GenerateSelectSet(recv_select_set, send_select_set,
error_select_set)) {
interruptNet.sleep_for(
std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
return;
}
std::unordered_map<SOCKET, struct pollfd> pollfds;
for (SOCKET socket_id : recv_select_set) {
pollfds[socket_id].fd = socket_id;
pollfds[socket_id].events |= POLLIN;
}
for (SOCKET socket_id : send_select_set) {
pollfds[socket_id].fd = socket_id;
pollfds[socket_id].events |= POLLOUT;
}
for (SOCKET socket_id : error_select_set) {
pollfds[socket_id].fd = socket_id;
// These flags are ignored, but we set them for clarity
pollfds[socket_id].events |= POLLERR | POLLHUP;
}
std::vector<struct pollfd> vpollfds;
vpollfds.reserve(pollfds.size());
for (auto it : pollfds) {
vpollfds.push_back(std::move(it.second));
}
if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) <
0) {
return;
}
if (interruptNet) {
return;
}
for (struct pollfd pollfd_entry : vpollfds) {
if (pollfd_entry.revents & POLLIN) {
recv_set.insert(pollfd_entry.fd);
}
if (pollfd_entry.revents & POLLOUT) {
send_set.insert(pollfd_entry.fd);
}
if (pollfd_entry.revents & (POLLERR | POLLHUP)) {
error_set.insert(pollfd_entry.fd);
}
}
}
#else
void CConnman::SocketEvents(std::set<SOCKET> &recv_set,
std::set<SOCKET> &send_set,
std::set<SOCKET> &error_set) {
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
if (!GenerateSelectSet(recv_select_set, send_select_set,
error_select_set)) {
interruptNet.sleep_for(
std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
return;
}
//
// Find which sockets have data to receive
//
struct timeval timeout;
timeout.tv_sec = 0;
// frequency to poll pnode->vSend
timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000;
fd_set fdsetRecv;
fd_set fdsetSend;
fd_set fdsetError;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
SOCKET hSocketMax = 0;
for (SOCKET hSocket : recv_select_set) {
FD_SET(hSocket, &fdsetRecv);
hSocketMax = std::max(hSocketMax, hSocket);
}
for (SOCKET hSocket : send_select_set) {
FD_SET(hSocket, &fdsetSend);
hSocketMax = std::max(hSocketMax, hSocket);
}
for (SOCKET hSocket : error_select_set) {
FD_SET(hSocket, &fdsetError);
hSocketMax = std::max(hSocketMax, hSocket);
}
int nSelect =
select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
if (interruptNet) {
return;
}
if (nSelect == SOCKET_ERROR) {
int nErr = WSAGetLastError();
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
for (unsigned int i = 0; i <= hSocketMax; i++) {
FD_SET(i, &fdsetRecv);
}
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
if (!interruptNet.sleep_for(
std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS))) {
return;
}
}
for (SOCKET hSocket : recv_select_set) {
if (FD_ISSET(hSocket, &fdsetRecv)) {
recv_set.insert(hSocket);
}
}
for (SOCKET hSocket : send_select_set) {
if (FD_ISSET(hSocket, &fdsetSend)) {
send_set.insert(hSocket);
}
}
for (SOCKET hSocket : error_select_set) {
if (FD_ISSET(hSocket, &fdsetError)) {
error_set.insert(hSocket);
}
}
}
#endif
void CConnman::SocketHandler() {
std::set<SOCKET> recv_set, send_set, error_set;
SocketEvents(recv_set, send_set, error_set);
if (interruptNet) {
return;
}
//
// Accept new connections
//
for (const ListenSocket &hListenSocket : vhListenSocket) {
if (hListenSocket.socket != INVALID_SOCKET &&
recv_set.count(hListenSocket.socket) > 0) {
AcceptConnection(hListenSocket);
}
}
//
// Service each socket
//
std::vector<CNode *> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode *pnode : vNodesCopy) {
pnode->AddRef();
}
}
for (CNode *pnode : vNodesCopy) {
if (interruptNet) {
return;
}
//
// Receive
//
bool recvSet = false;
bool sendSet = false;
bool errorSet = false;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
continue;
}
recvSet = recv_set.count(pnode->hSocket) > 0;
sendSet = send_set.count(pnode->hSocket) > 0;
errorSet = error_set.count(pnode->hSocket) > 0;
}
if (recvSet || errorSet) {
// typical socket buffer is 8K-64K
char pchBuf[0x10000];
int32_t nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
continue;
}
nBytes =
recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
}
if (nBytes > 0) {
bool notify = false;
if (!pnode->ReceiveMsgBytes(*config, pchBuf, nBytes, notify)) {
pnode->CloseSocketDisconnect();
}
RecordBytesRecv(nBytes);
if (notify) {
size_t nSizeAdded = 0;
auto it(pnode->vRecvMsg.begin());
for (; it != pnode->vRecvMsg.end(); ++it) {
// vRecvMsg contains only completed CNetMessage
// the single possible partially deserialized message
// are held by TransportDeserializer
nSizeAdded += it->m_raw_message_size;
}
{
LOCK(pnode->cs_vProcessMsg);
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(),
pnode->vRecvMsg,
pnode->vRecvMsg.begin(), it);
pnode->nProcessQueueSize += nSizeAdded;
pnode->fPauseRecv =
pnode->nProcessQueueSize > nReceiveFloodSize;
}
WakeMessageHandler();
}
} else if (nBytes == 0) {
// socket closed gracefully
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "socket closed for peer=%d\n",
pnode->GetId());
}
pnode->CloseSocketDisconnect();
} else if (nBytes < 0) {
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET,
"socket recv error for peer=%d: %s\n",
pnode->GetId(), NetworkErrorString(nErr));
}
pnode->CloseSocketDisconnect();
}
}
}
//
// Send
//
if (sendSet) {
LOCK(pnode->cs_vSend);
size_t nBytes = SocketSendData(pnode);
if (nBytes) {
RecordBytesSent(nBytes);
}
}
InactivityCheck(pnode);
}
{
LOCK(cs_vNodes);
for (CNode *pnode : vNodesCopy) {
pnode->Release();
}
}
}
void CConnman::ThreadSocketHandler() {
while (!interruptNet) {
DisconnectNodes();
NotifyNumConnectionsChanged();
SocketHandler();
}
}
void CConnman::WakeMessageHandler() {
{
LOCK(mutexMsgProc);
fMsgProcWake = true;
}
condMsgProc.notify_one();
}
#ifdef USE_UPNP
static CThreadInterrupt g_upnp_interrupt;
static std::thread g_upnp_thread;
static void ThreadMapPort() {
std::string port = strprintf("%u", GetListenPort());
const char *multicastif = nullptr;
const char *minissdpdpath = nullptr;
struct UPNPDev *devlist = nullptr;
char lanaddr[64];
int error = 0;
#if MINIUPNPC_API_VERSION < 14
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
#else
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
#endif
struct UPNPUrls urls;
struct IGDdatas data;
int r;
r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
if (r == 1) {
if (fDiscover) {
char externalIPAddress[40];
r = UPNP_GetExternalIPAddress(
urls.controlURL, data.first.servicetype, externalIPAddress);
if (r != UPNPCOMMAND_SUCCESS) {
LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
} else {
if (externalIPAddress[0]) {
CNetAddr resolved;
if (LookupHost(externalIPAddress, resolved, false)) {
LogPrintf("UPnP: ExternalIPAddress = %s\n",
resolved.ToString());
AddLocal(resolved, LOCAL_UPNP);
}
} else {
LogPrintf("UPnP: GetExternalIPAddress failed.\n");
}
}
}
std::string strDesc = PACKAGE_NAME " " + FormatFullVersion();
do {
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
port.c_str(), port.c_str(), lanaddr,
strDesc.c_str(), "TCP", 0, "0");
if (r != UPNPCOMMAND_SUCCESS) {
LogPrintf(
"AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
port, port, lanaddr, r, strupnperror(r));
} else {
LogPrintf("UPnP Port Mapping successful.\n");
}
} while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20)));
r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype,
port.c_str(), "TCP", 0);
LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
freeUPNPDevlist(devlist);
devlist = nullptr;
FreeUPNPUrls(&urls);
} else {
LogPrintf("No valid UPnP IGDs found\n");
freeUPNPDevlist(devlist);
devlist = nullptr;
if (r != 0) {
FreeUPNPUrls(&urls);
}
}
}
void StartMapPort() {
if (!g_upnp_thread.joinable()) {
assert(!g_upnp_interrupt);
g_upnp_thread = std::thread(
(std::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)));
}
}
void InterruptMapPort() {
if (g_upnp_thread.joinable()) {
g_upnp_interrupt();
}
}
void StopMapPort() {
if (g_upnp_thread.joinable()) {
g_upnp_thread.join();
g_upnp_interrupt.reset();
}
}
#else
void StartMapPort() {
// Intentionally left blank.
}
void InterruptMapPort() {
// Intentionally left blank.
}
void StopMapPort() {
// Intentionally left blank.
}
#endif
void CConnman::ThreadDNSAddressSeed() {
FastRandomContext rng;
std::vector<std::string> seeds =
GetRandomizedDNSSeeds(config->GetChainParams());
// Number of seeds left before testing if we have enough connections
int seeds_right_now = 0;
int found = 0;
if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
// When -forcednsseed is provided, query all.
seeds_right_now = seeds.size();
} else if (addrman.size() == 0) {
// If we have no known peers, query all.
// This will occur on the first run, or if peers.dat has been
// deleted.
seeds_right_now = seeds.size();
}
// goal: only query DNS seed if address need is acute
// * If we have a reasonable number of peers in addrman, spend
// some time trying them first. This improves user privacy by
// creating fewer identifying DNS requests, reduces trust by
// giving seeds less influence on the network topology, and
// reduces traffic to the seeds.
// * When querying DNS seeds query a few at once, this ensures
// that we don't give DNS seeds the ability to eclipse nodes
// that query them.
// * If we continue having problems, eventually query all the
// DNS seeds, and if that fails too, also try the fixed seeds.
// (done in ThreadOpenConnections)
const std::chrono::seconds seeds_wait_time =
(addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD
? DNSSEEDS_DELAY_MANY_PEERS
: DNSSEEDS_DELAY_FEW_PEERS);
for (const std::string &seed : seeds) {
if (seeds_right_now == 0) {
seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
if (addrman.size() > 0) {
LogPrintf("Waiting %d seconds before querying DNS seeds.\n",
seeds_wait_time.count());
std::chrono::seconds to_wait = seeds_wait_time;
while (to_wait.count() > 0) {
// if sleeping for the MANY_PEERS interval, wake up
// early to see if we have enough peers and can stop
// this thread entirely freeing up its resources
std::chrono::seconds w =
std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
if (!interruptNet.sleep_for(w)) {
return;
}
to_wait -= w;
int nRelevant = 0;
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (pnode->fSuccessfullyConnected &&
pnode->IsOutboundOrBlockRelayConn()) {
++nRelevant;
}
}
}
if (nRelevant >= 2) {
if (found > 0) {
LogPrintf("%d addresses found from DNS seeds\n",
found);
LogPrintf(
"P2P peers available. Finished DNS seeding.\n");
} else {
LogPrintf(
"P2P peers available. Skipped DNS seeding.\n");
}
return;
}
}
}
}
if (interruptNet) {
return;
}
// hold off on querying seeds if P2P network deactivated
if (!fNetworkActive) {
LogPrintf("Waiting for network to be reactivated before querying "
"DNS seeds.\n");
do {
if (!interruptNet.sleep_for(std::chrono::seconds{1})) {
return;
}
} while (!fNetworkActive);
}
LogPrintf("Loading addresses from DNS seed %s\n", seed);
if (HaveNameProxy()) {
AddAddrFetch(seed);
} else {
std::vector<CNetAddr> vIPs;
std::vector<CAddress> vAdd;
ServiceFlags requiredServiceBits =
GetDesirableServiceFlags(NODE_NONE);
std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
CNetAddr resolveSource;
if (!resolveSource.SetInternal(host)) {
continue;
}
// Limits number of IPs learned from a DNS seed
unsigned int nMaxIPs = 256;
if (LookupHost(host, vIPs, nMaxIPs, true)) {
for (const CNetAddr &ip : vIPs) {
int nOneDay = 24 * 3600;
CAddress addr = CAddress(
CService(ip, config->GetChainParams().GetDefaultPort()),
requiredServiceBits);
// Use a random age between 3 and 7 days old.
addr.nTime =
GetTime() - 3 * nOneDay - rng.randrange(4 * nOneDay);
vAdd.push_back(addr);
found++;
}
addrman.Add(vAdd, resolveSource);
} else {
// We now avoid directly using results from DNS Seeds which do
// not support service bit filtering, instead using them as a
// addrfetch to get nodes with our desired service bits.
AddAddrFetch(seed);
}
}
--seeds_right_now;
}
LogPrintf("%d addresses found from DNS seeds\n", found);
}
void CConnman::DumpAddresses() {
int64_t nStart = GetTimeMillis();
CAddrDB adb(config->GetChainParams());
adb.Write(addrman);
LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
addrman.size(), GetTimeMillis() - nStart);
}
void CConnman::ProcessAddrFetch() {
std::string strDest;
{
LOCK(m_addr_fetches_mutex);
if (m_addr_fetches.empty()) {
return;
}
strDest = m_addr_fetches.front();
m_addr_fetches.pop_front();
}
CAddress addr;
CSemaphoreGrant grant(*semOutbound, true);
if (grant) {
OpenNetworkConnection(addr, false, &grant, strDest.c_str(),
ConnectionType::ADDR_FETCH);
}
}
bool CConnman::GetTryNewOutboundPeer() {
return m_try_another_outbound_peer;
}
void CConnman::SetTryNewOutboundPeer(bool flag) {
m_try_another_outbound_peer = flag;
LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n",
flag ? "true" : "false");
}
// Return the number of peers we have over our outbound connection limit.
// Exclude peers that are marked for disconnect, or are going to be disconnected
// soon (eg one-shots and feelers).
// Also exclude peers that haven't finished initial connection handshake yet (so
// that we don't decide we're over our desired connection limit, and then evict
// some peer that has finished the handshake).
int CConnman::GetExtraOutboundCount() {
int nOutbound = 0;
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (pnode->fSuccessfullyConnected && !pnode->fDisconnect &&
pnode->IsOutboundOrBlockRelayConn()) {
++nOutbound;
}
}
}
return std::max(
nOutbound - m_max_outbound_full_relay - m_max_outbound_block_relay, 0);
}
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect) {
// Connect to specific addresses
if (!connect.empty()) {
for (int64_t nLoop = 0;; nLoop++) {
ProcessAddrFetch();
for (const std::string &strAddr : connect) {
CAddress addr(CService(), NODE_NONE);
OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(),
ConnectionType::MANUAL);
for (int i = 0; i < 10 && i < nLoop; i++) {
if (!interruptNet.sleep_for(
std::chrono::milliseconds(500))) {
return;
}
}
}
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
return;
}
}
}
// Initiate network connections
int64_t nStart = GetTime();
// Minimum time before next feeler connection (in microseconds).
int64_t nNextFeeler =
PoissonNextSend(nStart * 1000 * 1000, FEELER_INTERVAL);
while (!interruptNet) {
ProcessAddrFetch();
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
return;
}
CSemaphoreGrant grant(*semOutbound);
if (interruptNet) {
return;
}
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
// Note that we only do this if we started with an empty peers.dat,
// (in which case we will query DNS seeds immediately) *and* the DNS
// seeds have not returned any results.
if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
static bool done = false;
if (!done) {
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be "
"available.\n");
CNetAddr local;
local.SetInternal("fixedseeds");
addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()),
local);
done = true;
}
}
//
// Choose an address to connect to based on most recently seen
//
CAddress addrConnect;
// Only connect out to one peer per network group (/16 for IPv4).
int nOutboundFullRelay = 0;
int nOutboundBlockRelay = 0;
std::set<std::vector<uint8_t>> setConnected;
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (pnode->IsFullOutboundConn()) {
nOutboundFullRelay++;
}
if (pnode->IsBlockOnlyConn()) {
nOutboundBlockRelay++;
}
// Netgroups for inbound and manual peers are not excluded
// because our goal here is to not use multiple of our
// limited outbound slots on a single netgroup but inbound
// and manual peers do not use our outbound slots. Inbound
// peers also have the added issue that they could be attacker
// controlled and could be used to prevent us from connecting
// to particular hosts if we used them here.
switch (pnode->m_conn_type) {
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
break;
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH:
case ConnectionType::FEELER:
setConnected.insert(
pnode->addr.GetGroup(addrman.m_asmap));
} // no default case, so the compiler can warn about missing
// cases
}
}
ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
int64_t nTime = GetTimeMicros();
bool fFeeler = false;
// Determine what type of connection to open. Opening
// OUTBOUND_FULL_RELAY connections gets the highest priority until we
// meet our full-relay capacity. Then we open BLOCK_RELAY connection
// until we hit our block-relay-only peer limit.
// GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
// try opening an additional OUTBOUND_FULL_RELAY connection. If none of
// these conditions are met, check the nNextFeeler timer to decide if
// we should open a FEELER.
if (nOutboundFullRelay < m_max_outbound_full_relay) {
// OUTBOUND_FULL_RELAY
} else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
conn_type = ConnectionType::BLOCK_RELAY;
} else if (GetTryNewOutboundPeer()) {
// OUTBOUND_FULL_RELAY
} else if (nTime > nNextFeeler) {
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
conn_type = ConnectionType::FEELER;
fFeeler = true;
} else {
// skip to next iteration of while loop
continue;
}
addrman.ResolveCollisions();
int64_t nANow = GetAdjustedTime();
int nTries = 0;
while (!interruptNet) {
CAddrInfo addr = addrman.SelectTriedCollision();
// SelectTriedCollision returns an invalid address if it is empty.
if (!fFeeler || !addr.IsValid()) {
addr = addrman.Select(fFeeler);
}
// Require outbound connections, other than feelers, to be to
// distinct network groups
if (!fFeeler &&
setConnected.count(addr.GetGroup(addrman.m_asmap))) {
break;
}
// if we selected an invalid or local address, restart
if (!addr.IsValid() || IsLocal(addr)) {
break;
}
// If we didn't find an appropriate destination after trying 100
// addresses fetched from addrman, stop this loop, and let the outer
// loop run again (which sleeps, adds seed nodes, recalculates
// already-connected network ranges, ...) before trying new addrman
// addresses.
nTries++;
if (nTries > 100) {
break;
}
if (!IsReachable(addr)) {
continue;
}
// only consider very recently tried nodes after 30 failed attempts
if (nANow - addr.nLastTry < 600 && nTries < 30) {
continue;
}
// for non-feelers, require all the services we'll want,
// for feelers, only require they be a full node (only because most
// SPV clients don't have a good address DB available)
if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
continue;
}
if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
continue;
}
// do not allow non-default ports, unless after 50 invalid addresses
// selected already.
if (addr.GetPort() != config->GetChainParams().GetDefaultPort() &&
nTries < 50) {
continue;
}
addrConnect = addr;
break;
}
if (addrConnect.IsValid()) {
if (fFeeler) {
// Add small amount of random noise before connection to avoid
// synchronization.
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
if (!interruptNet.sleep_for(
std::chrono::milliseconds(randsleep))) {
return;
}
LogPrint(BCLog::NET, "Making feeler connection to %s\n",
addrConnect.ToString());
}
OpenNetworkConnection(addrConnect,
int(setConnected.size()) >=
std::min(nMaxConnections - 1, 2),
&grant, nullptr, conn_type);
}
}
}
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() {
std::vector<AddedNodeInfo> ret;
std::list<std::string> lAddresses(0);
{
LOCK(cs_vAddedNodes);
ret.reserve(vAddedNodes.size());
std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(),
std::back_inserter(lAddresses));
}
// Build a map of all already connected addresses (by IP:port and by name)
// to inbound/outbound and resolved CService
std::map<CService, bool> mapConnected;
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (pnode->addr.IsValid()) {
mapConnected[pnode->addr] = pnode->IsInboundConn();
}
std::string addrName = pnode->GetAddrName();
if (!addrName.empty()) {
mapConnectedByName[std::move(addrName)] =
std::make_pair(pnode->IsInboundConn(),
static_cast<const CService &>(pnode->addr));
}
}
}
for (const std::string &strAddNode : lAddresses) {
CService service(LookupNumeric(strAddNode, Params().GetDefaultPort()));
AddedNodeInfo addedNode{strAddNode, CService(), false, false};
if (service.IsValid()) {
// strAddNode is an IP:port
auto it = mapConnected.find(service);
if (it != mapConnected.end()) {
addedNode.resolvedAddress = service;
addedNode.fConnected = true;
addedNode.fInbound = it->second;
}
} else {
// strAddNode is a name
auto it = mapConnectedByName.find(strAddNode);
if (it != mapConnectedByName.end()) {
addedNode.resolvedAddress = it->second.second;
addedNode.fConnected = true;
addedNode.fInbound = it->second.first;
}
}
ret.emplace_back(std::move(addedNode));
}
return ret;
}
void CConnman::ThreadOpenAddedConnections() {
while (true) {
CSemaphoreGrant grant(*semAddnode);
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
bool tried = false;
for (const AddedNodeInfo &info : vInfo) {
if (!info.fConnected) {
if (!grant.TryAcquire()) {
// If we've used up our semaphore and need a new one, let's
// not wait here since while we are waiting the
// addednodeinfo state might change.
break;
}
tried = true;
CAddress addr(CService(), NODE_NONE);
OpenNetworkConnection(addr, false, &grant,
info.strAddedNode.c_str(),
ConnectionType::MANUAL);
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
return;
}
}
}
// Retry every 60 seconds if a connection was attempted, otherwise two
// seconds.
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) {
return;
}
}
}
// If successful, this moves the passed grant to the constructed node.
void CConnman::OpenNetworkConnection(const CAddress &addrConnect,
bool fCountFailure,
CSemaphoreGrant *grantOutbound,
const char *pszDest,
ConnectionType conn_type) {
assert(conn_type != ConnectionType::INBOUND);
//
// Initiate outbound network connection
//
if (interruptNet) {
return;
}
if (!fNetworkActive) {
return;
}
if (!pszDest) {
bool banned_or_discouraged =
m_banman && (m_banman->IsDiscouraged(addrConnect) ||
m_banman->IsBanned(addrConnect));
if (IsLocal(addrConnect) ||
FindNode(static_cast<CNetAddr>(addrConnect)) ||
banned_or_discouraged || FindNode(addrConnect.ToStringIPPort())) {
return;
}
} else if (FindNode(std::string(pszDest))) {
return;
}
CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type);
if (!pnode) {
return;
}
if (grantOutbound) {
grantOutbound->MoveTo(pnode->grantOutbound);
}
m_msgproc->InitializeNode(*config, pnode);
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
}
}
void CConnman::ThreadMessageHandler() {
while (!flagInterruptMsgProc) {
std::vector<CNode *> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode *pnode : vNodesCopy) {
pnode->AddRef();
}
}
bool fMoreWork = false;
for (CNode *pnode : vNodesCopy) {
if (pnode->fDisconnect) {
continue;
}
// Receive messages
bool fMoreNodeWork = m_msgproc->ProcessMessages(
*config, pnode, flagInterruptMsgProc);
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
if (flagInterruptMsgProc) {
return;
}
// Send messages
{
LOCK(pnode->cs_sendProcessing);
m_msgproc->SendMessages(*config, pnode, flagInterruptMsgProc);
}
if (flagInterruptMsgProc) {
return;
}
}
{
LOCK(cs_vNodes);
for (CNode *pnode : vNodesCopy) {
pnode->Release();
}
}
WAIT_LOCK(mutexMsgProc, lock);
if (!fMoreWork) {
condMsgProc.wait_until(lock,
std::chrono::steady_clock::now() +
std::chrono::milliseconds(100),
[this]() EXCLUSIVE_LOCKS_REQUIRED(
mutexMsgProc) { return fMsgProcWake; });
}
fMsgProcWake = false;
}
}
bool CConnman::BindListenPort(const CService &addrBind, bilingual_str &strError,
NetPermissionFlags permissions) {
int nOne = 1;
// Create socket for listening for incoming connections
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) {
strError = strprintf(
Untranslated("Error: Bind address family for %s not supported"),
addrBind.ToString());
LogPrintf("%s\n", strError.original);
return false;
}
SOCKET hListenSocket = CreateSocket(addrBind);
if (hListenSocket == INVALID_SOCKET) {
strError =
strprintf(Untranslated("Error: Couldn't open socket for incoming "
"connections (socket returned error %s)"),
NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
return false;
}
// Allow binding if the port is still in TIME_WAIT state after
// the program was closed and restarted.
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne,
sizeof(int));
// Some systems don't have IPV6_V6ONLY but are always v6only; others do have
// the option and enable it by default or not. Try to enable it, if
// possible.
if (addrBind.IsIPv6()) {
#ifdef IPV6_V6ONLY
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY,
(sockopt_arg_type)&nOne, sizeof(int));
#endif
#ifdef WIN32
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL,
(sockopt_arg_type)&nProtLevel, sizeof(int));
#endif
}
if (::bind(hListenSocket, (struct sockaddr *)&sockaddr, len) ==
SOCKET_ERROR) {
int nErr = WSAGetLastError();
if (nErr == WSAEADDRINUSE) {
strError = strprintf(_("Unable to bind to %s on this computer. %s "
"is probably already running."),
addrBind.ToString(), PACKAGE_NAME);
} else {
strError = strprintf(_("Unable to bind to %s on this computer "
"(bind returned error %s)"),
addrBind.ToString(), NetworkErrorString(nErr));
}
LogPrintf("%s\n", strError.original);
CloseSocket(hListenSocket);
return false;
}
LogPrintf("Bound to %s\n", addrBind.ToString());
// Listen for incoming connections
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) {
strError = strprintf(_("Error: Listening for incoming connections "
"failed (listen returned error %s)"),
NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
CloseSocket(hListenSocket);
return false;
}
vhListenSocket.push_back(ListenSocket(hListenSocket, permissions));
if (addrBind.IsRoutable() && fDiscover && (permissions & PF_NOBAN) == 0) {
AddLocal(addrBind, LOCAL_BIND);
}
return true;
}
void Discover() {
if (!fDiscover) {
return;
}
#ifdef WIN32
// Get local host IP
char pszHostName[256] = "";
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) {
std::vector<CNetAddr> vaddr;
if (LookupHost(pszHostName, vaddr, 0, true)) {
for (const CNetAddr &addr : vaddr) {
if (AddLocal(addr, LOCAL_IF)) {
LogPrintf("%s: %s - %s\n", __func__, pszHostName,
addr.ToString());
}
}
}
}
#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
// Get local host ip
struct ifaddrs *myaddrs;
if (getifaddrs(&myaddrs) == 0) {
for (struct ifaddrs *ifa = myaddrs; ifa != nullptr;
ifa = ifa->ifa_next) {
if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 ||
strcmp(ifa->ifa_name, "lo") == 0 ||
strcmp(ifa->ifa_name, "lo0") == 0) {
continue;
}
if (ifa->ifa_addr->sa_family == AF_INET) {
struct sockaddr_in *s4 =
reinterpret_cast<struct sockaddr_in *>(ifa->ifa_addr);
CNetAddr addr(s4->sin_addr);
if (AddLocal(addr, LOCAL_IF)) {
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name,
addr.ToString());
}
} else if (ifa->ifa_addr->sa_family == AF_INET6) {
struct sockaddr_in6 *s6 =
reinterpret_cast<struct sockaddr_in6 *>(ifa->ifa_addr);
CNetAddr addr(s6->sin6_addr);
if (AddLocal(addr, LOCAL_IF)) {
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name,
addr.ToString());
}
}
}
freeifaddrs(myaddrs);
}
#endif
}
void CConnman::SetNetworkActive(bool active) {
LogPrintf("%s: %s\n", __func__, active);
if (fNetworkActive == active) {
return;
}
fNetworkActive = active;
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
}
CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In,
bool network_active)
: config(&configIn), nSeed0(nSeed0In), nSeed1(nSeed1In) {
SetTryNewOutboundPeer(false);
Options connOptions;
Init(connOptions);
SetNetworkActive(network_active);
}
NodeId CConnman::GetNewNodeId() {
return nLastNodeId.fetch_add(1);
}
bool CConnman::Bind(const CService &addr, unsigned int flags,
NetPermissionFlags permissions) {
if (!(flags & BF_EXPLICIT) && !IsReachable(addr)) {
return false;
}
bilingual_str strError;
if (!BindListenPort(addr, strError, permissions)) {
if ((flags & BF_REPORT_ERROR) && clientInterface) {
clientInterface->ThreadSafeMessageBox(
strError, "", CClientUIInterface::MSG_ERROR);
}
return false;
}
return true;
}
bool CConnman::InitBinds(
const std::vector<CService> &binds,
const std::vector<NetWhitebindPermissions> &whiteBinds) {
bool fBound = false;
for (const auto &addrBind : binds) {
fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR),
NetPermissionFlags::PF_NONE);
}
for (const auto &addrBind : whiteBinds) {
fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR),
addrBind.m_flags);
}
if (binds.empty() && whiteBinds.empty()) {
struct in_addr inaddr_any;
inaddr_any.s_addr = INADDR_ANY;
struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE,
NetPermissionFlags::PF_NONE);
fBound |= Bind(CService(inaddr_any, GetListenPort()),
!fBound ? BF_REPORT_ERROR : BF_NONE,
NetPermissionFlags::PF_NONE);
}
return fBound;
}
bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) {
Init(connOptions);
{
LOCK(cs_totalBytesRecv);
nTotalBytesRecv = 0;
}
{
LOCK(cs_totalBytesSent);
nTotalBytesSent = 0;
nMaxOutboundTotalBytesSentInCycle = 0;
nMaxOutboundCycleStartTime = 0;
}
if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Failed to listen on any port. Use -listen=0 if you want "
"this."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
for (const auto &strDest : connOptions.vSeedNodes) {
AddAddrFetch(strDest);
}
if (clientInterface) {
clientInterface->InitMessage(_("Loading P2P addresses...").translated);
}
// Load addresses from peers.dat
int64_t nStart = GetTimeMillis();
{
CAddrDB adb(config->GetChainParams());
if (adb.Read(addrman)) {
LogPrintf("Loaded %i addresses from peers.dat %dms\n",
addrman.size(), GetTimeMillis() - nStart);
} else {
// Addrman can be in an inconsistent state after failure, reset it
addrman.Clear();
LogPrintf("Invalid or missing peers.dat; recreating\n");
DumpAddresses();
}
}
uiInterface.InitMessage(_("Starting network threads...").translated);
fAddressesInitialized = true;
if (semOutbound == nullptr) {
// initialize semaphore
semOutbound = std::make_unique<CSemaphore>(
std::min(m_max_outbound, nMaxConnections));
}
if (semAddnode == nullptr) {
// initialize semaphore
semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
}
//
// Start threads
//
assert(m_msgproc);
InterruptSocks5(false);
interruptNet.reset();
flagInterruptMsgProc = false;
{
LOCK(mutexMsgProc);
fMsgProcWake = false;
}
// Send and receive from sockets, accept connections
threadSocketHandler = std::thread(
&TraceThread<std::function<void()>>, "net",
std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
if (!gArgs.GetBoolArg("-dnsseed", true)) {
LogPrintf("DNS seeding disabled\n");
} else {
threadDNSAddressSeed =
std::thread(&TraceThread<std::function<void()>>, "dnsseed",
std::function<void()>(
std::bind(&CConnman::ThreadDNSAddressSeed, this)));
}
// Initiate manual connections
threadOpenAddedConnections =
std::thread(&TraceThread<std::function<void()>>, "addcon",
std::function<void()>(std::bind(
&CConnman::ThreadOpenAddedConnections, this)));
if (connOptions.m_use_addrman_outgoing &&
!connOptions.m_specified_outgoing.empty()) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Cannot provide specific connections and have addrman find "
"outgoing connections at the same."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
if (connOptions.m_use_addrman_outgoing ||
!connOptions.m_specified_outgoing.empty()) {
threadOpenConnections =
std::thread(&TraceThread<std::function<void()>>, "opencon",
std::function<void()>(
std::bind(&CConnman::ThreadOpenConnections, this,
connOptions.m_specified_outgoing)));
}
// Process messages
threadMessageHandler =
std::thread(&TraceThread<std::function<void()>>, "msghand",
std::function<void()>(
std::bind(&CConnman::ThreadMessageHandler, this)));
// Dump network addresses
scheduler.scheduleEvery(
[this]() {
this->DumpAddresses();
return true;
},
DUMP_PEERS_INTERVAL);
return true;
}
class CNetCleanup {
public:
CNetCleanup() {}
~CNetCleanup() {
#ifdef WIN32
// Shutdown Windows Sockets
WSACleanup();
#endif
}
};
static CNetCleanup instance_of_cnetcleanup;
void CConnman::Interrupt() {
{
LOCK(mutexMsgProc);
flagInterruptMsgProc = true;
}
condMsgProc.notify_all();
interruptNet();
InterruptSocks5(true);
if (semOutbound) {
for (int i = 0; i < m_max_outbound; i++) {
semOutbound->post();
}
}
if (semAddnode) {
for (int i = 0; i < nMaxAddnode; i++) {
semAddnode->post();
}
}
}
void CConnman::StopThreads() {
if (threadMessageHandler.joinable()) {
threadMessageHandler.join();
}
if (threadOpenConnections.joinable()) {
threadOpenConnections.join();
}
if (threadOpenAddedConnections.joinable()) {
threadOpenAddedConnections.join();
}
if (threadDNSAddressSeed.joinable()) {
threadDNSAddressSeed.join();
}
if (threadSocketHandler.joinable()) {
threadSocketHandler.join();
}
}
void CConnman::StopNodes() {
if (fAddressesInitialized) {
DumpAddresses();
fAddressesInitialized = false;
}
// Close sockets
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
pnode->CloseSocketDisconnect();
}
for (ListenSocket &hListenSocket : vhListenSocket) {
if (hListenSocket.socket != INVALID_SOCKET) {
if (!CloseSocket(hListenSocket.socket)) {
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n",
NetworkErrorString(WSAGetLastError()));
}
}
}
// clean up some globals (to help leak detection)
for (CNode *pnode : vNodes) {
DeleteNode(pnode);
}
for (CNode *pnode : vNodesDisconnected) {
DeleteNode(pnode);
}
vNodes.clear();
vNodesDisconnected.clear();
vhListenSocket.clear();
semOutbound.reset();
semAddnode.reset();
}
void CConnman::DeleteNode(CNode *pnode) {
assert(pnode);
bool fUpdateConnectionTime = false;
m_msgproc->FinalizeNode(*config, pnode->GetId(), fUpdateConnectionTime);
if (fUpdateConnectionTime) {
addrman.Connected(pnode->addr);
}
delete pnode;
}
CConnman::~CConnman() {
Interrupt();
Stop();
}
void CConnman::SetServices(const CService &addr, ServiceFlags nServices) {
addrman.SetServices(addr, nServices);
}
void CConnman::MarkAddressGood(const CAddress &addr) {
addrman.Good(addr);
}
bool CConnman::AddNewAddresses(const std::vector<CAddress> &vAddr,
const CAddress &addrFrom, int64_t nTimePenalty) {
return addrman.Add(vAddr, addrFrom, nTimePenalty);
}
std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses,
size_t max_pct) {
std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct);
if (m_banman) {
addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
[this](const CAddress &addr) {
return m_banman->IsDiscouraged(
addr) ||
m_banman->IsBanned(addr);
}),
addresses.end());
}
return addresses;
}
std::vector<CAddress>
CConnman::GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct) {
SOCKET socket;
WITH_LOCK(requestor.cs_hSocket, socket = requestor.hSocket);
auto local_socket_bytes = GetBindAddress(socket).GetAddrBytes();
uint64_t cache_id =
GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
.Write(requestor.addr.GetNetwork())
.Write(local_socket_bytes.data(), local_socket_bytes.size())
.Finalize();
const auto current_time = GetTime<std::chrono::microseconds>();
auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
CachedAddrResponse &cache_entry = r.first->second;
// New CachedAddrResponse have expiration 0.
if (cache_entry.m_cache_entry_expiration < current_time) {
cache_entry.m_addrs_response_cache =
GetAddresses(max_addresses, max_pct);
// Choosing a proper cache lifetime is a trade-off between the privacy
// leak minimization and the usefulness of ADDR responses to honest
// users.
//
// Longer cache lifetime makes it more difficult for an attacker to
// scrape enough AddrMan data to maliciously infer something useful. By
// the time an attacker scraped enough AddrMan records, most of the
// records should be old enough to not leak topology info by e.g.
// analyzing real-time changes in timestamps.
//
// It takes only several hundred requests to scrape everything from an
// AddrMan containing 100,000 nodes, so ~24 hours of cache lifetime
// indeed makes the data less inferable by the time most of it could be
// scraped (considering that timestamps are updated via ADDR
// self-announcements and when nodes communicate). We also should be
// robust to those attacks which may not require scraping *full*
// victim's AddrMan (because even several timestamps of the same handful
// of nodes may leak privacy).
//
// On the other hand, longer cache lifetime makes ADDR responses
// outdated and less useful for an honest requestor, e.g. if most nodes
// in the ADDR response are no longer active.
//
// However, the churn in the network is known to be rather low. Since we
// consider nodes to be "terrible" (see IsTerrible()) if the timestamps
// are older than 30 days, max. 24 hours of "penalty" due to cache
// shouldn't make any meaningful difference in terms of the freshness of
// the response.
cache_entry.m_cache_entry_expiration =
current_time + std::chrono::hours(21) +
GetRandMillis(std::chrono::hours(6));
}
return cache_entry.m_addrs_response_cache;
}
bool CConnman::AddNode(const std::string &strNode) {
LOCK(cs_vAddedNodes);
for (const std::string &it : vAddedNodes) {
if (strNode == it) {
return false;
}
}
vAddedNodes.push_back(strNode);
return true;
}
bool CConnman::RemoveAddedNode(const std::string &strNode) {
LOCK(cs_vAddedNodes);
for (std::vector<std::string>::iterator it = vAddedNodes.begin();
it != vAddedNodes.end(); ++it) {
if (strNode == *it) {
vAddedNodes.erase(it);
return true;
}
}
return false;
}
size_t CConnman::GetNodeCount(NumConnections flags) {
LOCK(cs_vNodes);
// Shortcut if we want total
if (flags == CConnman::CONNECTIONS_ALL) {
return vNodes.size();
}
int nNum = 0;
for (const auto &pnode : vNodes) {
if (flags &
(pnode->IsInboundConn() ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
nNum++;
}
}
return nNum;
}
void CConnman::GetNodeStats(std::vector<CNodeStats> &vstats) {
vstats.clear();
LOCK(cs_vNodes);
vstats.reserve(vNodes.size());
for (CNode *pnode : vNodes) {
vstats.emplace_back();
pnode->copyStats(vstats.back(), addrman.m_asmap);
}
}
bool CConnman::DisconnectNode(const std::string &strNode) {
LOCK(cs_vNodes);
if (CNode *pnode = FindNode(strNode)) {
pnode->fDisconnect = true;
return true;
}
return false;
}
bool CConnman::DisconnectNode(const CSubNet &subnet) {
bool disconnected = false;
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (subnet.Match(pnode->addr)) {
pnode->fDisconnect = true;
disconnected = true;
}
}
return disconnected;
}
bool CConnman::DisconnectNode(const CNetAddr &addr) {
return DisconnectNode(CSubNet(addr));
}
bool CConnman::DisconnectNode(NodeId id) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (id == pnode->GetId()) {
pnode->fDisconnect = true;
return true;
}
}
return false;
}
void CConnman::RecordBytesRecv(uint64_t bytes) {
LOCK(cs_totalBytesRecv);
nTotalBytesRecv += bytes;
}
void CConnman::RecordBytesSent(uint64_t bytes) {
LOCK(cs_totalBytesSent);
nTotalBytesSent += bytes;
uint64_t now = GetTime();
if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) {
// timeframe expired, reset cycle
nMaxOutboundCycleStartTime = now;
nMaxOutboundTotalBytesSentInCycle = 0;
}
// TODO, exclude peers with download permission
nMaxOutboundTotalBytesSentInCycle += bytes;
}
void CConnman::SetMaxOutboundTarget(uint64_t limit) {
LOCK(cs_totalBytesSent);
nMaxOutboundLimit = limit;
}
uint64_t CConnman::GetMaxOutboundTarget() {
LOCK(cs_totalBytesSent);
return nMaxOutboundLimit;
}
uint64_t CConnman::GetMaxOutboundTimeframe() {
LOCK(cs_totalBytesSent);
return nMaxOutboundTimeframe;
}
uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() {
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0) {
return 0;
}
if (nMaxOutboundCycleStartTime == 0) {
return nMaxOutboundTimeframe;
}
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
uint64_t now = GetTime();
return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
}
void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) {
LOCK(cs_totalBytesSent);
if (nMaxOutboundTimeframe != timeframe) {
// reset measure-cycle in case of changing the timeframe.
nMaxOutboundCycleStartTime = GetTime();
}
nMaxOutboundTimeframe = timeframe;
}
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) {
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0) {
return false;
}
if (historicalBlockServingLimit) {
// keep a large enough buffer to at least relay each block once.
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
uint64_t buffer = timeLeftInCycle / 600 * ONE_MEGABYTE;
if (buffer >= nMaxOutboundLimit ||
nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) {
return true;
}
} else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) {
return true;
}
return false;
}
uint64_t CConnman::GetOutboundTargetBytesLeft() {
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0) {
return 0;
}
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
? 0
: nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
}
uint64_t CConnman::GetTotalBytesRecv() {
LOCK(cs_totalBytesRecv);
return nTotalBytesRecv;
}
uint64_t CConnman::GetTotalBytesSent() {
LOCK(cs_totalBytesSent);
return nTotalBytesSent;
}
ServiceFlags CConnman::GetLocalServices() const {
return nLocalServices;
}
void CConnman::SetBestHeight(int height) {
nBestHeight.store(height, std::memory_order_release);
}
int CConnman::GetBestHeight() const {
return nBestHeight.load(std::memory_order_acquire);
}
unsigned int CConnman::GetReceiveFloodSize() const {
return nReceiveFloodSize;
}
void CNode::AvalancheState::invsPolled(uint32_t count) {
invCounters += count;
}
void CNode::AvalancheState::invsVoted(uint32_t count) {
invCounters += uint64_t(count) << 32;
}
void CNode::AvalancheState::updateAvailabilityScore() {
LOCK(cs_statistics);
uint64_t windowInvCounters = invCounters.exchange(0);
double previousScore = availabilityScore;
uint32_t polls = windowInvCounters & std::numeric_limits<uint32_t>::max();
uint32_t votes = windowInvCounters >> 32;
availabilityScore =
AVALANCHE_STATISTICS_DECAY_FACTOR * (2 * votes - polls) +
(1. - AVALANCHE_STATISTICS_DECAY_FACTOR) * previousScore;
}
double CNode::AvalancheState::getAvailabilityScore() const {
// The score is set atomically so there is no need to lock the statistics
// when reading.
return availabilityScore;
}
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn,
int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn,
uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn,
uint64_t nLocalExtraEntropyIn, const CAddress &addrBindIn,
const std::string &addrNameIn, ConnectionType conn_type_in)
: nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn),
addrBind(addrBindIn), nKeyedNetGroup(nKeyedNetGroupIn),
// Don't relay addr messages to peers that we connect to as
// block-relay-only peers (to prevent adversaries from inferring these
// links from addr traffic).
id(idIn), nLocalHostNonce(nLocalHostNonceIn),
nLocalExtraEntropy(nLocalExtraEntropyIn), m_conn_type(conn_type_in),
nLocalServices(nLocalServicesIn), nMyStartingHeight(nMyStartingHeightIn) {
hSocket = hSocketIn;
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
hashContinue = BlockHash();
if (conn_type_in != ConnectionType::BLOCK_RELAY) {
m_tx_relay = std::make_unique<TxRelay>();
}
if (RelayAddrsWithConn()) {
m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
}
// Don't relay proofs if avalanche is disabled
if (isAvalancheEnabled(gArgs)) {
m_proof_relay = std::make_unique<ProofRelay>();
}
for (const std::string &msg : getAllNetMessageTypes()) {
mapRecvBytesPerMsgCmd[msg] = 0;
}
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
if (fLogIPs) {
LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
} else {
LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
}
m_deserializer = std::make_unique<V1TransportDeserializer>(
V1TransportDeserializer(GetConfig().GetChainParams().NetMagic(),
SER_NETWORK, INIT_PROTO_VERSION));
m_serializer =
std::make_unique<V1TransportSerializer>(V1TransportSerializer());
}
CNode::~CNode() {
CloseSocket(hSocket);
}
bool CConnman::NodeFullyConnected(const CNode *pnode) {
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
}
void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) {
size_t nMessageSize = msg.data.size();
LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n",
SanitizeString(msg.m_type), nMessageSize, pnode->GetId());
// make sure we use the appropriate network transport format
std::vector<uint8_t> serializedHeader;
pnode->m_serializer->prepareForTransport(*config, msg, serializedHeader);
size_t nTotalSize = nMessageSize + serializedHeader.size();
size_t nBytesSent = 0;
{
LOCK(pnode->cs_vSend);
bool optimisticSend(pnode->vSendMsg.empty());
// log total amount of bytes per message type
pnode->mapSendBytesPerMsgCmd[msg.m_type] += nTotalSize;
pnode->nSendSize += nTotalSize;
if (pnode->nSendSize > nSendBufferMaxSize) {
pnode->fPauseSend = true;
}
pnode->vSendMsg.push_back(std::move(serializedHeader));
if (nMessageSize) {
pnode->vSendMsg.push_back(std::move(msg.data));
}
// If write queue empty, attempt "optimistic write"
if (optimisticSend == true) {
nBytesSent = SocketSendData(pnode);
}
}
if (nBytesSent) {
RecordBytesSent(nBytesSent);
}
}
bool CConnman::ForNode(NodeId id, std::function<bool(CNode *pnode)> func) {
CNode *found = nullptr;
LOCK(cs_vNodes);
for (auto &&pnode : vNodes) {
if (pnode->GetId() == id) {
found = pnode;
break;
}
}
return found != nullptr && NodeFullyConnected(found) && func(found);
}
int64_t CConnman::PoissonNextSendInbound(int64_t now,
int average_interval_seconds) {
if (m_next_send_inv_to_incoming < now) {
// If this function were called from multiple threads simultaneously
// it would be possible that both update the next send variable, and
// return a different result to their caller. This is not possible in
// practice as only the net processing thread invokes this function.
m_next_send_inv_to_incoming =
PoissonNextSend(now, average_interval_seconds);
}
return m_next_send_inv_to_incoming;
}
int64_t PoissonNextSend(int64_t now, int average_interval_seconds) {
return now + int64_t(log1p(GetRand(1ULL << 48) *
-0.0000000000000035527136788 /* -1/2^48 */) *
average_interval_seconds * -1000000.0 +
0.5);
}
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const {
return CSipHasher(nSeed0, nSeed1).Write(id);
}
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const {
std::vector<uint8_t> vchNetGroup(ad.GetGroup(addrman.m_asmap));
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP)
.Write(vchNetGroup.data(), vchNetGroup.size())
.Finalize();
}
/**
* This function convert MaxBlockSize from byte to
* MB with a decimal precision one digit rounded down
* E.g.
* 1660000 -> 1.6
* 2010000 -> 2.0
* 1000000 -> 1.0
* 230000 -> 0.2
* 50000 -> 0.0
*
* NB behavior for EB<1MB not standardized yet still
* the function applies the same algo used for
* EB greater or equal to 1MB
*/
std::string getSubVersionEB(uint64_t MaxBlockSize) {
// Prepare EB string we are going to add to SubVer:
// 1) translate from byte to MB and convert to string
// 2) limit the EB string to the first decimal digit (floored)
std::stringstream ebMBs;
ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10));
std::string eb = ebMBs.str();
eb.insert(eb.size() - 1, ".", 1);
if (eb.substr(0, 1) == ".") {
eb = "0" + eb;
}
return eb;
}
std::string userAgent(const Config &config) {
// format excessive blocksize value
std::string eb = getSubVersionEB(config.GetMaxBlockSize());
std::vector<std::string> uacomments;
uacomments.push_back("EB" + eb);
// Comments are checked for char compliance at startup, it is safe to add
// them to the user agent string
for (const std::string &cmt : gArgs.GetArgs("-uacomment")) {
uacomments.push_back(cmt);
}
const std::string client_name = gArgs.GetArg("-uaclientname", CLIENT_NAME);
const std::string client_version =
gArgs.GetArg("-uaclientversion", FormatVersion(CLIENT_VERSION));
// Size compliance is checked at startup, it is safe to not check it again
return FormatUserAgent(client_name, client_version, uacomments);
}
diff --git a/src/net.h b/src/net.h
index 81e3f31be..3e535ebbb 100644
--- a/src/net.h
+++ b/src/net.h
@@ -1,1367 +1,1369 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2019 The Bitcoin Core developers
// Copyright (c) 2017-2019 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
#include <addrdb.h>
#include <addrman.h>
#include <amount.h>
#include <avalanche/delegation.h>
#include <bloom.h>
#include <chainparams.h>
#include <compat.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <net_permissions.h>
#include <netaddress.h>
#include <nodeid.h>
#include <protocol.h>
#include <random.h>
#include <streams.h>
#include <sync.h>
#include <threadinterrupt.h>
#include <uint256.h>
#include <util/check.h>
#include <validation.h> // For cs_main
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <deque>
#include <map>
#include <memory>
#include <thread>
#include <vector>
#ifndef WIN32
#include <arpa/inet.h>
#endif
class BanMan;
class Config;
class CNode;
class CScheduler;
struct bilingual_str;
/** Default for -whitelistrelay. */
static const bool DEFAULT_WHITELISTRELAY = true;
/** Default for -whitelistforcerelay. */
static const bool DEFAULT_WHITELISTFORCERELAY = false;
/**
* Time after which to disconnect, after waiting for a ping response (or
* inactivity).
*/
static const int TIMEOUT_INTERVAL = 20 * 60;
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
static const int FEELER_INTERVAL = 120;
/**
* The maximum number of addresses from our addrman to return in response to
* a getaddr message.
*/
static constexpr size_t MAX_ADDR_TO_SEND = 1000;
/** Maximum length of the user agent string in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
/**
* Maximum number of automatic outgoing nodes over which we'll relay everything
* (blocks, tx, addrs, etc)
*/
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** Maximum number of block-relay-only outgoing connections */
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
/** Maximum number of feeler connections */
static const int MAX_FEELER_CONNECTIONS = 1;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** -upnp default */
#ifdef USE_UPNP
static const bool DEFAULT_UPNP = USE_UPNP;
#else
static const bool DEFAULT_UPNP = false;
#endif
/**
* The maximum number of peer connections to maintain.
* This quantity might not be reachable on some systems, especially on platforms
* that do not provide a working poll() interface.
*/
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 4096;
/** The default for -maxuploadtarget. 0 = Unlimited */
static const uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
/** The default timeframe for -maxuploadtarget. 1 day. */
static const uint64_t MAX_UPLOAD_TIMEFRAME = 60 * 60 * 24;
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
/** -peertimeout default */
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
static const bool DEFAULT_FORCEDNSSEED = false;
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
/** Refresh period for the avalanche statistics computation */
static constexpr std::chrono::minutes AVALANCHE_STATISTICS_REFRESH_PERIOD{10};
/** Time constant for the avalanche statistics computation */
static constexpr std::chrono::minutes AVALANCHE_STATISTICS_TIME_CONSTANT{10};
/**
* Pre-computed decay factor for the avalanche statistics computation.
* There is currently no constexpr variant of std::exp, so use a const.
*/
static const double AVALANCHE_STATISTICS_DECAY_FACTOR =
1. - std::exp(-1. * AVALANCHE_STATISTICS_REFRESH_PERIOD.count() /
AVALANCHE_STATISTICS_TIME_CONSTANT.count());
struct AddedNodeInfo {
std::string strAddedNode;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
struct CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg {
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg &&) = default;
CSerializedNetMsg &operator=(CSerializedNetMsg &&) = default;
// No copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg &msg) = delete;
CSerializedNetMsg &operator=(const CSerializedNetMsg &) = delete;
std::vector<uint8_t> data;
std::string m_type;
};
/**
* Different types of connections to a peer. This enum encapsulates the
* information we have available at the time of opening or accepting the
* connection. Aside from INBOUND, all types are initiated by us.
*/
enum class ConnectionType {
/**
* Inbound connections are those initiated by a peer. This is the only
* property we know at the time of connection, until P2P messages are
* exchanged.
*/
INBOUND,
/**
* These are the default connections that we use to connect with the
* network. There is no restriction on what is relayed- by default we relay
* blocks, addresses & transactions. We automatically attempt to open
* MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan.
*/
OUTBOUND_FULL_RELAY,
/**
* We open manual connections to addresses that users explicitly inputted
* via the addnode RPC, or the -connect command line argument. Even if a
* manual connection is misbehaving, we do not automatically disconnect or
* add it to our discouragement filter.
*/
MANUAL,
/**
* Feeler connections are short lived connections used to increase the
* number of connectable addresses in our AddrMan. Approximately every
* FEELER_INTERVAL, we attempt to connect to a random address from the new
* table. If successful, we add it to the tried table.
*/
FEELER,
/**
* We use block-relay-only connections to help prevent against partition
* attacks. By not relaying transactions or addresses, these connections
* are harder to detect by a third party, thus helping obfuscate the
* network topology. We automatically attempt to open
* MAX_BLOCK_RELAY_ONLY_CONNECTIONS using addresses from our AddrMan.
*/
BLOCK_RELAY,
/**
* AddrFetch connections are short lived connections used to solicit
* addresses from peers. These are initiated to addresses submitted via the
* -seednode command line argument, or under certain conditions when the
* AddrMan is empty.
*/
ADDR_FETCH,
};
namespace {
struct CConnmanTest;
}
class NetEventsInterface;
class CConnman {
public:
enum NumConnections {
CONNECTIONS_NONE = 0,
CONNECTIONS_IN = (1U << 0),
CONNECTIONS_OUT = (1U << 1),
CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
};
struct Options {
ServiceFlags nLocalServices = NODE_NONE;
int nMaxConnections = 0;
int m_max_outbound_full_relay = 0;
int m_max_outbound_block_relay = 0;
int nMaxAddnode = 0;
int nMaxFeeler = 0;
int nBestHeight = 0;
CClientUIInterface *uiInterface = nullptr;
NetEventsInterface *m_msgproc = nullptr;
BanMan *m_banman = nullptr;
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundTimeframe = 0;
uint64_t nMaxOutboundLimit = 0;
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
std::vector<std::string> vSeedNodes;
std::vector<NetWhitelistPermissions> vWhitelistedRange;
std::vector<NetWhitebindPermissions> vWhiteBinds;
std::vector<CService> vBinds;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
std::vector<bool> m_asmap;
};
void Init(const Options &connOptions) {
nLocalServices = connOptions.nLocalServices;
nMaxConnections = connOptions.nMaxConnections;
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
nMaxAddnode = connOptions.nMaxAddnode;
nMaxFeeler = connOptions.nMaxFeeler;
{
// Lock cs_main to prevent a potential race with the peer validation
// logic thread.
LOCK(::cs_main);
m_max_outbound_full_relay =
std::min(connOptions.m_max_outbound_full_relay,
connOptions.nMaxConnections);
m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay;
m_max_outbound = m_max_outbound_full_relay +
m_max_outbound_block_relay + nMaxFeeler;
}
nBestHeight = connOptions.nBestHeight;
clientInterface = connOptions.uiInterface;
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
m_peer_connect_timeout = connOptions.m_peer_connect_timeout;
{
LOCK(cs_totalBytesSent);
nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
vWhitelistedRange = connOptions.vWhitelistedRange;
{
LOCK(cs_vAddedNodes);
vAddedNodes = connOptions.m_added_nodes;
}
}
CConnman(const Config &configIn, uint64_t seed0, uint64_t seed1,
bool network_active = true);
~CConnman();
bool Start(CScheduler &scheduler, const Options &options);
void StopThreads();
void StopNodes();
void Stop() {
StopThreads();
StopNodes();
};
void Interrupt();
bool GetNetworkActive() const { return fNetworkActive; };
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
void SetNetworkActive(bool active);
void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure,
CSemaphoreGrant *grantOutbound,
const char *strDest, ConnectionType conn_type);
bool CheckIncomingNonce(uint64_t nonce);
bool ForNode(NodeId id, std::function<bool(CNode *pnode)> func);
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg);
using NodeFn = std::function<void(CNode *)>;
void ForEachNode(const NodeFn &func) {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
func(node);
}
}
};
void ForEachNode(const NodeFn &func) const {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
func(node);
}
}
};
template <typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable &&pre, CallableAfter &&post) {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
pre(node);
}
}
post();
};
template <typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable &&pre, CallableAfter &&post) const {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
pre(node);
}
}
post();
};
// Addrman functions
void SetServices(const CService &addr, ServiceFlags nServices);
void MarkAddressGood(const CAddress &addr);
bool AddNewAddresses(const std::vector<CAddress> &vAddr,
const CAddress &addrFrom, int64_t nTimePenalty = 0);
std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct);
/**
* Cache is used to minimize topology leaks, so it should
* be used for all non-trusted calls, for example, p2p.
* A non-malicious call (from RPC or a peer with addr permission) should
* call the function without a parameter to avoid using the cache.
*/
std::vector<CAddress> GetAddresses(CNode &requestor, size_t max_addresses,
size_t max_pct);
// This allows temporarily exceeding m_max_outbound_full_relay, with the
// goal of finding a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer();
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraOutboundCount();
bool AddNode(const std::string &node);
bool RemoveAddedNode(const std::string &node);
std::vector<AddedNodeInfo> GetAddedNodeInfo();
size_t GetNodeCount(NumConnections num);
void GetNodeStats(std::vector<CNodeStats> &vstats);
bool DisconnectNode(const std::string &node);
bool DisconnectNode(const CSubNet &subnet);
bool DisconnectNode(const CNetAddr &addr);
bool DisconnectNode(NodeId id);
//! Used to convey which local services we are offering peers during node
//! connection.
//!
//! The data returned by this is used in CNode construction,
//! which is used to advertise which services we are offering
//! that peer during `net_processing.cpp:PushNodeVersion()`.
ServiceFlags GetLocalServices() const;
//! set the max outbound target in bytes.
void SetMaxOutboundTarget(uint64_t limit);
uint64_t GetMaxOutboundTarget();
//! set the timeframe for the max outbound target.
void SetMaxOutboundTimeframe(uint64_t timeframe);
uint64_t GetMaxOutboundTimeframe();
//! check if the outbound target is reached. If param
//! historicalBlockServingLimit is set true, the function will response true
//! if the limit for serving historical blocks has been reached.
bool OutboundTargetReached(bool historicalBlockServingLimit);
//! response the bytes left in the current max outbound cycle in case of no
//! limit, it will always response 0
uint64_t GetOutboundTargetBytesLeft();
//! response the time in second left in the current max outbound cycle in
//! case of no limit, it will always response 0
uint64_t GetMaxOutboundTimeLeftInCycle();
uint64_t GetTotalBytesRecv();
uint64_t GetTotalBytesSent();
void SetBestHeight(int height);
int GetBestHeight() const;
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
unsigned int GetReceiveFloodSize() const;
void WakeMessageHandler();
/**
* Attempts to obfuscate tx time through exponentially distributed emitting.
* Works assuming that a single interval is used.
* Variable intervals will result in privacy decrease.
*/
int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
void SetAsmap(std::vector<bool> asmap) {
addrman.m_asmap = std::move(asmap);
}
private:
struct ListenSocket {
public:
SOCKET socket;
inline void AddSocketPermissionFlags(NetPermissionFlags &flags) const {
NetPermissions::AddFlag(flags, m_permissions);
}
ListenSocket(SOCKET socket_, NetPermissionFlags permissions_)
: socket(socket_), m_permissions(permissions_) {}
private:
NetPermissionFlags m_permissions;
};
bool BindListenPort(const CService &bindAddr, bilingual_str &strError,
NetPermissionFlags permissions);
bool Bind(const CService &addr, unsigned int flags,
NetPermissionFlags permissions);
bool InitBinds(const std::vector<CService> &binds,
const std::vector<NetWhitebindPermissions> &whiteBinds);
void ThreadOpenAddedConnections();
void AddAddrFetch(const std::string &strDest);
void ProcessAddrFetch();
void ThreadOpenConnections(std::vector<std::string> connect);
void ThreadMessageHandler();
void AcceptConnection(const ListenSocket &hListenSocket);
void DisconnectNodes();
void NotifyNumConnectionsChanged();
void InactivityCheck(CNode *pnode);
bool GenerateSelectSet(std::set<SOCKET> &recv_set,
std::set<SOCKET> &send_set,
std::set<SOCKET> &error_set);
void SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set,
std::set<SOCKET> &error_set);
void SocketHandler();
void ThreadSocketHandler();
void ThreadDNSAddressSeed();
uint64_t CalculateKeyedNetGroup(const CAddress &ad) const;
CNode *FindNode(const CNetAddr &ip);
CNode *FindNode(const CSubNet &subNet);
CNode *FindNode(const std::string &addrName);
CNode *FindNode(const CService &addr);
bool AttemptToEvictConnection();
CNode *ConnectNode(CAddress addrConnect, const char *pszDest,
bool fCountFailure, ConnectionType conn_type);
void AddWhitelistPermissionFlags(NetPermissionFlags &flags,
const CNetAddr &addr) const;
void DeleteNode(CNode *pnode);
NodeId GetNewNodeId();
size_t SocketSendData(CNode *pnode) const;
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes);
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode *pnode);
const Config *config;
// Network usage totals
RecursiveMutex cs_totalBytesRecv;
RecursiveMutex cs_totalBytesSent;
uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv){0};
uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent){0};
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundTimeframe GUARDED_BY(cs_totalBytesSent);
// P2P timeout in seconds
int64_t m_peer_connect_timeout;
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
std::vector<NetWhitelistPermissions> vWhitelistedRange;
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
CAddrMan addrman;
std::deque<std::string> m_addr_fetches GUARDED_BY(m_addr_fetches_mutex);
RecursiveMutex m_addr_fetches_mutex;
std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
RecursiveMutex cs_vAddedNodes;
std::vector<CNode *> vNodes GUARDED_BY(cs_vNodes);
std::list<CNode *> vNodesDisconnected;
mutable RecursiveMutex cs_vNodes;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
/**
* Cache responses to addr requests to minimize privacy leak.
* Attack example: scraping addrs in real-time may allow an attacker
* to infer new connections of the victim by detecting new records
* with fresh timestamps (per self-announcement).
*/
struct CachedAddrResponse {
std::vector<CAddress> m_addrs_response_cache;
std::chrono::microseconds m_cache_entry_expiration{0};
};
/**
* Addr responses stored in different caches
* per (network, local socket) prevent cross-network node identification.
* If a node for example is multi-homed under Tor and IPv6,
* a single cache (or no cache at all) would let an attacker
* to easily detect that it is the same node by comparing responses.
* Indexing by local socket prevents leakage when a node has multiple
* listening addresses on the same network.
*
* The used memory equals to 1000 CAddress records (or around 40 bytes) per
* distinct Network (up to 5) we have/had an inbound peer from,
* resulting in at most ~196 KB. Every separate local socket may
* add up to ~196 KB extra.
*/
std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
/**
* Services this instance offers.
*
* This data is replicated in each CNode instance we create during peer
* connection (in ConnectNode()) under a member also called
* nLocalServices.
*
* This data is not marked const, but after being set it should not
* change. See the note in CNode::nLocalServices documentation.
*
* \sa CNode::nLocalServices
*/
ServiceFlags nLocalServices;
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
int nMaxConnections;
// How many full-relay (tx, block, addr) outbound peers we want
int m_max_outbound_full_relay;
// How many block-relay only outbound peers we want
// We do not relay tx or addr messages with these peers
int m_max_outbound_block_relay;
int nMaxAddnode;
int nMaxFeeler;
int m_max_outbound;
bool m_use_addrman_outgoing;
std::atomic<int> nBestHeight;
CClientUIInterface *clientInterface;
NetEventsInterface *m_msgproc;
/**
* Pointer to this node's banman. May be nullptr - check existence before
* dereferencing.
*/
BanMan *m_banman;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
/** flag for waking the message processor. */
bool fMsgProcWake GUARDED_BY(mutexMsgProc);
std::condition_variable condMsgProc;
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
CThreadInterrupt interruptNet;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadMessageHandler;
/**
* flag for deciding to connect to an extra outbound peer, in excess of
* m_max_outbound_full_relay. This takes the place of a feeler connection.
*/
std::atomic_bool m_try_another_outbound_peer;
std::atomic<int64_t> m_next_send_inv_to_incoming{0};
friend struct ::CConnmanTest;
friend struct ConnmanTestMsg;
};
void Discover();
void StartMapPort();
void InterruptMapPort();
void StopMapPort();
uint16_t GetListenPort();
/**
* Interface for message handling
*/
class NetEventsInterface {
public:
virtual bool ProcessMessages(const Config &config, CNode *pnode,
std::atomic<bool> &interrupt) = 0;
virtual bool SendMessages(const Config &config, CNode *pnode,
std::atomic<bool> &interrupt) = 0;
virtual void InitializeNode(const Config &config, CNode *pnode) = 0;
virtual void FinalizeNode(const Config &config, NodeId id,
bool &update_connection_time) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived
* classes. If that restriction is no longer desired, this should be made
* public and virtual.
*/
~NetEventsInterface() = default;
};
enum {
// unknown
LOCAL_NONE,
// address a local interface listens on
LOCAL_IF,
// address explicit bound to
LOCAL_BIND,
// address reported by UPnP
LOCAL_UPNP,
// address explicitly specified (-externalip=)
LOCAL_MANUAL,
LOCAL_MAX
};
bool IsPeerAddrLocalGood(CNode *pnode);
void AdvertiseLocal(CNode *pnode);
/**
* Mark a network as reachable or unreachable (no automatic connects to it)
* @note Networks are reachable by default
*/
void SetReachable(enum Network net, bool reachable);
/** @returns true if the network is reachable, false otherwise */
bool IsReachable(enum Network net);
/** @returns true if the address is in a reachable network, false otherwise */
bool IsReachable(const CNetAddr &addr);
bool AddLocal(const CService &addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr &addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService &addr);
bool SeenLocal(const CService &addr);
bool IsLocal(const CService &addr);
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
CAddress GetLocalAddress(const CNetAddr *paddrPeer,
ServiceFlags nLocalServices);
extern bool fDiscover;
extern bool fListen;
extern bool g_relay_txes;
struct LocalServiceInfo {
int nScore;
int nPort;
};
extern RecursiveMutex cs_mapLocalHost;
extern std::map<CNetAddr, LocalServiceInfo>
mapLocalHost GUARDED_BY(cs_mapLocalHost);
extern const std::string NET_MESSAGE_COMMAND_OTHER;
// Command, total bytes
typedef std::map<std::string, uint64_t> mapMsgCmdSize;
/**
* POD that contains various stats about a node.
* Usually constructed from CConman::GetNodeStats. Stats are filled from the
* node using CNode::copyStats.
*/
struct CNodeStats {
NodeId nodeid;
ServiceFlags nServices;
bool fRelayTxes;
int64_t nLastSend;
int64_t nLastRecv;
int64_t nLastTXTime;
int64_t nLastProofTime;
int64_t nLastBlockTime;
int64_t nTimeConnected;
int64_t nTimeOffset;
std::string addrName;
int nVersion;
std::string cleanSubVer;
bool fInbound;
bool m_manual_connection;
int nStartingHeight;
uint64_t nSendBytes;
mapMsgCmdSize mapSendBytesPerMsgCmd;
uint64_t nRecvBytes;
mapMsgCmdSize mapRecvBytesPerMsgCmd;
NetPermissionFlags m_permissionFlags;
bool m_legacyWhitelisted;
int64_t m_ping_usec;
int64_t m_ping_wait_usec;
int64_t m_min_ping_usec;
Amount minFeeFilter;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
uint32_t m_mapped_as;
};
/**
* Transport protocol agnostic message container.
* Ideally it should only contain receive time, payload,
* command and size.
*/
class CNetMessage {
public:
//! received message data
CDataStream m_recv;
//! time of message receipt
std::chrono::microseconds m_time{0};
bool m_valid_netmagic = false;
bool m_valid_header = false;
bool m_valid_checksum = false;
//! size of the payload
uint32_t m_message_size{0};
//! used wire size of the message (including header/checksum)
uint32_t m_raw_message_size{0};
std::string m_command;
CNetMessage(CDataStream &&recv_in) : m_recv(std::move(recv_in)) {}
void SetVersion(int nVersionIn) { m_recv.SetVersion(nVersionIn); }
};
/**
* The TransportDeserializer takes care of holding and deserializing the
* network receive buffer. It can deserialize the network buffer into a
* transport protocol agnostic CNetMessage (command & payload)
*/
class TransportDeserializer {
public:
// returns true if the current deserialization is complete
virtual bool Complete() const = 0;
// set the serialization context version
virtual void SetVersion(int version) = 0;
// read and deserialize data
virtual int Read(const Config &config, const char *data,
uint32_t bytes) = 0;
// decomposes a message from the context
virtual CNetMessage GetMessage(const Config &config,
std::chrono::microseconds time) = 0;
virtual ~TransportDeserializer() {}
};
class V1TransportDeserializer final : public TransportDeserializer {
private:
mutable CHash256 hasher;
mutable uint256 data_hash;
// Parsing header (false) or data (true)
bool in_data;
// Partially received header.
CDataStream hdrbuf;
// Complete header.
CMessageHeader hdr;
// Received message data.
CDataStream vRecv;
uint32_t nHdrPos;
uint32_t nDataPos;
const uint256 &GetMessageHash() const;
int readHeader(const Config &config, const char *pch, uint32_t nBytes);
int readData(const char *pch, uint32_t nBytes);
void Reset() {
vRecv.clear();
hdrbuf.clear();
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
data_hash.SetNull();
hasher.Reset();
}
public:
V1TransportDeserializer(
const CMessageHeader::MessageMagic &pchMessageStartIn, int nTypeIn,
int nVersionIn)
: hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn),
vRecv(nTypeIn, nVersionIn) {
Reset();
}
bool Complete() const override {
if (!in_data) {
return false;
}
return (hdr.nMessageSize == nDataPos);
}
void SetVersion(int nVersionIn) override {
hdrbuf.SetVersion(nVersionIn);
vRecv.SetVersion(nVersionIn);
}
int Read(const Config &config, const char *pch, uint32_t nBytes) override {
int ret =
in_data ? readData(pch, nBytes) : readHeader(config, pch, nBytes);
if (ret < 0) {
Reset();
}
return ret;
}
CNetMessage GetMessage(const Config &config,
std::chrono::microseconds time) override;
};
/**
* The TransportSerializer prepares messages for the network transport
*/
class TransportSerializer {
public:
// prepare message for transport (header construction, error-correction
// computation, payload encryption, etc.)
virtual void prepareForTransport(const Config &config,
CSerializedNetMsg &msg,
std::vector<uint8_t> &header) = 0;
virtual ~TransportSerializer() {}
};
class V1TransportSerializer : public TransportSerializer {
public:
void prepareForTransport(const Config &config, CSerializedNetMsg &msg,
std::vector<uint8_t> &header) override;
};
/** Information about a peer */
class CNode {
friend class CConnman;
friend struct ConnmanTestMsg;
public:
std::unique_ptr<TransportDeserializer> m_deserializer;
std::unique_ptr<TransportSerializer> m_serializer;
// socket
std::atomic<ServiceFlags> nServices{NODE_NONE};
SOCKET hSocket GUARDED_BY(cs_hSocket);
// Total size of all vSendMsg entries.
size_t nSendSize{0};
// Offset inside the first vSendMsg already sent.
size_t nSendOffset{0};
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
std::deque<std::vector<uint8_t>> vSendMsg GUARDED_BY(cs_vSend);
Mutex cs_vSend;
Mutex cs_hSocket;
Mutex cs_vRecv;
RecursiveMutex cs_vProcessMsg;
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
size_t nProcessQueueSize{0};
RecursiveMutex cs_sendProcessing;
std::deque<CInv> vRecvGetData;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<int64_t> nLastSend{0};
std::atomic<int64_t> nLastRecv{0};
const int64_t nTimeConnected;
std::atomic<int64_t> nTimeOffset{0};
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
std::atomic<int> nVersion{0};
// The nonce provided by the remote host.
uint64_t nRemoteHostNonce{0};
// The extra entropy provided by the remote host.
uint64_t nRemoteExtraEntropy{0};
/**
* cleanSubVer is a sanitized string of the user agent byte array we read
* from the wire. This cleaned string can safely be logged or displayed.
*/
RecursiveMutex cs_SubVer;
std::string cleanSubVer GUARDED_BY(cs_SubVer){};
// This peer is preferred for eviction.
bool m_prefer_evict{false};
bool HasPermission(NetPermissionFlags permission) const {
return NetPermissions::HasFlag(m_permissionFlags, permission);
}
// This boolean is unusued in actual processing, only present for backward
// compatibility at RPC/QT level
bool m_legacyWhitelisted{false};
// set by version message
bool fClient{false};
// after BIP159, set by version message
bool m_limited_node{false};
/**
* Whether the peer has signaled support for receiving ADDRv2 (BIP155)
* messages, implying a preference to receive ADDRv2 instead of ADDR ones.
*/
std::atomic_bool m_wants_addrv2{false};
std::atomic_bool fSuccessfullyConnected{false};
// Setting fDisconnect to true will cause the node to be disconnected the
// next time DisconnectNodes() runs
std::atomic_bool fDisconnect{false};
bool fSentAddr{false};
CSemaphoreGrant grantOutbound;
std::atomic<int> nRefCount{0};
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
bool IsOutboundOrBlockRelayConn() const {
switch (m_conn_type) {
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
return true;
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::ADDR_FETCH:
case ConnectionType::FEELER:
return false;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool IsFullOutboundConn() const {
return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY;
}
bool IsManualConn() const { return m_conn_type == ConnectionType::MANUAL; }
bool IsBlockOnlyConn() const {
return m_conn_type == ConnectionType::BLOCK_RELAY;
}
bool IsFeelerConn() const { return m_conn_type == ConnectionType::FEELER; }
bool IsAddrFetchConn() const {
return m_conn_type == ConnectionType::ADDR_FETCH;
}
bool IsInboundConn() const {
return m_conn_type == ConnectionType::INBOUND;
}
/* Whether we send addr messages over this connection */
bool RelayAddrsWithConn() const {
return m_conn_type != ConnectionType::BLOCK_RELAY;
}
bool ExpectServicesFromConn() const {
switch (m_conn_type) {
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::FEELER:
return false;
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH:
return true;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
protected:
mapMsgCmdSize mapSendBytesPerMsgCmd;
mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
public:
BlockHash hashContinue;
std::atomic<int> nStartingHeight{-1};
// flood relay
std::vector<CAddress> vAddrToSend;
std::unique_ptr<CRollingBloomFilter> m_addr_known = nullptr;
bool fGetAddr{false};
std::chrono::microseconds m_next_addr_send GUARDED_BY(cs_sendProcessing){0};
std::chrono::microseconds
m_next_local_addr_send GUARDED_BY(cs_sendProcessing){0};
// List of block ids we still have to announce.
// There is no final sorting before sending, as they are always sent
// immediately and in the order requested.
std::vector<BlockHash> vInventoryBlockToSend GUARDED_BY(cs_inventory);
Mutex cs_inventory;
struct TxRelay {
mutable RecursiveMutex cs_filter;
// We use fRelayTxes for two purposes -
// a) it allows us to not relay tx invs before receiving the peer's
// version message.
// b) the peer may tell us in its version message that we should not
// relay tx invs unless it loads a bloom filter.
bool fRelayTxes GUARDED_BY(cs_filter){false};
std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter)
GUARDED_BY(cs_filter){nullptr};
mutable RecursiveMutex cs_tx_inventory;
CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){
50000, 0.000001};
// Set of transaction ids we still have to announce.
// They are sorted by the mempool before relay, so the order is not
// important.
std::set<TxId> setInventoryTxToSend GUARDED_BY(cs_tx_inventory);
// Used for BIP35 mempool sending
bool fSendMempool GUARDED_BY(cs_tx_inventory){false};
// Last time a "MEMPOOL" request was serviced.
std::atomic<std::chrono::seconds> m_last_mempool_req{
std::chrono::seconds{0}};
std::chrono::microseconds nNextInvSend{0};
RecursiveMutex cs_feeFilter;
// Minimum fee rate with which to filter inv's to this node
Amount minFeeFilter GUARDED_BY(cs_feeFilter){Amount::zero()};
Amount lastSentFeeFilter{Amount::zero()};
int64_t nextSendTimeFeeFilter{0};
};
// m_tx_relay == nullptr if we're not relaying transactions with this peer
std::unique_ptr<TxRelay> m_tx_relay;
struct ProofRelay {
mutable RecursiveMutex cs_proof_inventory;
std::set<avalanche::ProofId>
setInventoryProofToSend GUARDED_BY(cs_proof_inventory);
// Prevent sending proof invs if the peer already knows about them
CRollingBloomFilter filterProofKnown GUARDED_BY(cs_proof_inventory){
10000, 0.000001};
std::chrono::microseconds nextInvSend{0};
};
// m_proof_relay == nullptr if we're not relaying proofs with this peer
std::unique_ptr<ProofRelay> m_proof_relay;
class AvalancheState {
/**
* The inventories polled and voted couters since last score
* computation, stored as a pair of uint32_t with the poll counter
* being the 32 lowest bits and the vote counter the 32 highest bits.
*/
std::atomic<uint64_t> invCounters;
/** The last computed score */
std::atomic<double> availabilityScore;
/**
* Protect the sequence of operations required for updating the
* statistics.
*/
Mutex cs_statistics;
public:
CPubKey pubkey;
AvalancheState() : invCounters(0), availabilityScore(0.) {}
/** The node was polled for count invs */
void invsPolled(uint32_t count);
/** The node voted for count invs */
void invsVoted(uint32_t count);
/**
* The availability score is calculated using an exponentially weighted
* average.
* This has several interesting properties:
* - The most recent polls/responses have more weight than the previous
* ones. A node that recently stopped answering will see its ratio
* decrease quickly.
* - This is a low-pass filter, so it causes delay. This means that a
* node needs to have a track record for the ratio to be high. A node
* that has been little requested will have a lower ratio than a node
* that failed to answer a few polls but answered a lot of them.
* - It is cheap to compute.
*
* This is expected to be called at a fixed interval of
* AVALANCHE_STATISTICS_REFRESH_PERIOD.
*/
void updateAvailabilityScore();
double getAvailabilityScore() const;
};
// m_avalanche_state == nullptr if we're not using avalanche with this peer
std::unique_ptr<AvalancheState> m_avalanche_state;
// Used for headers announcements - unfiltered blocks to relay
std::vector<BlockHash> vBlockHashesToAnnounce GUARDED_BY(cs_inventory);
/**
* UNIX epoch time of the last block received from this peer that we had
* not yet seen (e.g. not already received from another peer), that passed
* preliminary validity checks and was saved to disk, even if we don't
* connect the block or it eventually fails connection. Used as an inbound
* peer eviction criterium in CConnman::AttemptToEvictConnection.
*/
std::atomic<int64_t> nLastBlockTime{0};
/**
* UNIX epoch time of the last transaction received from this peer that we
* had not yet seen (e.g. not already received from another peer) and that
* was accepted into our mempool. Used as an inbound peer eviction criterium
* in CConnman::AttemptToEvictConnection.
*/
std::atomic<int64_t> nLastTXTime{0};
/**
* UNIX epoch time of the last proof received from this peer that we
* had not yet seen (e.g. not already received from another peer) and that
* was accepted into our proof pool. Used as an inbound peer eviction
* criterium in CConnman::AttemptToEvictConnection.
*/
std::atomic<int64_t> nLastProofTime{0};
// Ping time measurement:
// The pong reply we're expecting, or 0 if no pong expected.
std::atomic<uint64_t> nPingNonceSent{0};
/** When the last ping was sent, or 0 if no ping was ever sent */
std::atomic<std::chrono::microseconds> m_ping_start{
std::chrono::microseconds{0}};
// Last measured round-trip time.
std::atomic<int64_t> nPingUsecTime{0};
// Best measured round-trip time.
std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
// Whether a ping is requested.
std::atomic<bool> fPingQueued{false};
std::set<TxId> orphan_work_set;
CNode(NodeId id, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn,
SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn,
uint64_t nLocalHostNonceIn, uint64_t nLocalExtraEntropyIn,
const CAddress &addrBindIn, const std::string &addrNameIn,
ConnectionType conn_type_in);
~CNode();
CNode(const CNode &) = delete;
CNode &operator=(const CNode &) = delete;
private:
const NodeId id;
const uint64_t nLocalHostNonce;
const uint64_t nLocalExtraEntropy;
const ConnectionType m_conn_type;
std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION};
//! Services offered to this peer.
//!
//! This is supplied by the parent CConnman during peer connection
//! (CConnman::ConnectNode()) from its attribute of the same name.
//!
//! This is const because there is no protocol defined for renegotiating
//! services initially offered to a peer. The set of local services we
//! offer should not change after initialization.
//!
//! An interesting example of this is NODE_NETWORK and initial block
//! download: a node which starts up from scratch doesn't have any blocks
//! to serve, but still advertises NODE_NETWORK because it will eventually
//! fulfill this role after IBD completes. P2P code is written in such a
//! way that it can gracefully handle peers who don't make good on their
//! service advertisements.
const ServiceFlags nLocalServices;
const int nMyStartingHeight;
NetPermissionFlags m_permissionFlags{PF_NONE};
// Used only by SocketHandler thread
std::list<CNetMessage> vRecvMsg;
mutable RecursiveMutex cs_addrName;
std::string addrName GUARDED_BY(cs_addrName);
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(cs_addrLocal);
mutable RecursiveMutex cs_addrLocal;
public:
NodeId GetId() const { return id; }
uint64_t GetLocalNonce() const { return nLocalHostNonce; }
uint64_t GetLocalExtraEntropy() const { return nLocalExtraEntropy; }
int GetMyStartingHeight() const { return nMyStartingHeight; }
int GetRefCount() const {
assert(nRefCount >= 0);
return nRefCount;
}
bool ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes,
bool &complete);
void SetCommonVersion(int greatest_common_version) {
Assume(m_greatest_common_version == INIT_PROTO_VERSION);
m_greatest_common_version = greatest_common_version;
}
int GetCommonVersion() const { return m_greatest_common_version; }
CService GetAddrLocal() const;
//! May not be called more than once
void SetAddrLocal(const CService &addrLocalIn);
CNode *AddRef() {
nRefCount++;
return this;
}
void Release() { nRefCount--; }
void AddAddressKnown(const CAddress &_addr) {
assert(m_addr_known);
m_addr_known->insert(_addr.GetKey());
}
void PushAddress(const CAddress &_addr, FastRandomContext &insecure_rand) {
// Whether the peer supports the address in `_addr`. For example,
// nodes that do not implement BIP155 cannot receive Tor v3 addresses
// because they require ADDRv2 (BIP155) encoding.
const bool addr_format_supported =
m_wants_addrv2 || _addr.IsAddrV1Compatible();
// Known checking here is only to save space from duplicates.
// SendMessages will filter it again for knowns that were added
// after addresses were pushed.
assert(m_addr_known);
if (_addr.IsValid() && !m_addr_known->contains(_addr.GetKey()) &&
addr_format_supported) {
if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] =
_addr;
} else {
vAddrToSend.push_back(_addr);
}
}
}
void AddKnownTx(const TxId &txid) {
if (m_tx_relay != nullptr) {
LOCK(m_tx_relay->cs_tx_inventory);
m_tx_relay->filterInventoryKnown.insert(txid);
}
}
void PushTxInventory(const TxId &txid) {
if (m_tx_relay == nullptr) {
return;
}
LOCK(m_tx_relay->cs_tx_inventory);
if (!m_tx_relay->filterInventoryKnown.contains(txid)) {
m_tx_relay->setInventoryTxToSend.insert(txid);
}
}
void AddKnownProof(const avalanche::ProofId &proofid) {
if (m_proof_relay != nullptr) {
LOCK(m_proof_relay->cs_proof_inventory);
m_proof_relay->filterProofKnown.insert(proofid);
}
}
void PushProofInventory(const avalanche::ProofId &proofid) {
if (m_proof_relay == nullptr) {
return;
}
LOCK(m_proof_relay->cs_proof_inventory);
if (!m_proof_relay->filterProofKnown.contains(proofid)) {
m_proof_relay->setInventoryProofToSend.insert(proofid);
}
}
void CloseSocketDisconnect();
void copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap);
ServiceFlags GetLocalServices() const { return nLocalServices; }
std::string GetAddrName() const;
//! Sets the addrName only if it was not previously set
void MaybeSetAddrName(const std::string &addrNameIn);
+
+ std::string ConnectionTypeAsString() const;
};
/**
* Return a timestamp in the future (in microseconds) for exponentially
* distributed events.
*/
int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
/** Wrapper to return mockable type */
inline std::chrono::microseconds
PoissonNextSend(std::chrono::microseconds now,
std::chrono::seconds average_interval) {
return std::chrono::microseconds{
PoissonNextSend(now.count(), average_interval.count())};
}
std::string getSubVersionEB(uint64_t MaxBlockSize);
std::string userAgent(const Config &config);
struct NodeEvictionCandidate {
NodeId id;
int64_t nTimeConnected;
int64_t nMinPingUsecTime;
int64_t nLastBlockTime;
int64_t nLastProofTime;
int64_t nLastTXTime;
bool fRelevantServices;
bool fRelayTxes;
bool fBloomFilter;
uint64_t nKeyedNetGroup;
bool prefer_evict;
bool m_is_local;
double availabilityScore;
};
[[nodiscard]] std::optional<NodeId>
SelectNodeToEvict(std::vector<NodeEvictionCandidate> &&vEvictionCandidates);
#endif // BITCOIN_NET_H
diff --git a/src/net_processing.cpp b/src/net_processing.cpp
index 7ff68ab79..c034c1154 100644
--- a/src/net_processing.cpp
+++ b/src/net_processing.cpp
@@ -1,5957 +1,5950 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <net_processing.h>
#include <addrman.h>
#include <avalanche/avalanche.h>
#include <avalanche/peermanager.h>
#include <avalanche/processor.h>
#include <avalanche/proof.h>
#include <avalanche/validation.h>
#include <banman.h>
#include <blockdb.h>
#include <blockencodings.h>
#include <blockfilter.h>
#include <blockvalidity.h>
#include <chain.h>
#include <chainparams.h>
#include <config.h>
#include <consensus/validation.h>
#include <hash.h>
#include <index/blockfilterindex.h>
#include <merkleblock.h>
#include <netbase.h>
#include <netmessagemaker.h>
#include <policy/fees.h>
#include <policy/policy.h>
#include <primitives/block.h>
#include <primitives/transaction.h>
#include <random.h>
#include <reverse_iterator.h>
#include <scheduler.h>
#include <streams.h>
#include <tinyformat.h>
#include <txmempool.h>
#include <util/check.h> // For NDEBUG compile time check
#include <util/strencodings.h>
#include <util/system.h>
#include <validation.h>
#include <memory>
#include <typeinfo>
/** Expiration time for orphan transactions in seconds */
static constexpr int64_t ORPHAN_TX_EXPIRE_TIME = 20 * 60;
/** Minimum time between orphan transactions expire time checks in seconds */
static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60;
/** How long to cache transactions in mapRelay for normal relay */
static constexpr std::chrono::seconds RELAY_TX_CACHE_TIME =
std::chrono::minutes{15};
/** How long a transaction has to be in the mempool before it can
* unconditionally be relayed (even when not in mapRelay). */
static constexpr std::chrono::seconds UNCONDITIONAL_RELAY_DELAY =
std::chrono::minutes{2};
/**
* Headers download timeout expressed in microseconds.
* Timeout = base + per_header * (expected number of headers)
*/
// 15 minutes
static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_BASE = 15 * 60 * 1000000;
// 1ms/header
static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1000;
/**
* Protect at least this many outbound peers from disconnection due to
* slow/behind headers chain.
*/
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
/**
* Timeout for (unprotected) outbound peers to sync to our chainwork, in
* seconds.
*/
// 20 minutes
static constexpr int64_t CHAIN_SYNC_TIMEOUT = 20 * 60;
/** How frequently to check for stale tips, in seconds */
// 10 minutes
static constexpr int64_t STALE_CHECK_INTERVAL = 10 * 60;
/**
* How frequently to check for extra outbound peers and disconnect, in seconds.
*/
static constexpr int64_t EXTRA_PEER_CHECK_INTERVAL = 45;
/**
* Minimum time an outbound-peer-eviction candidate must be connected for, in
* order to evict, in seconds.
*/
static constexpr int64_t MINIMUM_CONNECT_TIME = 30;
/** SHA256("main address relay")[0:8] */
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
/// Age after which a stale block will no longer be served if requested as
/// protection against fingerprinting. Set to one month, denominated in seconds.
static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
/// Age after which a block is considered historical for purposes of rate
/// limiting block relay. Set to one week, denominated in seconds.
static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
/**
* Time between pings automatically sent out for latency probing and keepalive.
*/
static constexpr std::chrono::minutes PING_INTERVAL{2};
/** The maximum number of entries in a locator */
static const unsigned int MAX_LOCATOR_SZ = 101;
/** The maximum number of entries in an 'inv' protocol message */
static const unsigned int MAX_INV_SZ = 50000;
static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv),
"Max protocol message length must be greater than largest "
"possible INV message");
struct DataRequestParameters {
/**
* Maximum number of in-flight data requests from a peer. It is not a hard
* limit, but the threshold at which point the overloaded_peer_delay kicks
* in.
*/
const size_t max_peer_request_in_flight;
/**
* Maximum number of inventories to consider for requesting, per peer. It
* provides a reasonable DoS limit to per-peer memory usage spent on
* announcements, while covering peers continuously sending INVs at the
* maximum rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for
* several minutes, while not receiving the actual data (from any peer) in
* response to requests for them.
*/
const size_t max_peer_announcements;
/** How long to delay requesting data from non-preferred peers */
const std::chrono::seconds nonpref_peer_delay;
/**
* How long to delay requesting data from overloaded peers (see
* max_peer_request_in_flight).
*/
const std::chrono::seconds overloaded_peer_delay;
/**
* How long to wait (in microseconds) before a data request from an
* additional peer.
*/
const std::chrono::microseconds getdata_interval;
/**
* Permission flags a peer requires to bypass the request limits tracking
* limits and delay penalty.
*/
const NetPermissionFlags bypass_request_limits_permissions;
};
static constexpr DataRequestParameters TX_REQUEST_PARAMS{
100, // max_peer_request_in_flight
5000, // max_peer_announcements
std::chrono::seconds(2), // nonpref_peer_delay
std::chrono::seconds(2), // overloaded_peer_delay
std::chrono::seconds(60), // getdata_interval
PF_RELAY, // bypass_request_limits_permissions
};
static constexpr DataRequestParameters PROOF_REQUEST_PARAMS{
100, // max_peer_request_in_flight
5000, // max_peer_announcements
std::chrono::seconds(2), // nonpref_peer_delay
std::chrono::seconds(2), // overloaded_peer_delay
std::chrono::seconds(60), // getdata_interval
PF_BYPASS_PROOF_REQUEST_LIMITS, // bypass_request_limits_permissions
};
/**
* Limit to avoid sending big packets. Not used in processing incoming GETDATA
* for compatibility.
*/
static const unsigned int MAX_GETDATA_SZ = 1000;
/**
* Number of blocks that can be requested at any given time from a single peer.
*/
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
/**
* Timeout in seconds during which a peer must stall block download progress
* before being disconnected.
*/
static const unsigned int BLOCK_STALLING_TIMEOUT = 2;
/**
* Number of headers sent in one getheaders result. We rely on the assumption
* that if a peer sends
* less than this number, we reached its tip. Changing this value is a protocol
* upgrade.
*/
static const unsigned int MAX_HEADERS_RESULTS = 2000;
/**
* Maximum depth of blocks we're willing to serve as compact blocks to peers
* when requested. For older blocks, a regular BLOCK response will be sent.
*/
static const int MAX_CMPCTBLOCK_DEPTH = 5;
/**
* Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests
* for.
*/
static const int MAX_BLOCKTXN_DEPTH = 10;
/**
* Size of the "block download window": how far ahead of our current height do
* we fetch? Larger windows tolerate larger download speed differences between
* peer, but increase the potential degree of disordering of blocks on disk
* (which make reindexing and pruning harder). We'll probably
* want to make this a per-peer adaptive value at some point.
*/
static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
/**
* Block download timeout base, expressed in millionths of the block interval
* (i.e. 10 min)
*/
static const int64_t BLOCK_DOWNLOAD_TIMEOUT_BASE = 1000000;
/**
* Additional block download timeout per parallel downloading peer (i.e. 5 min)
*/
static const int64_t BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 500000;
/**
* Maximum number of headers to announce when relaying blocks with headers
* message.
*/
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
/** Maximum number of unconnecting headers announcements before DoS score */
static const int MAX_UNCONNECTING_HEADERS = 10;
/** Minimum blocks required to signal NODE_NETWORK_LIMITED */
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
/**
* Average delay between local address broadcasts.
*/
static constexpr std::chrono::hours AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24};
/**
* Average delay between peer address broadcasts.
*/
static const std::chrono::seconds AVG_ADDRESS_BROADCAST_INTERVAL{30};
/**
* Average delay between trickled inventory transmissions in seconds.
* Blocks and peers with noban permission bypass this, outbound peers
* get half this delay.
*/
static const unsigned int INVENTORY_BROADCAST_INTERVAL = 5;
/**
* Maximum rate of inventory items to send per second.
* Limits the impact of low-fee transaction floods.
*/
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
/** Maximum number of inventory items to send per transmission. */
static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB =
INVENTORY_BROADCAST_PER_SECOND * INVENTORY_BROADCAST_INTERVAL;
/** The number of most recently announced transactions a peer can request. */
static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500;
/**
* Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything
* typically relayed before unconditional relay from the mempool kicks in. This
* is only a lower bound, and it should be larger to account for higher inv rate
* to outbound peers, and random variations in the broadcast mechanism.
*/
static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND *
UNCONDITIONAL_RELAY_DELAY /
std::chrono::seconds{1},
"INVENTORY_RELAY_MAX too low");
/**
* Average delay between feefilter broadcasts in seconds.
*/
static constexpr unsigned int AVG_FEEFILTER_BROADCAST_INTERVAL = 10 * 60;
/**
* Maximum feefilter broadcast delay after significant change.
*/
static constexpr unsigned int MAX_FEEFILTER_CHANGE_DELAY = 5 * 60;
/**
* Maximum number of compact filters that may be requested with one
* getcfilters. See BIP 157.
*/
static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
/**
* Maximum number of cf hashes that may be requested with one getcfheaders. See
* BIP 157.
*/
static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
/**
* the maximum percentage of addresses from our addrman to return in response
* to a getaddr message.
*/
static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
/// How many non standard orphan do we consider from a node before ignoring it.
static constexpr uint32_t MAX_NON_STANDARD_ORPHAN_PER_NODE = 5;
struct COrphanTx {
// When modifying, adapt the copy of this definition in tests/DoS_tests.
CTransactionRef tx;
NodeId fromPeer;
int64_t nTimeExpire;
size_t list_pos;
};
RecursiveMutex g_cs_orphans;
std::map<TxId, COrphanTx> mapOrphanTransactions GUARDED_BY(g_cs_orphans);
void EraseOrphansFor(NodeId peer);
// Internal stuff
namespace {
/** Number of nodes with fSyncStarted. */
int nSyncStarted GUARDED_BY(cs_main) = 0;
/**
* Sources of received blocks, saved to be able to punish them when processing
* happens afterwards.
* Set mapBlockSource[hash].second to false if the node should not be punished
* if the block is invalid.
*/
std::map<BlockHash, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
/**
* Filter for transactions that were recently rejected by AcceptToMemoryPool.
* These are not rerequested until the chain tip changes, at which point the
* entire filter is reset.
*
* Without this filter we'd be re-requesting txs from each of our peers,
* increasing bandwidth consumption considerably. For instance, with 100 peers,
* half of which relay a tx we don't accept, that might be a 50x bandwidth
* increase. A flooding attacker attempting to roll-over the filter using
* minimum-sized, 60byte, transactions might manage to send 1000/sec if we have
* fast peers, so we pick 120,000 to give our peers a two minute window to send
* invs to us.
*
* Decreasing the false positive rate is fairly cheap, so we pick one in a
* million to make it highly unlikely for users to have issues with this filter.
*
* Memory used: 1.3 MB
*/
std::unique_ptr<CRollingBloomFilter> recentRejects GUARDED_BY(cs_main);
uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main);
/**
* Filter for proofs that were recently rejected but not orphaned.
* These are not rerequested until they are rolled out of the filter.
*
* Without this filter we'd be re-requesting proofs from each of our peers,
* increasing bandwidth consumption considerably.
*
* Decreasing the false positive rate is fairly cheap, so we pick one in a
* million to make it highly unlikely for users to have issues with this filter.
*/
Mutex cs_rejectedProofs;
std::unique_ptr<CRollingBloomFilter>
rejectedProofs GUARDED_BY(cs_rejectedProofs);
/**
* Filter for transactions that have been recently confirmed.
* We use this to avoid requesting transactions that have already been
* confirmed.
*/
Mutex g_cs_recent_confirmed_transactions;
std::unique_ptr<CRollingBloomFilter> g_recent_confirmed_transactions
GUARDED_BY(g_cs_recent_confirmed_transactions);
/**
* Blocks that are in flight, and that are in the queue to be downloaded.
*/
struct QueuedBlock {
BlockHash hash;
//! Optional.
const CBlockIndex *pindex;
//! Whether this block has validated headers at the time of request.
bool fValidatedHeaders;
//! Optional, used for CMPCTBLOCK downloads
std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
};
std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>
mapBlocksInFlight GUARDED_BY(cs_main);
/** Stack of nodes which we have set to announce using compact blocks */
std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
/** Number of preferable block download peers. */
int nPreferredDownload GUARDED_BY(cs_main) = 0;
/** Number of peers from which we're downloading blocks. */
int nPeersWithValidatedDownloads GUARDED_BY(cs_main) = 0;
/** Number of outbound peers with m_chain_sync.m_protect. */
int g_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
/** When our tip was last updated. */
std::atomic<int64_t> g_last_tip_update(0);
/** Relay map. */
typedef std::map<uint256, CTransactionRef> MapRelay;
MapRelay mapRelay GUARDED_BY(cs_main);
/**
* Expiration-time ordered list of (expire time, relay map entry) pairs,
* protected by cs_main).
*/
std::deque<std::pair<int64_t, MapRelay::iterator>>
vRelayExpiration GUARDED_BY(cs_main);
struct IteratorComparator {
template <typename I> bool operator()(const I &a, const I &b) const {
return &(*a) < &(*b);
}
};
std::map<COutPoint,
std::set<std::map<TxId, COrphanTx>::iterator, IteratorComparator>>
mapOrphanTransactionsByPrev GUARDED_BY(g_cs_orphans);
//! For random eviction
std::vector<std::map<TxId, COrphanTx>::iterator>
g_orphan_list GUARDED_BY(g_cs_orphans);
static size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0;
static std::vector<std::pair<TxHash, CTransactionRef>>
vExtraTxnForCompact GUARDED_BY(g_cs_orphans);
} // namespace
namespace {
/**
* Maintain validation-specific state about nodes, protected by cs_main, instead
* by CNode's own locks. This simplifies asynchronous operation, where
* processing of incoming data is done after the ProcessMessage call returns,
* and we're no longer holding the node's locks.
*/
struct CNodeState {
//! The peer's address
const CService address;
//! Whether we have a fully established connection.
bool fCurrentlyConnected;
//! The best known block we know this peer has announced.
const CBlockIndex *pindexBestKnownBlock;
//! The hash of the last unknown block this peer has announced.
BlockHash hashLastUnknownBlock;
//! The last full block we both have.
const CBlockIndex *pindexLastCommonBlock;
//! The best header we have sent our peer.
const CBlockIndex *pindexBestHeaderSent;
//! Length of current-streak of unconnecting headers announcements
int nUnconnectingHeaders;
//! Whether we've started headers synchronization with this peer.
bool fSyncStarted;
//! When to potentially disconnect peer for stalling headers download
int64_t nHeadersSyncTimeout;
//! Since when we're stalling block download progress (in microseconds), or
//! 0.
int64_t nStallingSince;
std::list<QueuedBlock> vBlocksInFlight;
//! When the first entry in vBlocksInFlight started downloading. Don't care
//! when vBlocksInFlight is empty.
int64_t nDownloadingSince;
int nBlocksInFlight;
int nBlocksInFlightValidHeaders;
//! Whether we consider this a preferred download peer.
bool fPreferredDownload;
//! Whether this peer wants invs or headers (when possible) for block
//! announcements.
bool fPreferHeaders;
//! Whether this peer wants invs or cmpctblocks (when possible) for block
//! announcements.
bool fPreferHeaderAndIDs;
/**
* Whether this peer will send us cmpctblocks if we request them.
* This is not used to gate request logic, as we really only care about
* fSupportsDesiredCmpctVersion, but is used as a flag to "lock in" the
* version of compact blocks we send.
*/
bool fProvidesHeaderAndIDs;
/**
* If we've announced NODE_WITNESS to this peer: whether the peer sends
* witnesses in cmpctblocks/blocktxns, otherwise: whether this peer sends
* non-witnesses in cmpctblocks/blocktxns.
*/
bool fSupportsDesiredCmpctVersion;
/**
* State used to enforce CHAIN_SYNC_TIMEOUT
* Only in effect for outbound, non-manual, full-relay connections, with
* m_protect == false
* Algorithm: if a peer's best known block has less work than our tip, set
* a timeout CHAIN_SYNC_TIMEOUT seconds in the future:
* - If at timeout their best known block now has more work than our tip
* when the timeout was set, then either reset the timeout or clear it
* (after comparing against our current tip's work)
* - If at timeout their best known block still has less work than our tip
* did when the timeout was set, then send a getheaders message, and set a
* shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best
* known block is still behind when that new timeout is reached, disconnect.
*/
struct ChainSyncTimeoutState {
//! A timeout used for checking whether our peer has sufficiently
//! synced.
int64_t m_timeout;
//! A header with the work we require on our peer's chain.
const CBlockIndex *m_work_header;
//! After timeout is reached, set to true after sending getheaders.
bool m_sent_getheaders;
//! Whether this peer is protected from disconnection due to a bad/slow
//! chain.
bool m_protect;
};
ChainSyncTimeoutState m_chain_sync;
//! Time of last new block announcement
int64_t m_last_block_announcement;
struct AvalancheState {
std::chrono::time_point<std::chrono::steady_clock> last_poll;
};
AvalancheState m_avalanche_state;
//! Whether this peer is an inbound connection
bool m_is_inbound;
//! Whether this peer is a manual connection
bool m_is_manual_connection;
//! A rolling bloom filter of all announced tx CInvs to this peer.
CRollingBloomFilter m_recently_announced_invs =
CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001};
//! A rolling bloom filter of all announced Proofs CInvs to this peer.
CRollingBloomFilter m_recently_announced_proofs =
CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001};
CNodeState(CAddress addrIn, bool is_inbound, bool is_manual)
: address(addrIn), m_is_inbound(is_inbound),
m_is_manual_connection(is_manual) {
fCurrentlyConnected = false;
pindexBestKnownBlock = nullptr;
hashLastUnknownBlock = BlockHash();
pindexLastCommonBlock = nullptr;
pindexBestHeaderSent = nullptr;
nUnconnectingHeaders = 0;
fSyncStarted = false;
nHeadersSyncTimeout = 0;
nStallingSince = 0;
nDownloadingSince = 0;
nBlocksInFlight = 0;
nBlocksInFlightValidHeaders = 0;
fPreferredDownload = false;
fPreferHeaders = false;
fPreferHeaderAndIDs = false;
fProvidesHeaderAndIDs = false;
fSupportsDesiredCmpctVersion = false;
m_chain_sync = {0, nullptr, false, false};
m_last_block_announcement = 0;
m_recently_announced_invs.reset();
m_recently_announced_proofs.reset();
}
};
/** Map maintaining per-node state. */
static std::map<NodeId, CNodeState> mapNodeState GUARDED_BY(cs_main);
static CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
std::map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode);
if (it == mapNodeState.end()) {
return nullptr;
}
return &it->second;
}
/**
* Data structure for an individual peer. This struct is not protected by
* cs_main since it does not contain validation-critical data.
*
* Memory is owned by shared pointers and this object is destructed when
* the refcount drops to zero.
*
* TODO: move most members from CNodeState to this structure.
* TODO: move remaining application-layer data members from CNode to this
* structure.
*/
struct Peer {
/** Same id as the CNode object for this peer */
const NodeId m_id{0};
/** Protects misbehavior data members */
Mutex m_misbehavior_mutex;
/** Accumulated misbehavior score for this peer */
int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0};
/** Whether this peer should be disconnected and marked as discouraged
* (unless it has the noban permission). */
bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
Peer(NodeId id) : m_id(id) {}
};
using PeerRef = std::shared_ptr<Peer>;
/**
* Map of all Peer objects, keyed by peer id. This map is protected
* by the global g_peer_mutex. Once a shared pointer reference is
* taken, the lock may be released. Individual fields are protected by
* their own locks.
*/
Mutex g_peer_mutex;
static std::map<NodeId, PeerRef> g_peer_map GUARDED_BY(g_peer_mutex);
/**
* Get a shared pointer to the Peer object.
* May return nullptr if the Peer object can't be found.
*/
static PeerRef GetPeerRef(NodeId id) {
LOCK(g_peer_mutex);
auto it = g_peer_map.find(id);
return it != g_peer_map.end() ? it->second : nullptr;
}
static bool isPreferredDownloadPeer(const CNode &pfrom) {
LOCK(cs_main);
const CNodeState *state = State(pfrom.GetId());
return state && state->fPreferredDownload;
}
static void UpdatePreferredDownload(const CNode &node, CNodeState *state)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
nPreferredDownload -= state->fPreferredDownload;
// Whether this node should be marked as a preferred download node.
state->fPreferredDownload =
(!node.IsInboundConn() || node.HasPermission(PF_NOBAN)) &&
!node.IsAddrFetchConn() && !node.fClient;
nPreferredDownload += state->fPreferredDownload;
}
static void PushNodeVersion(const Config &config, CNode &pnode,
CConnman &connman, int64_t nTime) {
// Note that pnode.GetLocalServices() is a reflection of the local
// services we were offering when the CNode object was created for this
// peer.
ServiceFlags nLocalNodeServices = pnode.GetLocalServices();
uint64_t nonce = pnode.GetLocalNonce();
int nNodeStartingHeight = pnode.GetMyStartingHeight();
NodeId nodeid = pnode.GetId();
CAddress addr = pnode.addr;
uint64_t extraEntropy = pnode.GetLocalExtraEntropy();
CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr)
? addr
: CAddress(CService(), addr.nServices));
CAddress addrMe = CAddress(CService(), nLocalNodeServices);
connman.PushMessage(
&pnode,
CNetMsgMaker(INIT_PROTO_VERSION)
.Make(NetMsgType::VERSION, PROTOCOL_VERSION,
uint64_t(nLocalNodeServices), nTime, addrYou, addrMe, nonce,
userAgent(config), nNodeStartingHeight,
::g_relay_txes && pnode.m_tx_relay != nullptr, extraEntropy));
if (fLogIPs) {
LogPrint(BCLog::NET,
"send version message: version %d, blocks=%d, us=%s, them=%s, "
"peer=%d\n",
PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(),
addrYou.ToString(), nodeid);
} else {
LogPrint(
BCLog::NET,
"send version message: version %d, blocks=%d, us=%s, peer=%d\n",
PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), nodeid);
}
LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
}
// Returns a bool indicating whether we requested this block.
// Also used if a block was /not/ received and timed out or started with another
// peer.
static bool MarkBlockAsReceived(const BlockHash &hash)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::iterator
itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end()) {
CNodeState *state = State(itInFlight->second.first);
assert(state != nullptr);
state->nBlocksInFlightValidHeaders -=
itInFlight->second.second->fValidatedHeaders;
if (state->nBlocksInFlightValidHeaders == 0 &&
itInFlight->second.second->fValidatedHeaders) {
// Last validated block on the queue was received.
nPeersWithValidatedDownloads--;
}
if (state->vBlocksInFlight.begin() == itInFlight->second.second) {
// First block on the queue was received, update the start download
// time for the next one
state->nDownloadingSince = std::max(
state->nDownloadingSince,
count_microseconds(GetTime<std::chrono::microseconds>()));
}
state->vBlocksInFlight.erase(itInFlight->second.second);
state->nBlocksInFlight--;
state->nStallingSince = 0;
mapBlocksInFlight.erase(itInFlight);
return true;
}
return false;
}
// returns false, still setting pit, if the block was already in flight from the
// same peer
// pit will only be valid as long as the same cs_main lock is being held.
static bool
MarkBlockAsInFlight(const Config &config, CTxMemPool &mempool, NodeId nodeid,
const BlockHash &hash,
const Consensus::Params &consensusParams,
const CBlockIndex *pindex = nullptr,
std::list<QueuedBlock>::iterator **pit = nullptr)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
CNodeState *state = State(nodeid);
assert(state != nullptr);
// Short-circuit most stuff in case it is from the same node.
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::iterator
itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end() &&
itInFlight->second.first == nodeid) {
if (pit) {
*pit = &itInFlight->second.second;
}
return false;
}
// Make sure it's not listed somewhere already.
MarkBlockAsReceived(hash);
std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(
state->vBlocksInFlight.end(),
{hash, pindex, pindex != nullptr,
std::unique_ptr<PartiallyDownloadedBlock>(
pit ? new PartiallyDownloadedBlock(config, &mempool) : nullptr)});
state->nBlocksInFlight++;
state->nBlocksInFlightValidHeaders += it->fValidatedHeaders;
if (state->nBlocksInFlight == 1) {
// We're starting a block download (batch) from this peer.
state->nDownloadingSince = GetTime<std::chrono::microseconds>().count();
}
if (state->nBlocksInFlightValidHeaders == 1 && pindex != nullptr) {
nPeersWithValidatedDownloads++;
}
itInFlight = mapBlocksInFlight
.insert(std::make_pair(hash, std::make_pair(nodeid, it)))
.first;
if (pit) {
*pit = &itInFlight->second.second;
}
return true;
}
/** Check whether the last unknown block a peer advertised is not yet known. */
static void ProcessBlockAvailability(NodeId nodeid)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
CNodeState *state = State(nodeid);
assert(state != nullptr);
if (!state->hashLastUnknownBlock.IsNull()) {
const CBlockIndex *pindex =
LookupBlockIndex(state->hashLastUnknownBlock);
if (pindex && pindex->nChainWork > 0) {
if (state->pindexBestKnownBlock == nullptr ||
pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
state->pindexBestKnownBlock = pindex;
}
state->hashLastUnknownBlock.SetNull();
}
}
}
/** Update tracking information about which blocks a peer is assumed to have. */
static void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
CNodeState *state = State(nodeid);
assert(state != nullptr);
ProcessBlockAvailability(nodeid);
const CBlockIndex *pindex = LookupBlockIndex(hash);
if (pindex && pindex->nChainWork > 0) {
// An actually better block was announced.
if (state->pindexBestKnownBlock == nullptr ||
pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
state->pindexBestKnownBlock = pindex;
}
} else {
// An unknown block was announced; just assume that the latest one is
// the best one.
state->hashLastUnknownBlock = hash;
}
}
/**
* When a peer sends us a valid block, instruct it to announce blocks to us
* using CMPCTBLOCK if possible by adding its nodeid to the end of
* lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by
* removing the first element if necessary.
*/
static void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid,
CConnman &connman)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
CNodeState *nodestate = State(nodeid);
if (!nodestate) {
LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid);
return;
}
if (!nodestate->fProvidesHeaderAndIDs) {
return;
}
for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin();
it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
if (*it == nodeid) {
lNodesAnnouncingHeaderAndIDs.erase(it);
lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
return;
}
}
connman.ForNode(nodeid, [&connman](CNode *pfrom) EXCLUSIVE_LOCKS_REQUIRED(
::cs_main) {
AssertLockHeld(::cs_main);
uint64_t nCMPCTBLOCKVersion = 1;
if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
// As per BIP152, we only get 3 of our peers to announce
// blocks using compact encodings.
connman.ForNode(
lNodesAnnouncingHeaderAndIDs.front(),
[&connman, nCMPCTBLOCKVersion](CNode *pnodeStop) {
connman.PushMessage(
pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion())
.Make(NetMsgType::SENDCMPCT,
/*fAnnounceUsingCMPCTBLOCK=*/false,
nCMPCTBLOCKVersion));
return true;
});
lNodesAnnouncingHeaderAndIDs.pop_front();
}
connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion())
.Make(NetMsgType::SENDCMPCT,
/*fAnnounceUsingCMPCTBLOCK=*/true,
nCMPCTBLOCKVersion));
lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
return true;
});
}
static bool TipMayBeStale(const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
if (g_last_tip_update == 0) {
g_last_tip_update = GetTime();
}
return g_last_tip_update <
GetTime() - consensusParams.nPowTargetSpacing * 3 &&
mapBlocksInFlight.empty();
}
static bool CanDirectFetch(const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
return ::ChainActive().Tip()->GetBlockTime() >
GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20;
}
static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
if (state->pindexBestKnownBlock &&
pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) {
return true;
}
if (state->pindexBestHeaderSent &&
pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) {
return true;
}
return false;
}
/**
* Update pindexLastCommonBlock and add not-in-flight missing successors to
* vBlocks, until it has at most count entries.
*/
static void FindNextBlocksToDownload(NodeId nodeid, unsigned int count,
std::vector<const CBlockIndex *> &vBlocks,
NodeId &nodeStaller,
const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
if (count == 0) {
return;
}
vBlocks.reserve(vBlocks.size() + count);
CNodeState *state = State(nodeid);
assert(state != nullptr);
// Make sure pindexBestKnownBlock is up to date, we'll need it.
ProcessBlockAvailability(nodeid);
if (state->pindexBestKnownBlock == nullptr ||
state->pindexBestKnownBlock->nChainWork <
::ChainActive().Tip()->nChainWork ||
state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) {
// This peer has nothing interesting.
return;
}
if (state->pindexLastCommonBlock == nullptr) {
// Bootstrap quickly by guessing a parent of our best tip is the forking
// point. Guessing wrong in either direction is not a problem.
state->pindexLastCommonBlock = ::ChainActive()[std::min(
state->pindexBestKnownBlock->nHeight, ::ChainActive().Height())];
}
// If the peer reorganized, our previous pindexLastCommonBlock may not be an
// ancestor of its current tip anymore. Go back enough to fix that.
state->pindexLastCommonBlock = LastCommonAncestor(
state->pindexLastCommonBlock, state->pindexBestKnownBlock);
if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) {
return;
}
std::vector<const CBlockIndex *> vToFetch;
const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
// Never fetch further than the best block we know the peer has, or more
// than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in
// common with this peer. The +1 is so we can detect stalling, namely if we
// would be able to download that next block if the window were 1 larger.
int nWindowEnd =
state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
int nMaxHeight =
std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
NodeId waitingfor = -1;
while (pindexWalk->nHeight < nMaxHeight) {
// Read up to 128 (or more, if more blocks than that are needed)
// successors of pindexWalk (towards pindexBestKnownBlock) into
// vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as
// expensive as iterating over ~100 CBlockIndex* entries anyway.
int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight,
std::max<int>(count - vBlocks.size(), 128));
vToFetch.resize(nToFetch);
pindexWalk = state->pindexBestKnownBlock->GetAncestor(
pindexWalk->nHeight + nToFetch);
vToFetch[nToFetch - 1] = pindexWalk;
for (unsigned int i = nToFetch - 1; i > 0; i--) {
vToFetch[i - 1] = vToFetch[i]->pprev;
}
// Iterate over those blocks in vToFetch (in forward direction), adding
// the ones that are not yet downloaded and not in flight to vBlocks. In
// the meantime, update pindexLastCommonBlock as long as all ancestors
// are already downloaded, or if it's already part of our chain (and
// therefore don't need it even if pruned).
for (const CBlockIndex *pindex : vToFetch) {
if (!pindex->IsValid(BlockValidity::TREE)) {
// We consider the chain that this peer is on invalid.
return;
}
if (pindex->nStatus.hasData() || ::ChainActive().Contains(pindex)) {
if (pindex->HaveTxsDownloaded()) {
state->pindexLastCommonBlock = pindex;
}
} else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) {
// The block is not already downloaded, and not yet in flight.
if (pindex->nHeight > nWindowEnd) {
// We reached the end of the window.
if (vBlocks.size() == 0 && waitingfor != nodeid) {
// We aren't able to fetch anything, but we would be if
// the download window was one larger.
nodeStaller = waitingfor;
}
return;
}
vBlocks.push_back(pindex);
if (vBlocks.size() == count) {
return;
}
} else if (waitingfor == -1) {
// This is the first already-in-flight block.
waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first;
}
}
}
}
} // namespace
template <class InvId>
static bool TooManyAnnouncements(const CNode &node,
const InvRequestTracker<InvId> &requestTracker,
const DataRequestParameters &requestParams) {
return !node.HasPermission(
requestParams.bypass_request_limits_permissions) &&
requestTracker.Count(node.GetId()) >=
requestParams.max_peer_announcements;
}
/**
* Compute the request time for this announcement, current time plus delays for:
* - nonpref_peer_delay for announcements from non-preferred connections
* - overloaded_peer_delay for announcements from peers which have at least
* max_peer_request_in_flight requests in flight (and don't have PF_RELAY).
*/
template <class InvId>
static std::chrono::microseconds
ComputeRequestTime(const CNode &node,
const InvRequestTracker<InvId> &requestTracker,
const DataRequestParameters &requestParams,
std::chrono::microseconds current_time, bool preferred) {
auto delay = std::chrono::microseconds{0};
if (!preferred) {
delay += requestParams.nonpref_peer_delay;
}
if (!node.HasPermission(requestParams.bypass_request_limits_permissions) &&
requestTracker.CountInFlight(node.GetId()) >=
requestParams.max_peer_request_in_flight) {
delay += requestParams.overloaded_peer_delay;
}
return current_time + delay;
}
void PeerManager::AddTxAnnouncement(const CNode &node, const TxId &txid,
std::chrono::microseconds current_time) {
// For m_txrequest and state
AssertLockHeld(::cs_main);
if (TooManyAnnouncements(node, m_txrequest, TX_REQUEST_PARAMS)) {
return;
}
const bool preferred = isPreferredDownloadPeer(node);
auto reqtime = ComputeRequestTime(node, m_txrequest, TX_REQUEST_PARAMS,
current_time, preferred);
m_txrequest.ReceivedInv(node.GetId(), txid, preferred, reqtime);
}
void PeerManager::AddProofAnnouncement(const CNode &node,
const avalanche::ProofId &proofid,
std::chrono::microseconds current_time,
bool preferred) {
// For m_proofrequest
AssertLockHeld(cs_proofrequest);
if (TooManyAnnouncements(node, m_proofrequest, PROOF_REQUEST_PARAMS)) {
return;
}
auto reqtime = ComputeRequestTime(
node, m_proofrequest, PROOF_REQUEST_PARAMS, current_time, preferred);
m_proofrequest.ReceivedInv(node.GetId(), proofid, preferred, reqtime);
}
// This function is used for testing the stale tip eviction logic, see
// denialofservice_tests.cpp
void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) {
LOCK(cs_main);
CNodeState *state = State(node);
if (state) {
state->m_last_block_announcement = time_in_seconds;
}
}
void PeerManager::InitializeNode(const Config &config, CNode *pnode) {
CAddress addr = pnode->addr;
std::string addrName = pnode->GetAddrName();
NodeId nodeid = pnode->GetId();
{
LOCK(cs_main);
mapNodeState.emplace_hint(mapNodeState.end(), std::piecewise_construct,
std::forward_as_tuple(nodeid),
std::forward_as_tuple(addr,
pnode->IsInboundConn(),
pnode->IsManualConn()));
assert(m_txrequest.Count(nodeid) == 0);
}
{
PeerRef peer = std::make_shared<Peer>(nodeid);
LOCK(g_peer_mutex);
g_peer_map.emplace_hint(g_peer_map.end(), nodeid, std::move(peer));
}
if (!pnode->IsInboundConn()) {
PushNodeVersion(config, *pnode, m_connman, GetTime());
}
}
void PeerManager::ReattemptInitialBroadcast(CScheduler &scheduler) const {
std::set<TxId> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
for (const TxId &txid : unbroadcast_txids) {
// Sanity check: all unbroadcast txns should exist in the mempool
if (m_mempool.exists(txid)) {
RelayTransaction(txid, m_connman);
} else {
m_mempool.RemoveUnbroadcastTx(txid, true);
}
}
if (g_avalanche && isAvalancheEnabled(gArgs)) {
g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) {
auto unbroadcasted_proofids = pm.getUnbroadcastProofs();
for (const auto &proofid : unbroadcasted_proofids) {
// Sanity check: all unbroadcast proofs should be valid in the
// peermanager
if (pm.isValid(proofid)) {
RelayProof(proofid, m_connman);
} else {
pm.removeUnbroadcastProof(proofid);
}
}
});
}
// Schedule next run for 10-15 minutes in the future.
// We add randomness on every cycle to avoid the possibility of P2P
// fingerprinting.
const std::chrono::milliseconds delta =
std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5});
scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); },
delta);
}
void PeerManager::UpdateAvalancheStatistics() const {
m_connman.ForEachNode([](CNode *pnode) {
if (pnode->m_avalanche_state) {
pnode->m_avalanche_state->updateAvailabilityScore();
}
});
}
void PeerManager::FinalizeNode(const Config &config, NodeId nodeid,
bool &fUpdateConnectionTime) {
fUpdateConnectionTime = false;
{
LOCK(cs_main);
int misbehavior{0};
{
PeerRef peer = GetPeerRef(nodeid);
assert(peer != nullptr);
misbehavior = WITH_LOCK(peer->m_misbehavior_mutex,
return peer->m_misbehavior_score);
LOCK(g_peer_mutex);
g_peer_map.erase(nodeid);
}
CNodeState *state = State(nodeid);
assert(state != nullptr);
if (state->fSyncStarted) {
nSyncStarted--;
}
if (misbehavior == 0 && state->fCurrentlyConnected) {
fUpdateConnectionTime = true;
}
for (const QueuedBlock &entry : state->vBlocksInFlight) {
mapBlocksInFlight.erase(entry.hash);
}
EraseOrphansFor(nodeid);
m_txrequest.DisconnectedPeer(nodeid);
nPreferredDownload -= state->fPreferredDownload;
nPeersWithValidatedDownloads -=
(state->nBlocksInFlightValidHeaders != 0);
assert(nPeersWithValidatedDownloads >= 0);
g_outbound_peers_with_protect_from_disconnect -=
state->m_chain_sync.m_protect;
assert(g_outbound_peers_with_protect_from_disconnect >= 0);
mapNodeState.erase(nodeid);
if (mapNodeState.empty()) {
// Do a consistency check after the last peer is removed.
assert(mapBlocksInFlight.empty());
assert(nPreferredDownload == 0);
assert(nPeersWithValidatedDownloads == 0);
assert(g_outbound_peers_with_protect_from_disconnect == 0);
assert(m_txrequest.Size() == 0);
}
}
WITH_LOCK(cs_proofrequest, m_proofrequest.DisconnectedPeer(nodeid));
LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
}
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) {
{
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state == nullptr) {
return false;
}
stats.nSyncHeight = state->pindexBestKnownBlock
? state->pindexBestKnownBlock->nHeight
: -1;
stats.nCommonHeight = state->pindexLastCommonBlock
? state->pindexLastCommonBlock->nHeight
: -1;
for (const QueuedBlock &queue : state->vBlocksInFlight) {
if (queue.pindex) {
stats.vHeightInFlight.push_back(queue.pindex->nHeight);
}
}
}
PeerRef peer = GetPeerRef(nodeid);
if (peer == nullptr) {
return false;
}
stats.m_misbehavior_score =
WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score);
return true;
}
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
static void AddToCompactExtraTransactions(const CTransactionRef &tx)
EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) {
size_t max_extra_txn = gArgs.GetArg("-blockreconstructionextratxn",
DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN);
if (max_extra_txn <= 0) {
return;
}
if (!vExtraTxnForCompact.size()) {
vExtraTxnForCompact.resize(max_extra_txn);
}
vExtraTxnForCompact[vExtraTxnForCompactIt] =
std::make_pair(tx->GetHash(), tx);
vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn;
}
bool AddOrphanTx(const CTransactionRef &tx, NodeId peer)
EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) {
const TxId &txid = tx->GetId();
if (mapOrphanTransactions.count(txid)) {
return false;
}
// Ignore big transactions, to avoid a send-big-orphans memory exhaustion
// attack. If a peer has a legitimate large transaction with a missing
// parent then we assume it will rebroadcast it later, after the parent
// transaction(s) have been mined or received.
// 100 orphans, each of which is at most 100,000 bytes big is at most 10
// megabytes of orphans and somewhat more byprev index (in the worst case):
unsigned int sz = tx->GetTotalSize();
if (sz > MAX_STANDARD_TX_SIZE) {
LogPrint(BCLog::MEMPOOL,
"ignoring large orphan tx (size: %u, hash: %s)\n", sz,
txid.ToString());
return false;
}
auto ret = mapOrphanTransactions.emplace(
txid, COrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME,
g_orphan_list.size()});
assert(ret.second);
g_orphan_list.push_back(ret.first);
for (const CTxIn &txin : tx->vin) {
mapOrphanTransactionsByPrev[txin.prevout].insert(ret.first);
}
AddToCompactExtraTransactions(tx);
LogPrint(BCLog::MEMPOOL, "stored orphan tx %s (mapsz %u outsz %u)\n",
txid.ToString(), mapOrphanTransactions.size(),
mapOrphanTransactionsByPrev.size());
return true;
}
static int EraseOrphanTx(const TxId id) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) {
const auto it = mapOrphanTransactions.find(id);
if (it == mapOrphanTransactions.end()) {
return 0;
}
for (const CTxIn &txin : it->second.tx->vin) {
const auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout);
if (itPrev == mapOrphanTransactionsByPrev.end()) {
continue;
}
itPrev->second.erase(it);
if (itPrev->second.empty()) {
mapOrphanTransactionsByPrev.erase(itPrev);
}
}
size_t old_pos = it->second.list_pos;
assert(g_orphan_list[old_pos] == it);
if (old_pos + 1 != g_orphan_list.size()) {
// Unless we're deleting the last entry in g_orphan_list, move the last
// entry to the position we're deleting.
auto it_last = g_orphan_list.back();
g_orphan_list[old_pos] = it_last;
it_last->second.list_pos = old_pos;
}
g_orphan_list.pop_back();
mapOrphanTransactions.erase(it);
return 1;
}
void EraseOrphansFor(NodeId peer) {
LOCK(g_cs_orphans);
int nErased = 0;
auto iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end()) {
// Increment to avoid iterator becoming invalid.
const auto maybeErase = iter++;
if (maybeErase->second.fromPeer == peer) {
nErased += EraseOrphanTx(maybeErase->second.tx->GetId());
}
}
if (nErased > 0) {
LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx from peer=%d\n", nErased,
peer);
}
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) {
LOCK(g_cs_orphans);
unsigned int nEvicted = 0;
static int64_t nNextSweep;
int64_t nNow = GetTime();
if (nNextSweep <= nNow) {
// Sweep out expired orphan pool entries:
int nErased = 0;
int64_t nMinExpTime =
nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL;
auto iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end()) {
const auto maybeErase = iter++;
if (maybeErase->second.nTimeExpire <= nNow) {
nErased += EraseOrphanTx(maybeErase->second.tx->GetId());
} else {
nMinExpTime =
std::min(maybeErase->second.nTimeExpire, nMinExpTime);
}
}
// Sweep again 5 minutes after the next entry that expires in order to
// batch the linear scan.
nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL;
if (nErased > 0) {
LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx due to expiration\n",
nErased);
}
}
FastRandomContext rng;
while (mapOrphanTransactions.size() > nMaxOrphans) {
// Evict a random orphan:
size_t randompos = rng.randrange(g_orphan_list.size());
EraseOrphanTx(g_orphan_list[randompos]->first);
++nEvicted;
}
return nEvicted;
}
void PeerManager::Misbehaving(const NodeId pnode, const int howmuch,
const std::string &message) {
assert(howmuch > 0);
PeerRef peer = GetPeerRef(pnode);
if (peer == nullptr) {
return;
}
LOCK(peer->m_misbehavior_mutex);
peer->m_misbehavior_score += howmuch;
const std::string message_prefixed =
message.empty() ? "" : (": " + message);
if (peer->m_misbehavior_score >= DISCOURAGEMENT_THRESHOLD &&
peer->m_misbehavior_score - howmuch < DISCOURAGEMENT_THRESHOLD) {
LogPrint(BCLog::NET,
"Misbehaving: peer=%d (%d -> %d) BAN THRESHOLD EXCEEDED%s\n",
pnode, peer->m_misbehavior_score - howmuch,
peer->m_misbehavior_score, message_prefixed);
peer->m_should_discourage = true;
} else {
LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s\n", pnode,
peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score,
message_prefixed);
}
}
bool PeerManager::MaybePunishNodeForBlock(NodeId nodeid,
const BlockValidationState &state,
bool via_compact_block,
const std::string &message) {
switch (state.GetResult()) {
case BlockValidationResult::BLOCK_RESULT_UNSET:
break;
// The node is providing invalid data:
case BlockValidationResult::BLOCK_CONSENSUS:
case BlockValidationResult::BLOCK_MUTATED:
if (!via_compact_block) {
Misbehaving(nodeid, 100, message);
return true;
}
break;
case BlockValidationResult::BLOCK_CACHED_INVALID: {
LOCK(cs_main);
CNodeState *node_state = State(nodeid);
if (node_state == nullptr) {
break;
}
// Ban outbound (but not inbound) peers if on an invalid chain.
// Exempt HB compact block peers and manual connections.
if (!via_compact_block && !node_state->m_is_inbound &&
!node_state->m_is_manual_connection) {
Misbehaving(nodeid, 100, message);
return true;
}
break;
}
case BlockValidationResult::BLOCK_INVALID_HEADER:
case BlockValidationResult::BLOCK_CHECKPOINT:
case BlockValidationResult::BLOCK_INVALID_PREV:
Misbehaving(nodeid, 100, message);
return true;
case BlockValidationResult::BLOCK_FINALIZATION:
// TODO: Use the state object to report this is probably not the
// best idea. This is effectively unreachable, unless there is a bug
// somewhere.
Misbehaving(nodeid, 20, message);
return true;
// Conflicting (but not necessarily invalid) data or different policy:
case BlockValidationResult::BLOCK_MISSING_PREV:
// TODO: Handle this much more gracefully (10 DoS points is super
// arbitrary)
Misbehaving(nodeid, 10, message);
return true;
case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE:
case BlockValidationResult::BLOCK_TIME_FUTURE:
break;
}
if (message != "") {
LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
}
return false;
}
bool PeerManager::MaybePunishNodeForTx(NodeId nodeid,
const TxValidationState &state,
const std::string &message) {
switch (state.GetResult()) {
case TxValidationResult::TX_RESULT_UNSET:
break;
// The node is providing invalid data:
case TxValidationResult::TX_CONSENSUS:
Misbehaving(nodeid, 100, message);
return true;
// Conflicting (but not necessarily invalid) data or different policy:
case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE:
case TxValidationResult::TX_INPUTS_NOT_STANDARD:
case TxValidationResult::TX_NOT_STANDARD:
case TxValidationResult::TX_MISSING_INPUTS:
case TxValidationResult::TX_PREMATURE_SPEND:
case TxValidationResult::TX_CONFLICT:
case TxValidationResult::TX_MEMPOOL_POLICY:
break;
}
if (message != "") {
LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// blockchain -> download logic notification
//
// To prevent fingerprinting attacks, only send blocks/headers outside of the
// active chain if they are no more than a month older (both in time, and in
// best equivalent proof of work) than the best header chain we know about and
// we fully-validated them at some point.
static bool BlockRequestAllowed(const CBlockIndex *pindex,
const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
if (::ChainActive().Contains(pindex)) {
return true;
}
return pindex->IsValid(BlockValidity::SCRIPTS) &&
(pindexBestHeader != nullptr) &&
(pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() <
STALE_RELAY_AGE_LIMIT) &&
(GetBlockProofEquivalentTime(*pindexBestHeader, *pindex,
*pindexBestHeader, consensusParams) <
STALE_RELAY_AGE_LIMIT);
}
PeerManager::PeerManager(const CChainParams &chainparams, CConnman &connman,
BanMan *banman, CScheduler &scheduler,
ChainstateManager &chainman, CTxMemPool &pool)
: m_chainparams(chainparams), m_connman(connman), m_banman(banman),
m_chainman(chainman), m_mempool(pool), m_stale_tip_check_time(0) {
// Initialize global variables that cannot be constructed at startup.
recentRejects.reset(new CRollingBloomFilter(120000, 0.000001));
{
LOCK(cs_rejectedProofs);
rejectedProofs =
std::make_unique<CRollingBloomFilter>(100000, 0.000001);
}
// Blocks don't typically have more than 4000 transactions, so this should
// be at least six blocks (~1 hr) worth of transactions that we can store.
// If the number of transactions appearing in a block goes up, or if we are
// seeing getdata requests more than an hour after initial announcement, we
// can increase this number.
// The false positive rate of 1/1M should come out to less than 1
// transaction per day that would be inadvertently ignored (which is the
// same probability that we have in the reject filter).
g_recent_confirmed_transactions.reset(
new CRollingBloomFilter(24000, 0.000001));
// Stale tip checking and peer eviction are on two different timers, but we
// don't want them to get out of sync due to drift in the scheduler, so we
// combine them in one function and schedule at the quicker (peer-eviction)
// timer.
static_assert(
EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL,
"peer eviction timer should be less than stale tip check timer");
scheduler.scheduleEvery(
[this]() {
this->CheckForStaleTipAndEvictPeers();
return true;
},
std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
// schedule next run for 10-15 minutes in the future
const std::chrono::milliseconds delta =
std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5});
scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); },
delta);
// Update the avalanche statistics on a schedule
scheduler.scheduleEvery(
[this]() {
UpdateAvalancheStatistics();
return true;
},
AVALANCHE_STATISTICS_REFRESH_PERIOD);
}
/**
* Evict orphan txn pool entries (EraseOrphanTx) based on a newly connected
* block, remember the recently confirmed transactions, and delete tracked
* announcements for them. Also save the time of the last tip update.
*/
void PeerManager::BlockConnected(const std::shared_ptr<const CBlock> &pblock,
const CBlockIndex *pindex) {
{
LOCK(g_cs_orphans);
std::vector<TxId> vOrphanErase;
for (const CTransactionRef &ptx : pblock->vtx) {
const CTransaction &tx = *ptx;
// Which orphan pool entries must we evict?
for (const auto &txin : tx.vin) {
auto itByPrev = mapOrphanTransactionsByPrev.find(txin.prevout);
if (itByPrev == mapOrphanTransactionsByPrev.end()) {
continue;
}
for (auto mi = itByPrev->second.begin();
mi != itByPrev->second.end(); ++mi) {
const CTransaction &orphanTx = *(*mi)->second.tx;
const TxId &orphanId = orphanTx.GetId();
vOrphanErase.push_back(orphanId);
}
}
}
// Erase orphan transactions included or precluded by this block
if (vOrphanErase.size()) {
int nErased = 0;
for (const auto &orphanId : vOrphanErase) {
nErased += EraseOrphanTx(orphanId);
}
LogPrint(BCLog::MEMPOOL,
"Erased %d orphan tx included or conflicted by block\n",
nErased);
}
g_last_tip_update = GetTime();
}
{
LOCK(g_cs_recent_confirmed_transactions);
for (const CTransactionRef &ptx : pblock->vtx) {
g_recent_confirmed_transactions->insert(ptx->GetId());
}
}
{
LOCK(cs_main);
for (const auto &ptx : pblock->vtx) {
m_txrequest.ForgetInvId(ptx->GetId());
}
}
}
void PeerManager::BlockDisconnected(const std::shared_ptr<const CBlock> &block,
const CBlockIndex *pindex) {
// To avoid relay problems with transactions that were previously
// confirmed, clear our filter of recently confirmed transactions whenever
// there's a reorg.
// This means that in a 1-block reorg (where 1 block is disconnected and
// then another block reconnected), our filter will drop to having only one
// block's worth of transactions in it, but that should be fine, since
// presumably the most common case of relaying a confirmed transaction
// should be just after a new block containing it is found.
LOCK(g_cs_recent_confirmed_transactions);
g_recent_confirmed_transactions->reset();
}
// All of the following cache a recent block, and are protected by
// cs_most_recent_block
static RecursiveMutex cs_most_recent_block;
static std::shared_ptr<const CBlock>
most_recent_block GUARDED_BY(cs_most_recent_block);
static std::shared_ptr<const CBlockHeaderAndShortTxIDs>
most_recent_compact_block GUARDED_BY(cs_most_recent_block);
static uint256 most_recent_block_hash GUARDED_BY(cs_most_recent_block);
/**
* Maintain state about the best-seen block and fast-announce a compact block
* to compatible peers.
*/
void PeerManager::NewPoWValidBlock(
const CBlockIndex *pindex, const std::shared_ptr<const CBlock> &pblock) {
std::shared_ptr<const CBlockHeaderAndShortTxIDs> pcmpctblock =
std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock);
const CNetMsgMaker msgMaker(PROTOCOL_VERSION);
LOCK(cs_main);
static int nHighestFastAnnounce = 0;
if (pindex->nHeight <= nHighestFastAnnounce) {
return;
}
nHighestFastAnnounce = pindex->nHeight;
uint256 hashBlock(pblock->GetHash());
{
LOCK(cs_most_recent_block);
most_recent_block_hash = hashBlock;
most_recent_block = pblock;
most_recent_compact_block = pcmpctblock;
}
m_connman.ForEachNode(
[this, &pcmpctblock, pindex, &msgMaker,
&hashBlock](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
AssertLockHeld(::cs_main);
// TODO: Avoid the repeated-serialization here
if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION ||
pnode->fDisconnect) {
return;
}
ProcessBlockAvailability(pnode->GetId());
CNodeState &state = *State(pnode->GetId());
// If the peer has, or we announced to them the previous block
// already, but we don't think they have this one, go ahead and
// announce it.
if (state.fPreferHeaderAndIDs && !PeerHasHeader(&state, pindex) &&
PeerHasHeader(&state, pindex->pprev)) {
LogPrint(BCLog::NET,
"%s sending header-and-ids %s to peer=%d\n",
"PeerManager::NewPoWValidBlock", hashBlock.ToString(),
pnode->GetId());
m_connman.PushMessage(
pnode, msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock));
state.pindexBestHeaderSent = pindex;
}
});
}
/**
* Update our best height and announce any block hashes which weren't previously
* in ::ChainActive() to our peers.
*/
void PeerManager::UpdatedBlockTip(const CBlockIndex *pindexNew,
const CBlockIndex *pindexFork,
bool fInitialDownload) {
const int nNewHeight = pindexNew->nHeight;
m_connman.SetBestHeight(nNewHeight);
SetServiceFlagsIBDCache(!fInitialDownload);
if (!fInitialDownload) {
// Find the hashes of all blocks that weren't previously in the best
// chain.
std::vector<BlockHash> vHashes;
const CBlockIndex *pindexToAnnounce = pindexNew;
while (pindexToAnnounce != pindexFork) {
vHashes.push_back(pindexToAnnounce->GetBlockHash());
pindexToAnnounce = pindexToAnnounce->pprev;
if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
// Limit announcements in case of a huge reorganization. Rely on
// the peer's synchronization mechanism in that case.
break;
}
}
// Relay inventory, but don't relay old inventory during initial block
// download.
m_connman.ForEachNode([nNewHeight, &vHashes](CNode *pnode) {
LOCK(pnode->cs_inventory);
if (nNewHeight > (pnode->nStartingHeight != -1
? pnode->nStartingHeight - 2000
: 0)) {
for (const BlockHash &hash : reverse_iterate(vHashes)) {
pnode->vBlockHashesToAnnounce.push_back(hash);
}
}
});
m_connman.WakeMessageHandler();
}
}
/**
* Handle invalid block rejection and consequent peer banning, maintain which
* peers announce compact blocks.
*/
void PeerManager::BlockChecked(const CBlock &block,
const BlockValidationState &state) {
LOCK(cs_main);
const BlockHash hash = block.GetHash();
std::map<BlockHash, std::pair<NodeId, bool>>::iterator it =
mapBlockSource.find(hash);
// If the block failed validation, we know where it came from and we're
// still connected to that peer, maybe punish.
if (state.IsInvalid() && it != mapBlockSource.end() &&
State(it->second.first)) {
MaybePunishNodeForBlock(/*nodeid=*/it->second.first, state,
/*via_compact_block=*/!it->second.second);
}
// Check that:
// 1. The block is valid
// 2. We're not in initial block download
// 3. This is currently the best block we're aware of. We haven't updated
// the tip yet so we have no way to check this directly here. Instead we
// just check that there are currently no other blocks in flight.
else if (state.IsValid() &&
!::ChainstateActive().IsInitialBlockDownload() &&
mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
if (it != mapBlockSource.end()) {
MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first, m_connman);
}
}
if (it != mapBlockSource.end()) {
mapBlockSource.erase(it);
}
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
static bool AlreadyHaveTx(const TxId &txid, const CTxMemPool &mempool)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
assert(recentRejects);
if (::ChainActive().Tip()->GetBlockHash() != hashRecentRejectsChainTip) {
// If the chain tip has changed previously rejected transactions
// might be now valid, e.g. due to a nLockTime'd tx becoming
// valid, or a double-spend. Reset the rejects filter and give
// those txs a second chance.
hashRecentRejectsChainTip = ::ChainActive().Tip()->GetBlockHash();
recentRejects->reset();
}
{
LOCK(g_cs_orphans);
if (mapOrphanTransactions.count(txid)) {
return true;
}
}
{
LOCK(g_cs_recent_confirmed_transactions);
if (g_recent_confirmed_transactions->contains(txid)) {
return true;
}
}
return recentRejects->contains(txid) || mempool.exists(txid);
}
static bool AlreadyHaveBlock(const BlockHash &block_hash)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
return LookupBlockIndex(block_hash) != nullptr;
}
static bool AlreadyHaveProof(const avalanche::ProofId &proofid) {
assert(g_avalanche);
const bool hasProof = g_avalanche->withPeerManager(
[&proofid](avalanche::PeerManager &pm) { return pm.exists(proofid); });
LOCK(cs_rejectedProofs);
return hasProof || rejectedProofs->contains(proofid);
}
void RelayTransaction(const TxId &txid, const CConnman &connman) {
connman.ForEachNode(
[&txid](CNode *pnode) { pnode->PushTxInventory(txid); });
}
void RelayProof(const avalanche::ProofId &proofid, const CConnman &connman) {
connman.ForEachNode(
[&proofid](CNode *pnode) { pnode->PushProofInventory(proofid); });
}
static void RelayAddress(const CAddress &addr, bool fReachable,
const CConnman &connman) {
// Relay to a limited number of other nodes.
// Use deterministic randomness to send to the same nodes for 24 hours at a
// time so the m_addr_knowns of the chosen nodes prevent repeats
uint64_t hashAddr = addr.GetHash();
const CSipHasher hasher =
connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY)
.Write(hashAddr << 32)
.Write((GetTime() + hashAddr) / (24 * 60 * 60));
FastRandomContext insecure_rand;
// Relay reachable addresses to 2 peers. Unreachable addresses are relayed
// randomly to 1 or 2 peers.
unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
std::array<std::pair<uint64_t, CNode *>, 2> best{
{{0, nullptr}, {0, nullptr}}};
assert(nRelayNodes <= best.size());
auto sortfunc = [&best, &hasher, nRelayNodes](CNode *pnode) {
if (pnode->RelayAddrsWithConn()) {
uint64_t hashKey =
CSipHasher(hasher).Write(pnode->GetId()).Finalize();
for (unsigned int i = 0; i < nRelayNodes; i++) {
if (hashKey > best[i].first) {
std::copy(best.begin() + i, best.begin() + nRelayNodes - 1,
best.begin() + i + 1);
best[i] = std::make_pair(hashKey, pnode);
break;
}
}
}
};
auto pushfunc = [&addr, &best, nRelayNodes, &insecure_rand] {
for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
best[i].second->PushAddress(addr, insecure_rand);
}
};
connman.ForEachNodeThen(std::move(sortfunc), std::move(pushfunc));
}
static void ProcessGetBlockData(const Config &config, CNode &pfrom,
const CInv &inv, CConnman &connman,
const std::atomic<bool> &interruptMsgProc) {
const Consensus::Params &consensusParams =
config.GetChainParams().GetConsensus();
const BlockHash hash(inv.hash);
bool send = false;
std::shared_ptr<const CBlock> a_recent_block;
std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
{
LOCK(cs_most_recent_block);
a_recent_block = most_recent_block;
a_recent_compact_block = most_recent_compact_block;
}
bool need_activate_chain = false;
{
LOCK(cs_main);
const CBlockIndex *pindex = LookupBlockIndex(hash);
if (pindex) {
if (pindex->HaveTxsDownloaded() &&
!pindex->IsValid(BlockValidity::SCRIPTS) &&
pindex->IsValid(BlockValidity::TREE)) {
// If we have the block and all of its parents, but have not yet
// validated it, we might be in the middle of connecting it (ie
// in the unlock of cs_main before ActivateBestChain but after
// AcceptBlock). In this case, we need to run ActivateBestChain
// prior to checking the relay conditions below.
need_activate_chain = true;
}
}
} // release cs_main before calling ActivateBestChain
if (need_activate_chain) {
BlockValidationState state;
if (!ActivateBestChain(config, state, a_recent_block)) {
LogPrint(BCLog::NET, "failed to activate chain (%s)\n",
state.ToString());
}
}
LOCK(cs_main);
const CBlockIndex *pindex = LookupBlockIndex(hash);
if (pindex) {
send = BlockRequestAllowed(pindex, consensusParams);
if (!send) {
LogPrint(BCLog::NET,
"%s: ignoring request from peer=%i for old "
"block that isn't in the main chain\n",
__func__, pfrom.GetId());
}
}
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
// Disconnect node in case we have reached the outbound limit for serving
// historical blocks.
if (send && connman.OutboundTargetReached(true) &&
(((pindexBestHeader != nullptr) &&
(pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() >
HISTORICAL_BLOCK_AGE)) ||
inv.IsMsgFilteredBlk()) &&
// nodes with the download permission may exceed target
!pfrom.HasPermission(PF_DOWNLOAD)) {
LogPrint(BCLog::NET,
"historical block serving limit reached, disconnect peer=%d\n",
pfrom.GetId());
// disconnect node
pfrom.fDisconnect = true;
send = false;
}
// Avoid leaking prune-height by never sending blocks below the
// NODE_NETWORK_LIMITED threshold.
// Add two blocks buffer extension for possible races
if (send && !pfrom.HasPermission(PF_NOBAN) &&
((((pfrom.GetLocalServices() & NODE_NETWORK_LIMITED) ==
NODE_NETWORK_LIMITED) &&
((pfrom.GetLocalServices() & NODE_NETWORK) != NODE_NETWORK) &&
(::ChainActive().Tip()->nHeight - pindex->nHeight >
(int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) {
LogPrint(BCLog::NET,
"Ignore block request below NODE_NETWORK_LIMITED "
"threshold from peer=%d\n",
pfrom.GetId());
// disconnect node and prevent it from stalling (would otherwise wait
// for the missing block)
pfrom.fDisconnect = true;
send = false;
}
// Pruned nodes may have deleted the block, so check whether it's available
// before trying to send.
if (send && pindex->nStatus.hasData()) {
std::shared_ptr<const CBlock> pblock;
if (a_recent_block &&
a_recent_block->GetHash() == pindex->GetBlockHash()) {
pblock = a_recent_block;
} else {
// Send block from disk
std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
if (!ReadBlockFromDisk(*pblockRead, pindex, consensusParams)) {
assert(!"cannot load block from disk");
}
pblock = pblockRead;
}
if (inv.IsMsgBlk()) {
connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::BLOCK, *pblock));
} else if (inv.IsMsgFilteredBlk()) {
bool sendMerkleBlock = false;
CMerkleBlock merkleBlock;
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
if (pfrom.m_tx_relay->pfilter) {
sendMerkleBlock = true;
merkleBlock =
CMerkleBlock(*pblock, *pfrom.m_tx_relay->pfilter);
}
}
if (sendMerkleBlock) {
connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock));
// CMerkleBlock just contains hashes, so also push any
// transactions in the block the client did not see. This avoids
// hurting performance by pointlessly requiring a round-trip.
// Note that there is currently no way for a node to request any
// single transactions we didn't send here - they must either
// disconnect and retry or request the full block. Thus, the
// protocol spec specified allows for us to provide duplicate
// txn here, however we MUST always provide at least what the
// remote peer needs.
typedef std::pair<size_t, uint256> PairType;
for (PairType &pair : merkleBlock.vMatchedTxn) {
connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::TX,
*pblock->vtx[pair.first]));
}
}
// else
// no response
} else if (inv.IsMsgCmpctBlk()) {
// If a peer is asking for old blocks, we're almost guaranteed they
// won't have a useful mempool to match against a compact block, and
// we don't feel like constructing the object for them, so instead
// we respond with the full, non-compact block.
int nSendFlags = 0;
if (CanDirectFetch(consensusParams) &&
pindex->nHeight >=
::ChainActive().Height() - MAX_CMPCTBLOCK_DEPTH) {
CBlockHeaderAndShortTxIDs cmpctblock(*pblock);
connman.PushMessage(
&pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK,
cmpctblock));
} else {
connman.PushMessage(
&pfrom,
msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock));
}
}
// Trigger the peer node to send a getblocks request for the next batch
// of inventory.
if (hash == pfrom.hashContinue) {
// Send immediately. This must send even if redundant, and
// we want it right after the last block so they don't wait for
// other stuff first.
std::vector<CInv> vInv;
vInv.push_back(
CInv(MSG_BLOCK, ::ChainActive().Tip()->GetBlockHash()));
connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv));
pfrom.hashContinue = BlockHash();
}
}
}
//! Determine whether or not a peer can request a transaction, and return it (or
//! nullptr if not found or not allowed).
static CTransactionRef FindTxForGetData(const CTxMemPool &mempool,
const CNode &peer, const TxId &txid,
const std::chrono::seconds mempool_req,
const std::chrono::seconds now)
LOCKS_EXCLUDED(cs_main) {
auto txinfo = mempool.info(txid);
if (txinfo.tx) {
// If a TX could have been INVed in reply to a MEMPOOL request,
// or is older than UNCONDITIONAL_RELAY_DELAY, permit the request
// unconditionally.
if ((mempool_req.count() && txinfo.m_time <= mempool_req) ||
txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) {
return std::move(txinfo.tx);
}
}
{
LOCK(cs_main);
// Otherwise, the transaction must have been announced recently.
if (State(peer.GetId())->m_recently_announced_invs.contains(txid)) {
// If it was, it can be relayed from either the mempool...
if (txinfo.tx) {
return std::move(txinfo.tx);
}
// ... or the relay pool.
auto mi = mapRelay.find(txid);
if (mi != mapRelay.end()) {
return mi->second;
}
}
}
return {};
}
//! Determine whether or not a peer can request a proof, and return it (or
//! nullptr if not found or not allowed).
static avalanche::ProofRef
FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid,
const std::chrono::seconds now) {
avalanche::ProofRef proof = nullptr;
bool send_unconditionally =
g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) {
return pm.forPeer(proofid, [&](const avalanche::Peer &peer) {
proof = peer.proof;
// If we know that proof for long enough, allow for requesting
// it.
return peer.registration_time <=
now - UNCONDITIONAL_RELAY_DELAY;
});
});
// We don't have this proof
if (!proof) {
return nullptr;
}
if (send_unconditionally) {
return proof;
}
// Otherwise, the proofs must have been announced recently.
LOCK(cs_main);
if (State(peer.GetId())->m_recently_announced_proofs.contains(proofid)) {
return proof;
}
return nullptr;
}
static void ProcessGetData(const Config &config, CNode &pfrom,
CConnman &connman, CTxMemPool &mempool,
const std::atomic<bool> &interruptMsgProc)
LOCKS_EXCLUDED(cs_main) {
AssertLockNotHeld(cs_main);
std::deque<CInv>::iterator it = pfrom.vRecvGetData.begin();
std::vector<CInv> vNotFound;
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
const std::chrono::seconds now = GetTime<std::chrono::seconds>();
// Get last mempool request time
const std::chrono::seconds mempool_req =
pfrom.m_tx_relay != nullptr
? pfrom.m_tx_relay->m_last_mempool_req.load()
: std::chrono::seconds::min();
// Process as many TX or AVA_PROOF items from the front of the getdata
// queue as possible, since they're common and it's efficient to batch
// process them.
while (it != pfrom.vRecvGetData.end()) {
if (interruptMsgProc) {
return;
}
// The send buffer provides backpressure. If there's no space in
// the buffer, pause processing until the next call.
if (pfrom.fPauseSend) {
break;
}
const CInv &inv = *it;
if (it->IsMsgProof()) {
const avalanche::ProofId proofid(inv.hash);
auto proof = FindProofForGetData(pfrom, proofid, now);
if (proof) {
connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof));
g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) {
pm.removeUnbroadcastProof(proofid);
});
} else {
vNotFound.push_back(inv);
}
++it;
continue;
}
if (it->IsMsgTx()) {
if (pfrom.m_tx_relay == nullptr) {
// Ignore GETDATA requests for transactions from blocks-only
// peers.
continue;
}
const TxId txid(inv.hash);
CTransactionRef tx =
FindTxForGetData(mempool, pfrom, txid, mempool_req, now);
if (tx) {
int nSendFlags = 0;
connman.PushMessage(
&pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx));
mempool.RemoveUnbroadcastTx(txid);
// As we're going to send tx, make sure its unconfirmed parents
// are made requestable.
std::vector<TxId> parent_ids_to_add;
{
LOCK(mempool.cs);
auto txiter = mempool.GetIter(tx->GetId());
if (txiter) {
const CTxMemPoolEntry::Parents &parents =
(*txiter)->GetMemPoolParentsConst();
parent_ids_to_add.reserve(parents.size());
for (const CTxMemPoolEntry &parent : parents) {
if (parent.GetTime() >
now - UNCONDITIONAL_RELAY_DELAY) {
parent_ids_to_add.push_back(
parent.GetTx().GetId());
}
}
}
}
for (const TxId &parent_txid : parent_ids_to_add) {
// Relaying a transaction with a recent but unconfirmed
// parent.
if (WITH_LOCK(pfrom.m_tx_relay->cs_tx_inventory,
return !pfrom.m_tx_relay->filterInventoryKnown
.contains(parent_txid))) {
LOCK(cs_main);
State(pfrom.GetId())
->m_recently_announced_invs.insert(parent_txid);
}
}
} else {
vNotFound.push_back(inv);
}
++it;
continue;
}
// It's neither a proof nor a transaction
break;
}
// Only process one BLOCK item per call, since they're uncommon and can be
// expensive to process.
if (it != pfrom.vRecvGetData.end() && !pfrom.fPauseSend) {
const CInv &inv = *it++;
if (inv.IsGenBlkMsg()) {
ProcessGetBlockData(config, pfrom, inv, connman, interruptMsgProc);
}
// else: If the first item on the queue is an unknown type, we erase it
// and continue processing the queue on the next call.
}
pfrom.vRecvGetData.erase(pfrom.vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it
// doesn't have to wait around forever. SPV clients care about this
// message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want
// to do that because they want to know about (and store and rebroadcast
// and risk analyze) the dependencies of transactions relevant to them,
// without having to download the entire memory pool. Also, other nodes
// can use these messages to automatically request a transaction from
// some other peer that annnounced it, and stop waiting for us to
// respond. In normal operation, we often send NOTFOUND messages for
// parents of transactions that we relay; if a peer is missing a parent,
// they may assume we have them and request the parents from us.
connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::NOTFOUND, vNotFound));
}
}
void PeerManager::SendBlockTransactions(CNode &pfrom, const CBlock &block,
const BlockTransactionsRequest &req) {
BlockTransactions resp(req);
for (size_t i = 0; i < req.indices.size(); i++) {
if (req.indices[i] >= block.vtx.size()) {
Misbehaving(pfrom, 100,
"getblocktxn with out-of-bounds tx indices");
return;
}
resp.txn[i] = block.vtx[req.indices[i]];
}
LOCK(cs_main);
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
int nSendFlags = 0;
m_connman.PushMessage(
&pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp));
}
void PeerManager::ProcessHeadersMessage(
const Config &config, CNode &pfrom,
const std::vector<CBlockHeader> &headers, bool via_compact_block) {
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
size_t nCount = headers.size();
if (nCount == 0) {
// Nothing interesting. Stop asking this peers for more headers.
return;
}
bool received_new_header = false;
const CBlockIndex *pindexLast = nullptr;
{
LOCK(cs_main);
CNodeState *nodestate = State(pfrom.GetId());
// If this looks like it could be a block announcement (nCount <
// MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that
// don't connect:
// - Send a getheaders message in response to try to connect the chain.
// - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that
// don't connect before giving DoS points
// - Once a headers message is received that is valid and does connect,
// nUnconnectingHeaders gets reset back to 0.
if (!LookupBlockIndex(headers[0].hashPrevBlock) &&
nCount < MAX_BLOCKS_TO_ANNOUNCE) {
nodestate->nUnconnectingHeaders++;
m_connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexBestHeader),
uint256()));
LogPrint(
BCLog::NET,
"received header %s: missing prev block %s, sending getheaders "
"(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n",
headers[0].GetHash().ToString(),
headers[0].hashPrevBlock.ToString(), pindexBestHeader->nHeight,
pfrom.GetId(), nodestate->nUnconnectingHeaders);
// Set hashLastUnknownBlock for this peer, so that if we eventually
// get the headers - even from a different peer - we can use this
// peer to download.
UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash());
if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS ==
0) {
// The peer is sending us many headers we can't connect.
Misbehaving(pfrom, 20,
strprintf("%d non-connecting headers",
nodestate->nUnconnectingHeaders));
}
return;
}
BlockHash hashLastBlock;
for (const CBlockHeader &header : headers) {
if (!hashLastBlock.IsNull() &&
header.hashPrevBlock != hashLastBlock) {
Misbehaving(pfrom, 20, "non-continuous headers sequence");
return;
}
hashLastBlock = header.GetHash();
}
// If we don't have the last header, then they'll have given us
// something new (if these headers are valid).
if (!LookupBlockIndex(hashLastBlock)) {
received_new_header = true;
}
}
BlockValidationState state;
if (!m_chainman.ProcessNewBlockHeaders(config, headers, state,
&pindexLast)) {
if (state.IsInvalid()) {
MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block,
"invalid header received");
return;
}
}
{
LOCK(cs_main);
CNodeState *nodestate = State(pfrom.GetId());
if (nodestate->nUnconnectingHeaders > 0) {
LogPrint(BCLog::NET,
"peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n",
pfrom.GetId(), nodestate->nUnconnectingHeaders);
}
nodestate->nUnconnectingHeaders = 0;
assert(pindexLast);
UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash());
// From here, pindexBestKnownBlock should be guaranteed to be non-null,
// because it is set in UpdateBlockAvailability. Some nullptr checks are
// still present, however, as belt-and-suspenders.
if (received_new_header &&
pindexLast->nChainWork > ::ChainActive().Tip()->nChainWork) {
nodestate->m_last_block_announcement = GetTime();
}
if (nCount == MAX_HEADERS_RESULTS) {
// Headers message had its maximum size; the peer may have more
// headers.
// TODO: optimize: if pindexLast is an ancestor of
// ::ChainActive().Tip or pindexBestHeader, continue from there
// instead.
LogPrint(
BCLog::NET,
"more getheaders (%d) to end to peer=%d (startheight:%d)\n",
pindexLast->nHeight, pfrom.GetId(), pfrom.nStartingHeight);
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexLast),
uint256()));
}
bool fCanDirectFetch = CanDirectFetch(m_chainparams.GetConsensus());
// If this set of headers is valid and ends in a block with at least as
// much work as our tip, download as much as possible.
if (fCanDirectFetch && pindexLast->IsValid(BlockValidity::TREE) &&
::ChainActive().Tip()->nChainWork <= pindexLast->nChainWork) {
std::vector<const CBlockIndex *> vToFetch;
const CBlockIndex *pindexWalk = pindexLast;
// Calculate all the blocks we'd need to switch to pindexLast, up to
// a limit.
while (pindexWalk && !::ChainActive().Contains(pindexWalk) &&
vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
if (!pindexWalk->nStatus.hasData() &&
!mapBlocksInFlight.count(pindexWalk->GetBlockHash())) {
// We don't have this block, and it's not yet in flight.
vToFetch.push_back(pindexWalk);
}
pindexWalk = pindexWalk->pprev;
}
// If pindexWalk still isn't on our main chain, we're looking at a
// very large reorg at a time we think we're close to caught up to
// the main chain -- this shouldn't really happen. Bail out on the
// direct fetch and rely on parallel download instead.
if (!::ChainActive().Contains(pindexWalk)) {
LogPrint(
BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
pindexLast->GetBlockHash().ToString(), pindexLast->nHeight);
} else {
std::vector<CInv> vGetData;
// Download as much as possible, from earliest to latest.
for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) {
if (nodestate->nBlocksInFlight >=
MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
// Can't download any more from this peer
break;
}
vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash()));
MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(),
pindex->GetBlockHash(),
m_chainparams.GetConsensus(), pindex);
LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
pindex->GetBlockHash().ToString(), pfrom.GetId());
}
if (vGetData.size() > 1) {
LogPrint(BCLog::NET,
"Downloading blocks toward %s (%d) via headers "
"direct fetch\n",
pindexLast->GetBlockHash().ToString(),
pindexLast->nHeight);
}
if (vGetData.size() > 0) {
if (nodestate->fSupportsDesiredCmpctVersion &&
vGetData.size() == 1 && mapBlocksInFlight.size() == 1 &&
pindexLast->pprev->IsValid(BlockValidity::CHAIN)) {
// In any case, we want to download using a compact
// block, not a regular one.
vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
}
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData));
}
}
}
// If we're in IBD, we want outbound peers that will serve us a useful
// chain. Disconnect peers that are on chains with insufficient work.
if (::ChainstateActive().IsInitialBlockDownload() &&
nCount != MAX_HEADERS_RESULTS) {
// When nCount < MAX_HEADERS_RESULTS, we know we have no more
// headers to fetch from this peer.
if (nodestate->pindexBestKnownBlock &&
nodestate->pindexBestKnownBlock->nChainWork <
nMinimumChainWork) {
// This peer has too little work on their headers chain to help
// us sync -- disconnect if it is an outbound disconnection
// candidate.
// Note: We compare their tip to nMinimumChainWork (rather than
// ::ChainActive().Tip()) because we won't start block download
// until we have a headers chain that has at least
// nMinimumChainWork, even if a peer has a chain past our tip,
// as an anti-DoS measure.
if (pfrom.IsOutboundOrBlockRelayConn()) {
LogPrintf("Disconnecting outbound peer %d -- headers "
"chain has insufficient work\n",
pfrom.GetId());
pfrom.fDisconnect = true;
}
}
}
if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() &&
nodestate->pindexBestKnownBlock != nullptr) {
// If this is an outbound full-relay peer, check to see if we should
// protect it from the bad/lagging chain logic. Note that
// block-relay-only peers are already implicitly protected, so we
// only consider setting m_protect for the full-relay peers.
if (g_outbound_peers_with_protect_from_disconnect <
MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT &&
nodestate->pindexBestKnownBlock->nChainWork >=
::ChainActive().Tip()->nChainWork &&
!nodestate->m_chain_sync.m_protect) {
LogPrint(BCLog::NET,
"Protecting outbound peer=%d from eviction\n",
pfrom.GetId());
nodestate->m_chain_sync.m_protect = true;
++g_outbound_peers_with_protect_from_disconnect;
}
}
}
}
void PeerManager::ProcessOrphanTx(const Config &config,
std::set<TxId> &orphan_work_set)
EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans) {
AssertLockHeld(cs_main);
AssertLockHeld(g_cs_orphans);
std::unordered_map<NodeId, uint32_t> rejectCountPerNode;
bool done = false;
while (!done && !orphan_work_set.empty()) {
const TxId orphanTxId = *orphan_work_set.begin();
orphan_work_set.erase(orphan_work_set.begin());
auto orphan_it = mapOrphanTransactions.find(orphanTxId);
if (orphan_it == mapOrphanTransactions.end()) {
continue;
}
const CTransactionRef porphanTx = orphan_it->second.tx;
const CTransaction &orphanTx = *porphanTx;
NodeId fromPeer = orphan_it->second.fromPeer;
// Use a new TxValidationState because orphans come from different peers
// (and we call MaybePunishNodeForTx based on the source peer from the
// orphan map, not based on the peer that relayed the previous
// transaction).
TxValidationState orphan_state;
auto it = rejectCountPerNode.find(fromPeer);
if (it != rejectCountPerNode.end() &&
it->second > MAX_NON_STANDARD_ORPHAN_PER_NODE) {
continue;
}
if (AcceptToMemoryPool(config, m_mempool, orphan_state, porphanTx,
false /* bypass_limits */,
Amount::zero() /* nAbsurdFee */)) {
LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n",
orphanTxId.ToString());
RelayTransaction(orphanTxId, m_connman);
for (size_t i = 0; i < orphanTx.vout.size(); i++) {
auto it_by_prev =
mapOrphanTransactionsByPrev.find(COutPoint(orphanTxId, i));
if (it_by_prev != mapOrphanTransactionsByPrev.end()) {
for (const auto &elem : it_by_prev->second) {
orphan_work_set.insert(elem->first);
}
}
}
EraseOrphanTx(orphanTxId);
done = true;
} else if (orphan_state.GetResult() !=
TxValidationResult::TX_MISSING_INPUTS) {
if (orphan_state.IsInvalid()) {
// Punish peer that gave us an invalid orphan tx
MaybePunishNodeForTx(fromPeer, orphan_state);
LogPrint(BCLog::MEMPOOL,
" invalid orphan tx %s from peer=%d. %s\n",
orphanTxId.ToString(), fromPeer,
orphan_state.ToString());
}
// Has inputs but not accepted to mempool
// Probably non-standard or insufficient fee
LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n",
orphanTxId.ToString());
assert(recentRejects);
recentRejects->insert(orphanTxId);
EraseOrphanTx(orphanTxId);
done = true;
}
m_mempool.check(&::ChainstateActive().CoinsTip());
}
}
/**
* Validation logic for compact filters request handling.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] chain_params Chain parameters
* @param[in] filter_type The filter type the request is for. Must be
* basic filters.
* @param[in] start_height The start height for the request
* @param[in] stop_hash The stop_hash for the request
* @param[in] max_height_diff The maximum number of items permitted to
* request, as specified in BIP 157
* @param[out] stop_index The CBlockIndex for the stop_hash block, if the
* request can be serviced.
* @param[out] filter_index The filter index, if the request can be
* serviced.
* @return True if the request can be serviced.
*/
static bool PrepareBlockFilterRequest(
CNode &peer, const CChainParams &chain_params, BlockFilterType filter_type,
uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff,
const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index) {
const bool supported_filter_type =
(filter_type == BlockFilterType::BASIC &&
(peer.GetLocalServices() & NODE_COMPACT_FILTERS));
if (!supported_filter_type) {
LogPrint(BCLog::NET,
"peer %d requested unsupported block filter type: %d\n",
peer.GetId(), static_cast<uint8_t>(filter_type));
peer.fDisconnect = true;
return false;
}
{
LOCK(cs_main);
stop_index = LookupBlockIndex(stop_hash);
// Check that the stop block exists and the peer would be allowed to
// fetch it.
if (!stop_index ||
!BlockRequestAllowed(stop_index, chain_params.GetConsensus())) {
LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n",
peer.GetId(), stop_hash.ToString());
peer.fDisconnect = true;
return false;
}
}
uint32_t stop_height = stop_index->nHeight;
if (start_height > stop_height) {
LogPrint(
BCLog::NET,
"peer %d sent invalid getcfilters/getcfheaders with " /* Continued
*/
"start height %d and stop height %d\n",
peer.GetId(), start_height, stop_height);
peer.fDisconnect = true;
return false;
}
if (stop_height - start_height >= max_height_diff) {
LogPrint(BCLog::NET,
"peer %d requested too many cfilters/cfheaders: %d / %d\n",
peer.GetId(), stop_height - start_height + 1, max_height_diff);
peer.fDisconnect = true;
return false;
}
filter_index = GetBlockFilterIndex(filter_type);
if (!filter_index) {
LogPrint(BCLog::NET, "Filter index for supported type %s not found\n",
BlockFilterTypeName(filter_type));
return false;
}
return true;
}
/**
* Handle a cfilters request.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] vRecv The raw message received
* @param[in] chain_params Chain parameters
* @param[in] connman Pointer to the connection manager
*/
static void ProcessGetCFilters(CNode &peer, CDataStream &vRecv,
const CChainParams &chain_params,
CConnman &connman) {
uint8_t filter_type_ser;
uint32_t start_height;
BlockHash stop_hash;
vRecv >> filter_type_ser >> start_height >> stop_hash;
const BlockFilterType filter_type =
static_cast<BlockFilterType>(filter_type_ser);
const CBlockIndex *stop_index;
BlockFilterIndex *filter_index;
if (!PrepareBlockFilterRequest(
peer, chain_params, filter_type, start_height, stop_hash,
MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
return;
}
std::vector<BlockFilter> filters;
if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
LogPrint(BCLog::NET,
"Failed to find block filter in index: filter_type=%s, "
"start_height=%d, stop_hash=%s\n",
BlockFilterTypeName(filter_type), start_height,
stop_hash.ToString());
return;
}
for (const auto &filter : filters) {
CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion())
.Make(NetMsgType::CFILTER, filter);
connman.PushMessage(&peer, std::move(msg));
}
}
/**
* Handle a cfheaders request.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] vRecv The raw message received
* @param[in] chain_params Chain parameters
* @param[in] connman Pointer to the connection manager
*/
static void ProcessGetCFHeaders(CNode &peer, CDataStream &vRecv,
const CChainParams &chain_params,
CConnman &connman) {
uint8_t filter_type_ser;
uint32_t start_height;
BlockHash stop_hash;
vRecv >> filter_type_ser >> start_height >> stop_hash;
const BlockFilterType filter_type =
static_cast<BlockFilterType>(filter_type_ser);
const CBlockIndex *stop_index;
BlockFilterIndex *filter_index;
if (!PrepareBlockFilterRequest(
peer, chain_params, filter_type, start_height, stop_hash,
MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
return;
}
uint256 prev_header;
if (start_height > 0) {
const CBlockIndex *const prev_block =
stop_index->GetAncestor(static_cast<int>(start_height - 1));
if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
LogPrint(BCLog::NET,
"Failed to find block filter header in index: "
"filter_type=%s, block_hash=%s\n",
BlockFilterTypeName(filter_type),
prev_block->GetBlockHash().ToString());
return;
}
}
std::vector<uint256> filter_hashes;
if (!filter_index->LookupFilterHashRange(start_height, stop_index,
filter_hashes)) {
LogPrint(BCLog::NET,
"Failed to find block filter hashes in index: filter_type=%s, "
"start_height=%d, stop_hash=%s\n",
BlockFilterTypeName(filter_type), start_height,
stop_hash.ToString());
return;
}
CSerializedNetMsg msg =
CNetMsgMaker(peer.GetCommonVersion())
.Make(NetMsgType::CFHEADERS, filter_type_ser,
stop_index->GetBlockHash(), prev_header, filter_hashes);
connman.PushMessage(&peer, std::move(msg));
}
/**
* Handle a getcfcheckpt request.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] vRecv The raw message received
* @param[in] chain_params Chain parameters
* @param[in] connman Pointer to the connection manager
*/
static void ProcessGetCFCheckPt(CNode &peer, CDataStream &vRecv,
const CChainParams &chain_params,
CConnman &connman) {
uint8_t filter_type_ser;
BlockHash stop_hash;
vRecv >> filter_type_ser >> stop_hash;
const BlockFilterType filter_type =
static_cast<BlockFilterType>(filter_type_ser);
const CBlockIndex *stop_index;
BlockFilterIndex *filter_index;
if (!PrepareBlockFilterRequest(
peer, chain_params, filter_type, /*start_height=*/0, stop_hash,
/*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
stop_index, filter_index)) {
return;
}
std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
// Populate headers.
const CBlockIndex *block_index = stop_index;
for (int i = headers.size() - 1; i >= 0; i--) {
int height = (i + 1) * CFCHECKPT_INTERVAL;
block_index = block_index->GetAncestor(height);
if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
LogPrint(BCLog::NET,
"Failed to find block filter header in index: "
"filter_type=%s, block_hash=%s\n",
BlockFilterTypeName(filter_type),
block_index->GetBlockHash().ToString());
return;
}
}
CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion())
.Make(NetMsgType::CFCHECKPT, filter_type_ser,
stop_index->GetBlockHash(), headers);
connman.PushMessage(&peer, std::move(msg));
}
bool IsAvalancheMessageType(const std::string &msg_type) {
return msg_type == NetMsgType::AVAHELLO ||
msg_type == NetMsgType::AVAPOLL ||
msg_type == NetMsgType::AVARESPONSE ||
msg_type == NetMsgType::AVAPROOF;
}
void PeerManager::ProcessMessage(const Config &config, CNode &pfrom,
const std::string &msg_type,
CDataStream &vRecv,
const std::chrono::microseconds time_received,
const std::atomic<bool> &interruptMsgProc) {
LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n",
SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
if (gArgs.IsArgSet("-dropmessagestest") &&
GetRand(gArgs.GetArg("-dropmessagestest", 0)) == 0) {
LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n");
return;
}
if (IsAvalancheMessageType(msg_type)) {
if (!g_avalanche) {
LogPrint(BCLog::AVALANCHE,
"Avalanche is not initialized, ignoring %s message\n",
msg_type);
return;
}
if (!isAvalancheEnabled(gArgs)) {
Misbehaving(pfrom, 20, "unsolicited-" + msg_type);
return;
}
}
if (msg_type == NetMsgType::VERSION) {
// Each connection can only send one version message
if (pfrom.nVersion != 0) {
Misbehaving(pfrom, 1, "redundant version message");
return;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
uint64_t nServiceInt;
ServiceFlags nServices;
int nVersion;
std::string cleanSubVer;
int nStartingHeight = -1;
bool fRelay = true;
uint64_t nExtraEntropy = 1;
vRecv >> nVersion >> nServiceInt >> nTime >> addrMe;
nServices = ServiceFlags(nServiceInt);
if (!pfrom.IsInboundConn()) {
m_connman.SetServices(pfrom.addr, nServices);
}
if (pfrom.ExpectServicesFromConn() &&
!HasAllDesirableServiceFlags(nServices)) {
LogPrint(BCLog::NET,
"peer=%d does not offer the expected services "
"(%08x offered, %08x expected); disconnecting\n",
pfrom.GetId(), nServices,
GetDesirableServiceFlags(nServices));
pfrom.fDisconnect = true;
return;
}
if (nVersion < MIN_PEER_PROTO_VERSION) {
// disconnect from peers older than this proto version
LogPrint(BCLog::NET,
"peer=%d using obsolete version %i; disconnecting\n",
pfrom.GetId(), nVersion);
pfrom.fDisconnect = true;
return;
}
if (!vRecv.empty()) {
vRecv >> addrFrom >> nNonce;
}
if (!vRecv.empty()) {
std::string strSubVer;
vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
cleanSubVer = SanitizeString(strSubVer);
}
if (!vRecv.empty()) {
vRecv >> nStartingHeight;
}
if (!vRecv.empty()) {
vRecv >> fRelay;
}
if (!vRecv.empty()) {
vRecv >> nExtraEntropy;
}
// Disconnect if we connected to ourself
if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce)) {
LogPrintf("connected to self at %s, disconnecting\n",
pfrom.addr.ToString());
pfrom.fDisconnect = true;
return;
}
if (pfrom.IsInboundConn() && addrMe.IsRoutable()) {
SeenLocal(addrMe);
}
// Be shy and don't send version until we hear
if (pfrom.IsInboundConn()) {
PushNodeVersion(config, pfrom, m_connman, GetAdjustedTime());
}
// Change version
const int greatest_common_version =
std::min(nVersion, PROTOCOL_VERSION);
pfrom.SetCommonVersion(greatest_common_version);
pfrom.nVersion = nVersion;
const CNetMsgMaker msg_maker(greatest_common_version);
m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK));
// Signal ADDRv2 support (BIP155).
m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2));
pfrom.nServices = nServices;
pfrom.SetAddrLocal(addrMe);
{
LOCK(pfrom.cs_SubVer);
pfrom.cleanSubVer = cleanSubVer;
}
pfrom.nStartingHeight = nStartingHeight;
// set nodes not relaying blocks and tx and not serving (parts) of the
// historical blockchain as "clients"
pfrom.fClient = (!(nServices & NODE_NETWORK) &&
!(nServices & NODE_NETWORK_LIMITED));
// set nodes not capable of serving the complete blockchain history as
// "limited nodes"
pfrom.m_limited_node =
(!(nServices & NODE_NETWORK) && (nServices & NODE_NETWORK_LIMITED));
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
// set to true after we get the first filter* message
pfrom.m_tx_relay->fRelayTxes = fRelay;
}
pfrom.nRemoteHostNonce = nNonce;
pfrom.nRemoteExtraEntropy = nExtraEntropy;
// Potentially mark this peer as a preferred download peer.
{
LOCK(cs_main);
UpdatePreferredDownload(pfrom, State(pfrom.GetId()));
}
if (!pfrom.IsInboundConn() && !pfrom.IsBlockOnlyConn()) {
// For outbound peers, we try to relay our address (so that other
// nodes can try to find us more quickly, as we have no guarantee
// that an outbound peer is even aware of how to reach us) and do a
// one-time address fetch (to help populate/update our addrman). If
// we're starting up for the first time, our addrman may be pretty
// empty and no one will know who we are, so these mechanisms are
// important to help us connect to the network.
//
// We also update the addrman to record connection success for
// these peers (which include OUTBOUND_FULL_RELAY and FEELER
// connections) so that addrman will have an up-to-date notion of
// which peers are online and available.
//
// We skip these operations for BLOCK_RELAY peers to avoid
// potentially leaking information about our BLOCK_RELAY
// connections via the addrman or address relay.
if (fListen && !::ChainstateActive().IsInitialBlockDownload()) {
CAddress addr =
GetLocalAddress(&pfrom.addr, pfrom.GetLocalServices());
FastRandomContext insecure_rand;
if (addr.IsRoutable()) {
LogPrint(BCLog::NET,
"ProcessMessages: advertising address %s\n",
addr.ToString());
pfrom.PushAddress(addr, insecure_rand);
} else if (IsPeerAddrLocalGood(&pfrom)) {
addr.SetIP(addrMe);
LogPrint(BCLog::NET,
"ProcessMessages: advertising address %s\n",
addr.ToString());
pfrom.PushAddress(addr, insecure_rand);
}
}
// Get recent addresses
m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version)
.Make(NetMsgType::GETADDR));
pfrom.fGetAddr = true;
// Moves address from New to Tried table in Addrman, resolves
// tried-table collisions, etc.
m_connman.MarkAddressGood(pfrom.addr);
}
std::string remoteAddr;
if (fLogIPs) {
remoteAddr = ", peeraddr=" + pfrom.addr.ToString();
}
LogPrint(BCLog::NET,
"receive version message: [%s] %s: version %d, blocks=%d, "
"us=%s, peer=%d%s\n",
pfrom.addr.ToString(), cleanSubVer, pfrom.nVersion,
pfrom.nStartingHeight, addrMe.ToString(), pfrom.GetId(),
remoteAddr);
// Ignore time offsets that are improbable (before the Genesis block)
// and may underflow the nTimeOffset calculation.
int64_t currentTime = GetTime();
if (nTime >= int64_t(m_chainparams.GenesisBlock().nTime)) {
int64_t nTimeOffset = nTime - currentTime;
pfrom.nTimeOffset = nTimeOffset;
AddTimeData(pfrom.addr, nTimeOffset);
} else {
Misbehaving(pfrom, 20,
"Ignoring invalid timestamp in version message");
}
// Feeler connections exist only to verify if address is online.
if (pfrom.IsFeelerConn()) {
pfrom.fDisconnect = true;
}
return;
}
if (pfrom.nVersion == 0) {
// Must have a version message before anything else
Misbehaving(pfrom, 10, "non-version message before version handshake");
return;
}
// At this point, the outgoing message serialization version can't change.
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
if (msg_type == NetMsgType::VERACK) {
if (!pfrom.IsInboundConn()) {
// Mark this node as currently connected, so we update its timestamp
// later.
LOCK(cs_main);
State(pfrom.GetId())->fCurrentlyConnected = true;
LogPrintf(
"New outbound peer connected: version: %d, blocks=%d, "
"peer=%d%s (%s)\n",
pfrom.nVersion.load(), pfrom.nStartingHeight, pfrom.GetId(),
(fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString())
: ""),
pfrom.m_tx_relay == nullptr ? "block-relay" : "full-relay");
}
if (pfrom.GetCommonVersion() >= SENDHEADERS_VERSION) {
// Tell our peer we prefer to receive headers rather than inv's
// We send this to non-NODE NETWORK peers as well, because even
// non-NODE NETWORK peers can announce blocks (such as pruning
// nodes)
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::SENDHEADERS));
}
if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
// Tell our peer we are willing to provide version 1 or 2
// cmpctblocks. However, we do not request new block announcements
// using cmpctblock messages. We send this to non-NODE NETWORK peers
// as well, because they may wish to request compact blocks from us.
bool fAnnounceUsingCMPCTBLOCK = false;
uint64_t nCMPCTBLOCKVersion = 1;
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::SENDCMPCT,
fAnnounceUsingCMPCTBLOCK,
nCMPCTBLOCKVersion));
}
if ((pfrom.nServices & NODE_AVALANCHE) && g_avalanche &&
isAvalancheEnabled(gArgs)) {
if (g_avalanche->sendHello(&pfrom)) {
LogPrint(BCLog::AVALANCHE, "Send avahello to peer %d\n",
pfrom.GetId());
auto localProof = g_avalanche->getLocalProof();
// If we sent a hello message, we should have a proof
assert(localProof);
// Add our proof id to the list or the recently announced proof
// INVs to this peer. This is used for filtering which INV can
// be requested for download.
LOCK(cs_main);
State(pfrom.GetId())
->m_recently_announced_proofs.insert(localProof->getId());
}
}
pfrom.fSuccessfullyConnected = true;
return;
}
if (!pfrom.fSuccessfullyConnected) {
// Must have a verack message before anything else
Misbehaving(pfrom, 10, "non-verack message before version handshake");
return;
}
if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
int stream_version = vRecv.GetVersion();
if (msg_type == NetMsgType::ADDRV2) {
// Add ADDRV2_FORMAT to the version so that the CNetAddr and
// CAddress unserialize methods know that an address in v2 format is
// coming.
stream_version |= ADDRV2_FORMAT;
}
OverrideStream<CDataStream> s(&vRecv, vRecv.GetType(), stream_version);
std::vector<CAddress> vAddr;
s >> vAddr;
if (!pfrom.RelayAddrsWithConn()) {
return;
}
if (vAddr.size() > MAX_ADDR_TO_SEND) {
Misbehaving(
pfrom, 20,
strprintf("%s message size = %u", msg_type, vAddr.size()));
return;
}
// Store the new addresses
std::vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
for (CAddress &addr : vAddr) {
if (interruptMsgProc) {
return;
}
// We only bother storing full nodes, though this may include things
// which we would not make an outbound connection to, in part
// because we may make feeler connections to them.
if (!MayHaveUsefulAddressDB(addr.nServices) &&
!HasAllDesirableServiceFlags(addr.nServices)) {
continue;
}
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) {
addr.nTime = nNow - 5 * 24 * 60 * 60;
}
pfrom.AddAddressKnown(addr);
if (m_banman &&
(m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
// Do not process banned/discouraged addresses beyond
// remembering we received them
continue;
}
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom.fGetAddr && vAddr.size() <= 10 &&
addr.IsRoutable()) {
// Relay to a limited number of other nodes
RelayAddress(addr, fReachable, m_connman);
}
// Do not store addresses outside our network
if (fReachable) {
vAddrOk.push_back(addr);
}
}
m_connman.AddNewAddresses(vAddrOk, pfrom.addr, 2 * 60 * 60);
if (vAddr.size() < 1000) {
pfrom.fGetAddr = false;
}
if (pfrom.IsAddrFetchConn()) {
pfrom.fDisconnect = true;
}
return;
}
if (msg_type == NetMsgType::SENDADDRV2) {
pfrom.m_wants_addrv2 = true;
return;
}
if (msg_type == NetMsgType::SENDHEADERS) {
LOCK(cs_main);
State(pfrom.GetId())->fPreferHeaders = true;
return;
}
if (msg_type == NetMsgType::SENDCMPCT) {
bool fAnnounceUsingCMPCTBLOCK = false;
uint64_t nCMPCTBLOCKVersion = 0;
vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion;
if (nCMPCTBLOCKVersion == 1) {
LOCK(cs_main);
// fProvidesHeaderAndIDs is used to "lock in" version of compact
// blocks we send.
if (!State(pfrom.GetId())->fProvidesHeaderAndIDs) {
State(pfrom.GetId())->fProvidesHeaderAndIDs = true;
}
State(pfrom.GetId())->fPreferHeaderAndIDs =
fAnnounceUsingCMPCTBLOCK;
if (!State(pfrom.GetId())->fSupportsDesiredCmpctVersion) {
State(pfrom.GetId())->fSupportsDesiredCmpctVersion = true;
}
}
return;
}
if (msg_type == NetMsgType::INV) {
std::vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ) {
Misbehaving(pfrom, 20,
strprintf("inv message size = %u", vInv.size()));
return;
}
// We won't accept tx inv's if we're in blocks-only mode, or this is a
// block-relay-only peer
bool fBlocksOnly = !g_relay_txes || (pfrom.m_tx_relay == nullptr);
// Allow peers with relay permission to send data other than blocks
// in blocks only mode
if (pfrom.HasPermission(PF_RELAY)) {
fBlocksOnly = false;
}
const auto current_time = GetTime<std::chrono::microseconds>();
std::optional<BlockHash> best_block;
auto logInv = [&](const CInv &inv, bool fAlreadyHave) {
LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(),
fAlreadyHave ? "have" : "new", pfrom.GetId());
};
for (CInv &inv : vInv) {
if (interruptMsgProc) {
return;
}
if (inv.IsMsgBlk()) {
LOCK(cs_main);
const bool fAlreadyHave = AlreadyHaveBlock(BlockHash(inv.hash));
logInv(inv, fAlreadyHave);
const BlockHash hash{inv.hash};
UpdateBlockAvailability(pfrom.GetId(), hash);
if (!fAlreadyHave && !fImporting && !fReindex &&
!mapBlocksInFlight.count(hash)) {
// Headers-first is the primary method of announcement on
// the network. If a node fell back to sending blocks by
// inv, it's probably for a re-org. The final block hash
// provided should be the highest, so send a getheaders and
// then fetch the blocks we need to catch up.
best_block = std::move(hash);
}
continue;
}
if (inv.IsMsgProof()) {
const avalanche::ProofId proofid(inv.hash);
const bool fAlreadyHave = AlreadyHaveProof(proofid);
logInv(inv, fAlreadyHave);
pfrom.AddKnownProof(proofid);
if (!fAlreadyHave && g_avalanche && isAvalancheEnabled(gArgs)) {
const bool preferred = isPreferredDownloadPeer(pfrom);
LOCK(cs_proofrequest);
AddProofAnnouncement(pfrom, proofid, current_time,
preferred);
}
continue;
}
if (inv.IsMsgTx()) {
LOCK(cs_main);
const TxId txid(inv.hash);
const bool fAlreadyHave = AlreadyHaveTx(txid, m_mempool);
logInv(inv, fAlreadyHave);
pfrom.AddKnownTx(txid);
if (fBlocksOnly) {
LogPrint(BCLog::NET,
"transaction (%s) inv sent in violation of "
"protocol, disconnecting peer=%d\n",
txid.ToString(), pfrom.GetId());
pfrom.fDisconnect = true;
return;
} else if (!fAlreadyHave && !m_chainman.ActiveChainstate()
.IsInitialBlockDownload()) {
AddTxAnnouncement(pfrom, txid, current_time);
}
continue;
}
LogPrint(BCLog::NET,
"Unknown inv type \"%s\" received from peer=%d\n",
inv.ToString(), pfrom.GetId());
}
if (best_block) {
m_connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexBestHeader),
*best_block));
LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
pindexBestHeader->nHeight, best_block->ToString(),
pfrom.GetId());
}
return;
}
if (msg_type == NetMsgType::GETDATA) {
std::vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ) {
Misbehaving(pfrom, 20,
strprintf("getdata message size = %u", vInv.size()));
return;
}
LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n",
vInv.size(), pfrom.GetId());
if (vInv.size() > 0) {
LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n",
vInv[0].ToString(), pfrom.GetId());
}
pfrom.vRecvGetData.insert(pfrom.vRecvGetData.end(), vInv.begin(),
vInv.end());
ProcessGetData(config, pfrom, m_connman, m_mempool, interruptMsgProc);
return;
}
if (msg_type == NetMsgType::GETBLOCKS) {
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
if (locator.vHave.size() > MAX_LOCATOR_SZ) {
LogPrint(BCLog::NET,
"getblocks locator size %lld > %d, disconnect peer=%d\n",
locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
pfrom.fDisconnect = true;
return;
}
// We might have announced the currently-being-connected tip using a
// compact block, which resulted in the peer sending a getblocks
// request, which we would otherwise respond to without the new block.
// To avoid this situation we simply verify that we are on our best
// known chain now. This is super overkill, but we handle it better
// for getheaders requests, and there are no known nodes which support
// compact blocks but still use getblocks to request blocks.
{
std::shared_ptr<const CBlock> a_recent_block;
{
LOCK(cs_most_recent_block);
a_recent_block = most_recent_block;
}
BlockValidationState state;
if (!ActivateBestChain(config, state, a_recent_block)) {
LogPrint(BCLog::NET, "failed to activate chain (%s)\n",
state.ToString());
}
}
LOCK(cs_main);
// Find the last block the caller has in the main chain
const CBlockIndex *pindex =
FindForkInGlobalIndex(::ChainActive(), locator);
// Send the rest of the chain
if (pindex) {
pindex = ::ChainActive().Next(pindex);
}
int nLimit = 500;
LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n",
(pindex ? pindex->nHeight : -1),
hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit,
pfrom.GetId());
for (; pindex; pindex = ::ChainActive().Next(pindex)) {
if (pindex->GetBlockHash() == hashStop) {
LogPrint(BCLog::NET, " getblocks stopping at %d %s\n",
pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
// If pruning, don't inv blocks unless we have on disk and are
// likely to still have for some reasonable time window (1 hour)
// that block relay might require.
const int nPrunedBlocksLikelyToHave =
MIN_BLOCKS_TO_KEEP -
3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
if (fPruneMode &&
(!pindex->nStatus.hasData() ||
pindex->nHeight <= ::ChainActive().Tip()->nHeight -
nPrunedBlocksLikelyToHave)) {
LogPrint(
BCLog::NET,
" getblocks stopping, pruned or too old block at %d %s\n",
pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
WITH_LOCK(pfrom.cs_inventory, pfrom.vInventoryBlockToSend.push_back(
pindex->GetBlockHash()));
if (--nLimit <= 0) {
// When this block is requested, we'll send an inv that'll
// trigger the peer to getblocks the next batch of inventory.
LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n",
pindex->nHeight, pindex->GetBlockHash().ToString());
pfrom.hashContinue = pindex->GetBlockHash();
break;
}
}
return;
}
if (msg_type == NetMsgType::GETBLOCKTXN) {
BlockTransactionsRequest req;
vRecv >> req;
std::shared_ptr<const CBlock> recent_block;
{
LOCK(cs_most_recent_block);
if (most_recent_block_hash == req.blockhash) {
recent_block = most_recent_block;
}
// Unlock cs_most_recent_block to avoid cs_main lock inversion
}
if (recent_block) {
SendBlockTransactions(pfrom, *recent_block, req);
return;
}
LOCK(cs_main);
const CBlockIndex *pindex = LookupBlockIndex(req.blockhash);
if (!pindex || !pindex->nStatus.hasData()) {
LogPrint(
BCLog::NET,
"Peer %d sent us a getblocktxn for a block we don't have\n",
pfrom.GetId());
return;
}
if (pindex->nHeight < ::ChainActive().Height() - MAX_BLOCKTXN_DEPTH) {
// If an older block is requested (should never happen in practice,
// but can happen in tests) send a block response instead of a
// blocktxn response. Sending a full block response instead of a
// small blocktxn response is preferable in the case where a peer
// might maliciously send lots of getblocktxn requests to trigger
// expensive disk reads, because it will require the peer to
// actually receive all the data read from disk over the network.
LogPrint(BCLog::NET,
"Peer %d sent us a getblocktxn for a block > %i deep\n",
pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
CInv inv;
inv.type = MSG_BLOCK;
inv.hash = req.blockhash;
pfrom.vRecvGetData.push_back(inv);
// The message processing loop will go around again (without
// pausing) and we'll respond then (without cs_main)
return;
}
CBlock block;
bool ret =
ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus());
assert(ret);
SendBlockTransactions(pfrom, block, req);
return;
}
if (msg_type == NetMsgType::GETHEADERS) {
CBlockLocator locator;
BlockHash hashStop;
vRecv >> locator >> hashStop;
if (locator.vHave.size() > MAX_LOCATOR_SZ) {
LogPrint(BCLog::NET,
"getheaders locator size %lld > %d, disconnect peer=%d\n",
locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
pfrom.fDisconnect = true;
return;
}
LOCK(cs_main);
if (::ChainstateActive().IsInitialBlockDownload() &&
!pfrom.HasPermission(PF_DOWNLOAD)) {
LogPrint(BCLog::NET,
"Ignoring getheaders from peer=%d because node is in "
"initial block download\n",
pfrom.GetId());
return;
}
CNodeState *nodestate = State(pfrom.GetId());
const CBlockIndex *pindex = nullptr;
if (locator.IsNull()) {
// If locator is null, return the hashStop block
pindex = LookupBlockIndex(hashStop);
if (!pindex) {
return;
}
if (!BlockRequestAllowed(pindex, m_chainparams.GetConsensus())) {
LogPrint(BCLog::NET,
"%s: ignoring request from peer=%i for old block "
"header that isn't in the main chain\n",
__func__, pfrom.GetId());
return;
}
} else {
// Find the last block the caller has in the main chain
pindex = FindForkInGlobalIndex(::ChainActive(), locator);
if (pindex) {
pindex = ::ChainActive().Next(pindex);
}
}
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx
// count at the end
std::vector<CBlock> vHeaders;
int nLimit = MAX_HEADERS_RESULTS;
LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n",
(pindex ? pindex->nHeight : -1),
hashStop.IsNull() ? "end" : hashStop.ToString(),
pfrom.GetId());
for (; pindex; pindex = ::ChainActive().Next(pindex)) {
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) {
break;
}
}
// pindex can be nullptr either if we sent ::ChainActive().Tip() OR
// if our peer has ::ChainActive().Tip() (and thus we are sending an
// empty headers message). In both cases it's safe to update
// pindexBestHeaderSent to be our tip.
//
// It is important that we simply reset the BestHeaderSent value here,
// and not max(BestHeaderSent, newHeaderSent). We might have announced
// the currently-being-connected tip using a compact block, which
// resulted in the peer sending a headers request, which we respond to
// without the new block. By resetting the BestHeaderSent, we ensure we
// will re-announce the new block via headers (or compact blocks again)
// in the SendMessages logic.
nodestate->pindexBestHeaderSent =
pindex ? pindex : ::ChainActive().Tip();
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::HEADERS, vHeaders));
return;
}
if (msg_type == NetMsgType::TX) {
// Stop processing the transaction early if
// 1) We are in blocks only mode and peer has no relay permission
// 2) This peer is a block-relay-only peer
if ((!g_relay_txes && !pfrom.HasPermission(PF_RELAY)) ||
(pfrom.m_tx_relay == nullptr)) {
LogPrint(BCLog::NET,
"transaction sent in violation of protocol peer=%d\n",
pfrom.GetId());
pfrom.fDisconnect = true;
return;
}
CTransactionRef ptx;
vRecv >> ptx;
const CTransaction &tx = *ptx;
const TxId &txid = tx.GetId();
pfrom.AddKnownTx(txid);
LOCK2(cs_main, g_cs_orphans);
TxValidationState state;
m_txrequest.ReceivedResponse(pfrom.GetId(), txid);
if (!AlreadyHaveTx(txid, m_mempool) &&
AcceptToMemoryPool(config, m_mempool, state, ptx,
false /* bypass_limits */,
Amount::zero() /* nAbsurdFee */)) {
m_mempool.check(&::ChainstateActive().CoinsTip());
// As this version of the transaction was acceptable, we can forget
// about any requests for it.
m_txrequest.ForgetInvId(tx.GetId());
RelayTransaction(tx.GetId(), m_connman);
for (size_t i = 0; i < tx.vout.size(); i++) {
auto it_by_prev =
mapOrphanTransactionsByPrev.find(COutPoint(txid, i));
if (it_by_prev != mapOrphanTransactionsByPrev.end()) {
for (const auto &elem : it_by_prev->second) {
pfrom.orphan_work_set.insert(elem->first);
}
}
}
pfrom.nLastTXTime = GetTime();
LogPrint(BCLog::MEMPOOL,
"AcceptToMemoryPool: peer=%d: accepted %s "
"(poolsz %u txn, %u kB)\n",
pfrom.GetId(), tx.GetId().ToString(), m_mempool.size(),
m_mempool.DynamicMemoryUsage() / 1000);
// Recursively process any orphan transactions that depended on this
// one
ProcessOrphanTx(config, pfrom.orphan_work_set);
} else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) {
// It may be the case that the orphans parents have all been
// rejected.
bool fRejectedParents = false;
// Deduplicate parent txids, so that we don't have to loop over
// the same parent txid more than once down below.
std::vector<TxId> unique_parents;
unique_parents.reserve(tx.vin.size());
for (const CTxIn &txin : tx.vin) {
// We start with all parents, and then remove duplicates below.
unique_parents.push_back(txin.prevout.GetTxId());
}
std::sort(unique_parents.begin(), unique_parents.end());
unique_parents.erase(
std::unique(unique_parents.begin(), unique_parents.end()),
unique_parents.end());
for (const TxId &parent_txid : unique_parents) {
if (recentRejects->contains(parent_txid)) {
fRejectedParents = true;
break;
}
}
if (!fRejectedParents) {
const auto current_time = GetTime<std::chrono::microseconds>();
for (const TxId &parent_txid : unique_parents) {
// FIXME: MSG_TX should use a TxHash, not a TxId.
pfrom.AddKnownTx(parent_txid);
if (!AlreadyHaveTx(parent_txid, m_mempool)) {
AddTxAnnouncement(pfrom, parent_txid, current_time);
}
}
AddOrphanTx(ptx, pfrom.GetId());
// Once added to the orphan pool, a tx is considered
// AlreadyHave, and we shouldn't request it anymore.
m_txrequest.ForgetInvId(tx.GetId());
// DoS prevention: do not allow mapOrphanTransactions to grow
// unbounded (see CVE-2012-3789)
unsigned int nMaxOrphanTx = (unsigned int)std::max(
int64_t(0), gArgs.GetArg("-maxorphantx",
DEFAULT_MAX_ORPHAN_TRANSACTIONS));
unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx);
if (nEvicted > 0) {
LogPrint(BCLog::MEMPOOL,
"mapOrphan overflow, removed %u tx\n", nEvicted);
}
} else {
LogPrint(BCLog::MEMPOOL,
"not keeping orphan with rejected parents %s\n",
tx.GetId().ToString());
// We will continue to reject this tx since it has rejected
// parents so avoid re-requesting it from other peers.
recentRejects->insert(tx.GetId());
m_txrequest.ForgetInvId(tx.GetId());
}
} else {
assert(recentRejects);
recentRejects->insert(tx.GetId());
m_txrequest.ForgetInvId(tx.GetId());
if (RecursiveDynamicUsage(*ptx) < 100000) {
AddToCompactExtraTransactions(ptx);
}
if (pfrom.HasPermission(PF_FORCERELAY)) {
// Always relay transactions received from peers with
// forcerelay permission, even if they were already in the
// mempool, allowing the node to function as a gateway for
// nodes hidden behind it.
if (!m_mempool.exists(tx.GetId())) {
LogPrintf("Not relaying non-mempool transaction %s from "
"forcerelay peer=%d\n",
tx.GetId().ToString(), pfrom.GetId());
} else {
LogPrintf("Force relaying tx %s from peer=%d\n",
tx.GetId().ToString(), pfrom.GetId());
RelayTransaction(tx.GetId(), m_connman);
}
}
}
// If a tx has been detected by recentRejects, we will have reached
// this point and the tx will have been ignored. Because we haven't run
// the tx through AcceptToMemoryPool, we won't have computed a DoS
// score for it or determined exactly why we consider it invalid.
//
// This means we won't penalize any peer subsequently relaying a DoSy
// tx (even if we penalized the first peer who gave it to us) because
// we have to account for recentRejects showing false positives. In
// other words, we shouldn't penalize a peer if we aren't *sure* they
// submitted a DoSy tx.
//
// Note that recentRejects doesn't just record DoSy or invalid
// transactions, but any tx not accepted by the mempool, which may be
// due to node policy (vs. consensus). So we can't blanket penalize a
// peer simply for relaying a tx that our recentRejects has caught,
// regardless of false positives.
if (state.IsInvalid()) {
LogPrint(BCLog::MEMPOOLREJ,
"%s from peer=%d was not accepted: %s\n",
tx.GetHash().ToString(), pfrom.GetId(), state.ToString());
MaybePunishNodeForTx(pfrom.GetId(), state);
}
return;
}
if (msg_type == NetMsgType::CMPCTBLOCK) {
// Ignore cmpctblock received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected cmpctblock message received from peer %d\n",
pfrom.GetId());
return;
}
CBlockHeaderAndShortTxIDs cmpctblock;
vRecv >> cmpctblock;
bool received_new_header = false;
{
LOCK(cs_main);
if (!LookupBlockIndex(cmpctblock.header.hashPrevBlock)) {
// Doesn't connect (or is genesis), instead of DoSing in
// AcceptBlockHeader, request deeper headers
if (!::ChainstateActive().IsInitialBlockDownload()) {
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(
pindexBestHeader),
uint256()));
}
return;
}
if (!LookupBlockIndex(cmpctblock.header.GetHash())) {
received_new_header = true;
}
}
const CBlockIndex *pindex = nullptr;
BlockValidationState state;
if (!m_chainman.ProcessNewBlockHeaders(config, {cmpctblock.header},
state, &pindex)) {
if (state.IsInvalid()) {
MaybePunishNodeForBlock(pfrom.GetId(), state,
/*via_compact_block*/ true,
"invalid header via cmpctblock");
return;
}
}
// When we succeed in decoding a block's txids from a cmpctblock
// message we typically jump to the BLOCKTXN handling code, with a
// dummy (empty) BLOCKTXN message, to re-use the logic there in
// completing processing of the putative block (without cs_main).
bool fProcessBLOCKTXN = false;
CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION);
// If we end up treating this as a plain headers message, call that as
// well
// without cs_main.
bool fRevertToHeaderProcessing = false;
// Keep a CBlock for "optimistic" compactblock reconstructions (see
// below)
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
bool fBlockReconstructed = false;
{
LOCK2(cs_main, g_cs_orphans);
// If AcceptBlockHeader returned true, it set pindex
assert(pindex);
UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
CNodeState *nodestate = State(pfrom.GetId());
// If this was a new header with more work than our tip, update the
// peer's last block announcement time
if (received_new_header &&
pindex->nChainWork > ::ChainActive().Tip()->nChainWork) {
nodestate->m_last_block_announcement = GetTime();
}
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::
iterator blockInFlightIt =
mapBlocksInFlight.find(pindex->GetBlockHash());
bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end();
if (pindex->nStatus.hasData()) {
// Nothing to do here
return;
}
if (pindex->nChainWork <=
::ChainActive()
.Tip()
->nChainWork || // We know something better
pindex->nTx != 0) {
// We had this block at some point, but pruned it
if (fAlreadyInFlight) {
// We requested this block for some reason, but our mempool
// will probably be useless so we just grab the block via
// normal getdata.
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash());
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
}
return;
}
// If we're not close to tip yet, give up and let parallel block
// fetch work its magic.
if (!fAlreadyInFlight &&
!CanDirectFetch(m_chainparams.GetConsensus())) {
return;
}
// We want to be a bit conservative just to be extra careful about
// DoS possibilities in compact block processing...
if (pindex->nHeight <= ::ChainActive().Height() + 2) {
if ((!fAlreadyInFlight && nodestate->nBlocksInFlight <
MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
(fAlreadyInFlight &&
blockInFlightIt->second.first == pfrom.GetId())) {
std::list<QueuedBlock>::iterator *queuedBlockIt = nullptr;
if (!MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(),
pindex->GetBlockHash(),
m_chainparams.GetConsensus(),
pindex, &queuedBlockIt)) {
if (!(*queuedBlockIt)->partialBlock) {
(*queuedBlockIt)
->partialBlock.reset(
new PartiallyDownloadedBlock(config,
&m_mempool));
} else {
// The block was already in flight using compact
// blocks from the same peer.
LogPrint(BCLog::NET, "Peer sent us compact block "
"we were already syncing!\n");
return;
}
}
PartiallyDownloadedBlock &partialBlock =
*(*queuedBlockIt)->partialBlock;
ReadStatus status =
partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
if (status == READ_STATUS_INVALID) {
// Reset in-flight state in case Misbehaving does not
// result in a disconnect
MarkBlockAsReceived(pindex->GetBlockHash());
Misbehaving(pfrom, 100, "invalid compact block");
return;
} else if (status == READ_STATUS_FAILED) {
// Duplicate txindices, the block is now in-flight, so
// just request it.
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash());
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
return;
}
BlockTransactionsRequest req;
for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
if (!partialBlock.IsTxAvailable(i)) {
req.indices.push_back(i);
}
}
if (req.indices.empty()) {
// Dirty hack to jump to BLOCKTXN code (TODO: move
// message handling into their own functions)
BlockTransactions txn;
txn.blockhash = cmpctblock.header.GetHash();
blockTxnMsg << txn;
fProcessBLOCKTXN = true;
} else {
req.blockhash = pindex->GetBlockHash();
m_connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::GETBLOCKTXN, req));
}
} else {
// This block is either already in flight from a different
// peer, or this peer has too many blocks outstanding to
// download from. Optimistically try to reconstruct anyway
// since we might be able to without any round trips.
PartiallyDownloadedBlock tempBlock(config, &m_mempool);
ReadStatus status =
tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
if (status != READ_STATUS_OK) {
// TODO: don't ignore failures
return;
}
std::vector<CTransactionRef> dummy;
status = tempBlock.FillBlock(*pblock, dummy);
if (status == READ_STATUS_OK) {
fBlockReconstructed = true;
}
}
} else {
if (fAlreadyInFlight) {
// We requested this block, but its far into the future, so
// our mempool will probably be useless - request the block
// normally.
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash());
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
return;
} else {
// If this was an announce-cmpctblock, we want the same
// treatment as a header message.
fRevertToHeaderProcessing = true;
}
}
} // cs_main
if (fProcessBLOCKTXN) {
return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN,
blockTxnMsg, time_received, interruptMsgProc);
}
if (fRevertToHeaderProcessing) {
// Headers received from HB compact block peers are permitted to be
// relayed before full validation (see BIP 152), so we don't want to
// disconnect the peer if the header turns out to be for an invalid
// block. Note that if a peer tries to build on an invalid chain,
// that will be detected and the peer will be banned.
return ProcessHeadersMessage(config, pfrom, {cmpctblock.header},
/*via_compact_block=*/true);
}
if (fBlockReconstructed) {
// If we got here, we were able to optimistically reconstruct a
// block that is in flight from some other peer.
{
LOCK(cs_main);
mapBlockSource.emplace(pblock->GetHash(),
std::make_pair(pfrom.GetId(), false));
}
bool fNewBlock = false;
// Setting fForceProcessing to true means that we bypass some of
// our anti-DoS protections in AcceptBlock, which filters
// unrequested blocks that might be trying to waste our resources
// (eg disk space). Because we only try to reconstruct blocks when
// we're close to caught up (via the CanDirectFetch() requirement
// above, combined with the behavior of not requesting blocks until
// we have a chain with at least nMinimumChainWork), and we ignore
// compact blocks with less work than our tip, it is safe to treat
// reconstructed compact blocks as having been requested.
m_chainman.ProcessNewBlock(config, pblock,
/*fForceProcessing=*/true, &fNewBlock);
if (fNewBlock) {
pfrom.nLastBlockTime = GetTime();
} else {
LOCK(cs_main);
mapBlockSource.erase(pblock->GetHash());
}
// hold cs_main for CBlockIndex::IsValid()
LOCK(cs_main);
if (pindex->IsValid(BlockValidity::TRANSACTIONS)) {
// Clear download state for this block, which is in process from
// some other peer. We do this after calling. ProcessNewBlock so
// that a malleated cmpctblock announcement can't be used to
// interfere with block relay.
MarkBlockAsReceived(pblock->GetHash());
}
}
return;
}
if (msg_type == NetMsgType::BLOCKTXN) {
// Ignore blocktxn received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected blocktxn message received from peer %d\n",
pfrom.GetId());
return;
}
BlockTransactions resp;
vRecv >> resp;
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
bool fBlockRead = false;
{
LOCK(cs_main);
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::
iterator it = mapBlocksInFlight.find(resp.blockhash);
if (it == mapBlocksInFlight.end() ||
!it->second.second->partialBlock ||
it->second.first != pfrom.GetId()) {
LogPrint(BCLog::NET,
"Peer %d sent us block transactions for block "
"we weren't expecting\n",
pfrom.GetId());
return;
}
PartiallyDownloadedBlock &partialBlock =
*it->second.second->partialBlock;
ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn);
if (status == READ_STATUS_INVALID) {
// Reset in-flight state in case of Misbehaving does not
// result in a disconnect.
MarkBlockAsReceived(resp.blockhash);
Misbehaving(
pfrom, 100,
"invalid compact block/non-matching block transactions");
return;
} else if (status == READ_STATUS_FAILED) {
// Might have collided, fall back to getdata now :(
std::vector<CInv> invs;
invs.push_back(CInv(MSG_BLOCK, resp.blockhash));
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::GETDATA, invs));
} else {
// Block is either okay, or possibly we received
// READ_STATUS_CHECKBLOCK_FAILED.
// Note that CheckBlock can only fail for one of a few reasons:
// 1. bad-proof-of-work (impossible here, because we've already
// accepted the header)
// 2. merkleroot doesn't match the transactions given (already
// caught in FillBlock with READ_STATUS_FAILED, so
// impossible here)
// 3. the block is otherwise invalid (eg invalid coinbase,
// block is too big, too many legacy sigops, etc).
// So if CheckBlock failed, #3 is the only possibility.
// Under BIP 152, we don't DoS-ban unless proof of work is
// invalid (we don't require all the stateless checks to have
// been run). This is handled below, so just treat this as
// though the block was successfully read, and rely on the
// handling in ProcessNewBlock to ensure the block index is
// updated, etc.
// it is now an empty pointer
MarkBlockAsReceived(resp.blockhash);
fBlockRead = true;
// mapBlockSource is used for potentially punishing peers and
// updating which peers send us compact blocks, so the race
// between here and cs_main in ProcessNewBlock is fine.
// BIP 152 permits peers to relay compact blocks after
// validating the header only; we should not punish peers
// if the block turns out to be invalid.
mapBlockSource.emplace(resp.blockhash,
std::make_pair(pfrom.GetId(), false));
}
} // Don't hold cs_main when we call into ProcessNewBlock
if (fBlockRead) {
bool fNewBlock = false;
// Since we requested this block (it was in mapBlocksInFlight),
// force it to be processed, even if it would not be a candidate for
// new tip (missing previous block, chain not long enough, etc)
// This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
// disk-space attacks), but this should be safe due to the
// protections in the compact block handler -- see related comment
// in compact block optimistic reconstruction handling.
m_chainman.ProcessNewBlock(config, pblock,
/*fForceProcessing=*/true, &fNewBlock);
if (fNewBlock) {
pfrom.nLastBlockTime = GetTime();
} else {
LOCK(cs_main);
mapBlockSource.erase(pblock->GetHash());
}
}
return;
}
if (msg_type == NetMsgType::HEADERS) {
// Ignore headers received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected headers message received from peer %d\n",
pfrom.GetId());
return;
}
std::vector<CBlockHeader> headers;
// Bypass the normal CBlock deserialization, as we don't want to risk
// deserializing 2000 full blocks.
unsigned int nCount = ReadCompactSize(vRecv);
if (nCount > MAX_HEADERS_RESULTS) {
Misbehaving(pfrom, 20,
strprintf("too-many-headers: headers message size = %u",
nCount));
return;
}
headers.resize(nCount);
for (unsigned int n = 0; n < nCount; n++) {
vRecv >> headers[n];
// Ignore tx count; assume it is 0.
ReadCompactSize(vRecv);
}
return ProcessHeadersMessage(config, pfrom, headers,
/*via_compact_block=*/false);
}
if (msg_type == NetMsgType::BLOCK) {
// Ignore block received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected block message received from peer %d\n",
pfrom.GetId());
return;
}
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
vRecv >> *pblock;
LogPrint(BCLog::NET, "received block %s peer=%d\n",
pblock->GetHash().ToString(), pfrom.GetId());
// Process all blocks from whitelisted peers, even if not requested,
// unless we're still syncing with the network. Such an unrequested
// block may still be processed, subject to the conditions in
// AcceptBlock().
bool forceProcessing = pfrom.HasPermission(PF_NOBAN) &&
!::ChainstateActive().IsInitialBlockDownload();
const BlockHash hash = pblock->GetHash();
{
LOCK(cs_main);
// Also always process if we requested the block explicitly, as we
// may need it even though it is not a candidate for a new best tip.
forceProcessing |= MarkBlockAsReceived(hash);
// mapBlockSource is only used for punishing peers and setting
// which peers send us compact blocks, so the race between here and
// cs_main in ProcessNewBlock is fine.
mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
}
bool fNewBlock = false;
m_chainman.ProcessNewBlock(config, pblock, forceProcessing, &fNewBlock);
if (fNewBlock) {
pfrom.nLastBlockTime = GetTime();
} else {
LOCK(cs_main);
mapBlockSource.erase(hash);
}
return;
}
if (msg_type == NetMsgType::AVAHELLO) {
if (!pfrom.m_avalanche_state) {
pfrom.m_avalanche_state = std::make_unique<CNode::AvalancheState>();
}
CHashVerifier<CDataStream> verifier(&vRecv);
avalanche::Delegation delegation;
verifier >> delegation;
avalanche::DelegationState state;
CPubKey &pubkey = pfrom.m_avalanche_state->pubkey;
if (!delegation.verify(state, pubkey)) {
Misbehaving(pfrom, 100, "invalid-delegation");
return;
}
CHashWriter sighasher(SER_GETHASH, 0);
sighasher << delegation.getId();
sighasher << pfrom.nRemoteHostNonce;
sighasher << pfrom.GetLocalNonce();
sighasher << pfrom.nRemoteExtraEntropy;
sighasher << pfrom.GetLocalExtraEntropy();
SchnorrSig sig;
verifier >> sig;
if (!pubkey.VerifySchnorr(sighasher.GetHash(), sig)) {
Misbehaving(pfrom, 100, "invalid-avahello-signature");
return;
}
// If we don't know this proof already, add it to the tracker so it can
// be requested.
const avalanche::ProofId proofid(delegation.getProofId());
if (!AlreadyHaveProof(proofid)) {
const bool preferred = isPreferredDownloadPeer(pfrom);
LOCK(cs_proofrequest);
AddProofAnnouncement(pfrom, proofid,
GetTime<std::chrono::microseconds>(),
preferred);
}
if (gArgs.GetBoolArg("-enableavalanchepeerdiscovery",
AVALANCHE_DEFAULT_PEER_DISCOVERY_ENABLED)) {
// Don't check the return value. If it fails we probably don't know
// about the proof yet.
g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) {
return pm.addNode(pfrom.GetId(), proofid);
});
}
return;
}
if (msg_type == NetMsgType::AVAPOLL) {
auto now = std::chrono::steady_clock::now();
int64_t cooldown =
gArgs.GetArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN);
{
LOCK(cs_main);
auto &node_state = State(pfrom.GetId())->m_avalanche_state;
if (now <
node_state.last_poll + std::chrono::milliseconds(cooldown)) {
Misbehaving(pfrom, 20, "avapool-cooldown");
}
node_state.last_poll = now;
}
uint64_t round;
Unserialize(vRecv, round);
unsigned int nCount = ReadCompactSize(vRecv);
if (nCount > AVALANCHE_MAX_ELEMENT_POLL) {
Misbehaving(
pfrom, 20,
strprintf("too-many-ava-poll: poll message size = %u", nCount));
return;
}
std::vector<avalanche::Vote> votes;
votes.reserve(nCount);
LogPrint(BCLog::AVALANCHE, "received avalanche poll from peer=%d\n",
pfrom.GetId());
{
LOCK(cs_main);
for (unsigned int n = 0; n < nCount; n++) {
CInv inv;
vRecv >> inv;
const auto insertVote = [&](uint32_t e) {
votes.emplace_back(e, inv.hash);
};
// Not a block.
if (inv.type != MSG_BLOCK) {
insertVote(-1);
continue;
}
// We have a block.
const CBlockIndex *pindex =
LookupBlockIndex(BlockHash(inv.hash));
// Unknown block.
if (!pindex) {
insertVote(-1);
continue;
}
// Invalid block
if (pindex->nStatus.isInvalid()) {
insertVote(1);
continue;
}
// Parked block
if (pindex->nStatus.isOnParkedChain()) {
insertVote(2);
continue;
}
const CBlockIndex *pindexTip = ::ChainActive().Tip();
const CBlockIndex *pindexFork =
LastCommonAncestor(pindex, pindexTip);
// Active block.
if (pindex == pindexFork) {
insertVote(0);
continue;
}
// Fork block.
if (pindexFork != pindexTip) {
insertVote(3);
continue;
}
// Missing block data.
if (!pindex->nStatus.hasData()) {
insertVote(-2);
continue;
}
// This block is built on top of the tip, we have the data, it
// is pending connection or rejection.
insertVote(-3);
}
}
// Send the query to the node.
g_avalanche->sendResponse(
&pfrom, avalanche::Response(round, cooldown, std::move(votes)));
return;
}
if (msg_type == NetMsgType::AVARESPONSE) {
// As long as QUIC is not implemented, we need to sign response and
// verify response's signatures in order to avoid any manipulation of
// messages at the transport level.
CHashVerifier<CDataStream> verifier(&vRecv);
avalanche::Response response;
verifier >> response;
SchnorrSig sig;
vRecv >> sig;
if (!pfrom.m_avalanche_state ||
!pfrom.m_avalanche_state->pubkey.VerifySchnorr(verifier.GetHash(),
sig)) {
Misbehaving(pfrom, 100, "invalid-ava-response-signature");
return;
}
std::vector<avalanche::BlockUpdate> blockUpdates;
std::vector<avalanche::ProofUpdate> proofUpdates;
int banscore;
std::string error;
if (!g_avalanche->registerVotes(pfrom.GetId(), response, blockUpdates,
proofUpdates, banscore, error)) {
Misbehaving(pfrom, banscore, error);
return;
}
pfrom.m_avalanche_state->invsVoted(response.GetVotes().size());
if (blockUpdates.size()) {
for (avalanche::BlockUpdate &u : blockUpdates) {
CBlockIndex *pindex = u.getVoteItem();
switch (u.getStatus()) {
case avalanche::VoteStatus::Invalid:
case avalanche::VoteStatus::Rejected: {
LogPrintf("Avalanche rejected %s, parking\n",
pindex->GetBlockHash().GetHex());
BlockValidationState state;
::ChainstateActive().ParkBlock(config, state, pindex);
if (!state.IsValid()) {
LogPrintf("ERROR: Database error: %s\n",
state.GetRejectReason());
return;
}
} break;
case avalanche::VoteStatus::Accepted:
case avalanche::VoteStatus::Finalized: {
LogPrintf("Avalanche accepted %s\n",
pindex->GetBlockHash().GetHex());
LOCK(cs_main);
UnparkBlock(pindex);
} break;
}
}
BlockValidationState state;
if (!ActivateBestChain(config, state)) {
LogPrintf("failed to activate chain (%s)\n", state.ToString());
}
}
return;
}
if (msg_type == NetMsgType::AVAPROOF) {
auto proof = std::make_shared<avalanche::Proof>();
vRecv >> *proof;
const avalanche::ProofId &proofid = proof->getId();
pfrom.AddKnownProof(proofid);
const NodeId nodeid = pfrom.GetId();
{
LOCK(cs_proofrequest);
m_proofrequest.ReceivedResponse(nodeid, proofid);
if (AlreadyHaveProof(proofid)) {
m_proofrequest.ForgetInvId(proofid);
return;
}
}
// addProof should not be called while cs_proofrequest because it holds
// cs_main and that creates a potential deadlock during shutdown
if (g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) {
return pm.registerProof(proof);
})) {
WITH_LOCK(cs_proofrequest, m_proofrequest.ForgetInvId(proofid));
RelayProof(proofid, m_connman);
pfrom.nLastProofTime = GetTime();
LogPrint(BCLog::NET, "New avalanche proof: peer=%d, proofid %s\n",
nodeid, proofid.ToString());
} else {
// If the proof couldn't be added, it can be either orphan or
// invalid. In the latter case we should increase the ban score.
// TODO improve the ban reason by printing the validation state
if (!g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) {
return pm.isOrphan(proofid);
})) {
WITH_LOCK(cs_rejectedProofs, rejectedProofs->insert(proofid));
Misbehaving(nodeid, 100, "invalid-avaproof");
}
}
return;
}
if (msg_type == NetMsgType::GETADDR) {
// This asymmetric behavior for inbound and outbound connections was
// introduced to prevent a fingerprinting attack: an attacker can send
// specific fake addresses to users' AddrMan and later request them by
// sending getaddr messages. Making nodes which are behind NAT and can
// only make outgoing connections ignore the getaddr message mitigates
// the attack.
if (!pfrom.IsInboundConn()) {
LogPrint(BCLog::NET,
- "Ignoring \"getaddr\" from outbound connection. peer=%d\n",
- pfrom.GetId());
- return;
- }
- if (!pfrom.RelayAddrsWithConn()) {
- LogPrint(BCLog::NET,
- "Ignoring \"getaddr\" from block-relay-only connection. "
- "peer=%d\n",
- pfrom.GetId());
+ "Ignoring \"getaddr\" from %s connection. peer=%d\n",
+ pfrom.ConnectionTypeAsString(), pfrom.GetId());
return;
}
// Only send one GetAddr response per connection to reduce resource
// waste and discourage addr stamping of INV announcements.
if (pfrom.fSentAddr) {
LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n",
pfrom.GetId());
return;
}
pfrom.fSentAddr = true;
pfrom.vAddrToSend.clear();
std::vector<CAddress> vAddr;
if (pfrom.HasPermission(PF_ADDR)) {
vAddr =
m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
} else {
vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND,
MAX_PCT_ADDR_TO_SEND);
}
FastRandomContext insecure_rand;
for (const CAddress &addr : vAddr) {
pfrom.PushAddress(addr, insecure_rand);
}
return;
}
if (msg_type == NetMsgType::MEMPOOL) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM) &&
!pfrom.HasPermission(PF_MEMPOOL)) {
if (!pfrom.HasPermission(PF_NOBAN)) {
LogPrint(BCLog::NET,
"mempool request with bloom filters disabled, "
"disconnect peer=%d\n",
pfrom.GetId());
pfrom.fDisconnect = true;
}
return;
}
if (m_connman.OutboundTargetReached(false) &&
!pfrom.HasPermission(PF_MEMPOOL)) {
if (!pfrom.HasPermission(PF_NOBAN)) {
LogPrint(BCLog::NET,
"mempool request with bandwidth limit reached, "
"disconnect peer=%d\n",
pfrom.GetId());
pfrom.fDisconnect = true;
}
return;
}
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_tx_inventory);
pfrom.m_tx_relay->fSendMempool = true;
}
return;
}
if (msg_type == NetMsgType::PING) {
if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful
// features:
//
// 1) A remote node can quickly check if the connection is
// operational.
// 2) Remote nodes can measure the latency of the network thread. If
// this node is overloaded it won't respond to pings quickly and the
// remote node can avoid sending us more work, like chain download
// requests.
//
// The nonce stops the remote getting confused between different
// pings: without it, if the remote node sends a ping once per
// second and this node takes 5 seconds to respond to each, the 5th
// ping the remote sends would appear to return very quickly.
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::PONG, nonce));
}
return;
}
if (msg_type == NetMsgType::PONG) {
const auto ping_end = time_received;
uint64_t nonce = 0;
size_t nAvail = vRecv.in_avail();
bool bPingFinished = false;
std::string sProblem;
if (nAvail >= sizeof(nonce)) {
vRecv >> nonce;
// Only process pong message if there is an outstanding ping (old
// ping without nonce should never pong)
if (pfrom.nPingNonceSent != 0) {
if (nonce == pfrom.nPingNonceSent) {
// Matching pong received, this ping is no longer
// outstanding
bPingFinished = true;
const auto ping_time = ping_end - pfrom.m_ping_start.load();
if (ping_time.count() >= 0) {
// Successful ping time measurement, replace previous
pfrom.nPingUsecTime = count_microseconds(ping_time);
pfrom.nMinPingUsecTime =
std::min(pfrom.nMinPingUsecTime.load(),
count_microseconds(ping_time));
} else {
// This should never happen
sProblem = "Timing mishap";
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = "Nonce mismatch";
if (nonce == 0) {
// This is most likely a bug in another implementation
// somewhere; cancel this ping
bPingFinished = true;
sProblem = "Nonce zero";
}
}
} else {
sProblem = "Unsolicited pong without ping";
}
} else {
// This is most likely a bug in another implementation somewhere;
// cancel this ping
bPingFinished = true;
sProblem = "Short payload";
}
if (!(sProblem.empty())) {
LogPrint(BCLog::NET,
"pong peer=%d: %s, %x expected, %x received, %u bytes\n",
pfrom.GetId(), sProblem, pfrom.nPingNonceSent, nonce,
nAvail);
}
if (bPingFinished) {
pfrom.nPingNonceSent = 0;
}
return;
}
if (msg_type == NetMsgType::FILTERLOAD) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM)) {
pfrom.fDisconnect = true;
return;
}
CBloomFilter filter;
vRecv >> filter;
if (!filter.IsWithinSizeConstraints()) {
// There is no excuse for sending a too-large filter
Misbehaving(pfrom, 100, "too-large bloom filter");
} else if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
pfrom.m_tx_relay->pfilter.reset(new CBloomFilter(filter));
pfrom.m_tx_relay->fRelayTxes = true;
}
return;
}
if (msg_type == NetMsgType::FILTERADD) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM)) {
pfrom.fDisconnect = true;
return;
}
std::vector<uint8_t> vData;
vRecv >> vData;
// Nodes must NEVER send a data item > 520 bytes (the max size for a
// script data object, and thus, the maximum size any matched object can
// have) in a filteradd message.
bool bad = false;
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
bad = true;
} else if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
if (pfrom.m_tx_relay->pfilter) {
pfrom.m_tx_relay->pfilter->insert(vData);
} else {
bad = true;
}
}
if (bad) {
// The structure of this code doesn't really allow for a good error
// code. We'll go generic.
Misbehaving(pfrom, 100, "bad filteradd message");
}
return;
}
if (msg_type == NetMsgType::FILTERCLEAR) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM)) {
pfrom.fDisconnect = true;
return;
}
if (pfrom.m_tx_relay == nullptr) {
return;
}
LOCK(pfrom.m_tx_relay->cs_filter);
pfrom.m_tx_relay->pfilter = nullptr;
pfrom.m_tx_relay->fRelayTxes = true;
return;
}
if (msg_type == NetMsgType::FEEFILTER) {
Amount newFeeFilter = Amount::zero();
vRecv >> newFeeFilter;
if (MoneyRange(newFeeFilter)) {
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_feeFilter);
pfrom.m_tx_relay->minFeeFilter = newFeeFilter;
}
LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n",
CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
}
return;
}
if (msg_type == NetMsgType::GETCFILTERS) {
ProcessGetCFilters(pfrom, vRecv, m_chainparams, m_connman);
return;
}
if (msg_type == NetMsgType::GETCFHEADERS) {
ProcessGetCFHeaders(pfrom, vRecv, m_chainparams, m_connman);
return;
}
if (msg_type == NetMsgType::GETCFCHECKPT) {
ProcessGetCFCheckPt(pfrom, vRecv, m_chainparams, m_connman);
return;
}
if (msg_type == NetMsgType::NOTFOUND) {
std::vector<CInv> vInv;
vRecv >> vInv;
// A peer might send up to 1 notfound per getdata request, but no more
if (vInv.size() <= PROOF_REQUEST_PARAMS.max_peer_announcements +
TX_REQUEST_PARAMS.max_peer_announcements +
MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
for (CInv &inv : vInv) {
if (inv.IsMsgTx()) {
// If we receive a NOTFOUND message for a tx we requested,
// mark the announcement for it as completed in
// InvRequestTracker.
LOCK(::cs_main);
m_txrequest.ReceivedResponse(pfrom.GetId(), TxId(inv.hash));
continue;
}
if (inv.IsMsgProof()) {
LOCK(cs_proofrequest);
m_proofrequest.ReceivedResponse(
pfrom.GetId(), avalanche::ProofId(inv.hash));
}
}
}
return;
}
// Ignore unknown commands for extensibility
LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n",
SanitizeString(msg_type), pfrom.GetId());
return;
}
bool PeerManager::MaybeDiscourageAndDisconnect(CNode &pnode) {
const NodeId peer_id{pnode.GetId()};
PeerRef peer = GetPeerRef(peer_id);
if (peer == nullptr) {
return false;
}
{
LOCK(peer->m_misbehavior_mutex);
// There's nothing to do if the m_should_discourage flag isn't set
if (!peer->m_should_discourage) {
return false;
}
peer->m_should_discourage = false;
} // peer.m_misbehavior_mutex
if (pnode.HasPermission(PF_NOBAN)) {
// We never disconnect or discourage peers for bad behavior if they have
// the NOBAN permission flag
LogPrintf("Warning: not punishing noban peer %d!\n", peer_id);
return false;
}
if (pnode.IsManualConn()) {
// We never disconnect or discourage manual peers for bad behavior
LogPrintf("Warning: not punishing manually connected peer %d!\n",
peer_id);
return false;
}
if (pnode.addr.IsLocal()) {
// We disconnect local peers for bad behavior but don't discourage
// (since that would discourage all peers on the same local address)
LogPrintf(
"Warning: disconnecting but not discouraging local peer %d!\n",
peer_id);
pnode.fDisconnect = true;
return true;
}
// Normal case: Disconnect the peer and discourage all nodes sharing the
// address
LogPrintf("Disconnecting and discouraging peer %d!\n", peer_id);
if (m_banman) {
m_banman->Discourage(pnode.addr);
}
m_connman.DisconnectNode(pnode.addr);
return true;
}
bool PeerManager::ProcessMessages(const Config &config, CNode *pfrom,
std::atomic<bool> &interruptMsgProc) {
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fMoreWork = false;
if (!pfrom->vRecvGetData.empty()) {
ProcessGetData(config, *pfrom, m_connman, m_mempool, interruptMsgProc);
}
if (!pfrom->orphan_work_set.empty()) {
LOCK2(cs_main, g_cs_orphans);
ProcessOrphanTx(config, pfrom->orphan_work_set);
}
if (pfrom->fDisconnect) {
return false;
}
// this maintains the order of responses and prevents vRecvGetData from
// growing unbounded
if (!pfrom->vRecvGetData.empty()) {
return true;
}
if (!pfrom->orphan_work_set.empty()) {
return true;
}
// Don't bother if send buffer is too full to respond anyway
if (pfrom->fPauseSend) {
return false;
}
std::list<CNetMessage> msgs;
{
LOCK(pfrom->cs_vProcessMsg);
if (pfrom->vProcessMsg.empty()) {
return false;
}
// Just take one message
msgs.splice(msgs.begin(), pfrom->vProcessMsg,
pfrom->vProcessMsg.begin());
pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size;
pfrom->fPauseRecv =
pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize();
fMoreWork = !pfrom->vProcessMsg.empty();
}
CNetMessage &msg(msgs.front());
msg.SetVersion(pfrom->GetCommonVersion());
// Check network magic
if (!msg.m_valid_netmagic) {
LogPrint(BCLog::NET,
"PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n",
SanitizeString(msg.m_command), pfrom->GetId());
// Make sure we discourage where that come from for some time.
if (m_banman) {
m_banman->Discourage(pfrom->addr);
}
m_connman.DisconnectNode(pfrom->addr);
pfrom->fDisconnect = true;
return false;
}
// Check header
if (!msg.m_valid_header) {
LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n",
SanitizeString(msg.m_command), pfrom->GetId());
return fMoreWork;
}
const std::string &msg_type = msg.m_command;
// Message size
unsigned int nMessageSize = msg.m_message_size;
// Checksum
CDataStream &vRecv = msg.m_recv;
if (!msg.m_valid_checksum) {
LogPrint(BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR peer=%d\n",
__func__, SanitizeString(msg_type), nMessageSize,
pfrom->GetId());
if (m_banman) {
m_banman->Discourage(pfrom->addr);
}
m_connman.DisconnectNode(pfrom->addr);
return fMoreWork;
}
try {
ProcessMessage(config, *pfrom, msg_type, vRecv, msg.m_time,
interruptMsgProc);
if (interruptMsgProc) {
return false;
}
if (!pfrom->vRecvGetData.empty()) {
fMoreWork = true;
}
} catch (const std::exception &e) {
LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n",
__func__, SanitizeString(msg_type), nMessageSize, e.what(),
typeid(e).name());
} catch (...) {
LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n",
__func__, SanitizeString(msg_type), nMessageSize);
}
return fMoreWork;
}
void PeerManager::ConsiderEviction(CNode &pto, int64_t time_in_seconds) {
AssertLockHeld(cs_main);
CNodeState &state = *State(pto.GetId());
const CNetMsgMaker msgMaker(pto.GetCommonVersion());
if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() &&
state.fSyncStarted) {
// This is an outbound peer subject to disconnection if they don't
// announce a block with as much work as the current tip within
// CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their
// chain has more work than ours, we should sync to it, unless it's
// invalid, in which case we should find that out and disconnect from
// them elsewhere).
if (state.pindexBestKnownBlock != nullptr &&
state.pindexBestKnownBlock->nChainWork >=
::ChainActive().Tip()->nChainWork) {
if (state.m_chain_sync.m_timeout != 0) {
state.m_chain_sync.m_timeout = 0;
state.m_chain_sync.m_work_header = nullptr;
state.m_chain_sync.m_sent_getheaders = false;
}
} else if (state.m_chain_sync.m_timeout == 0 ||
(state.m_chain_sync.m_work_header != nullptr &&
state.pindexBestKnownBlock != nullptr &&
state.pindexBestKnownBlock->nChainWork >=
state.m_chain_sync.m_work_header->nChainWork)) {
// Our best block known by this peer is behind our tip, and we're
// either noticing that for the first time, OR this peer was able to
// catch up to some earlier point where we checked against our tip.
// Either way, set a new timeout based on current tip.
state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
state.m_chain_sync.m_work_header = ::ChainActive().Tip();
state.m_chain_sync.m_sent_getheaders = false;
} else if (state.m_chain_sync.m_timeout > 0 &&
time_in_seconds > state.m_chain_sync.m_timeout) {
// No evidence yet that our peer has synced to a chain with work
// equal to that of our tip, when we first detected it was behind.
// Send a single getheaders message to give the peer a chance to
// update us.
if (state.m_chain_sync.m_sent_getheaders) {
// They've run out of time to catch up!
LogPrintf(
"Disconnecting outbound peer %d for old chain, best known "
"block = %s\n",
pto.GetId(),
state.pindexBestKnownBlock != nullptr
? state.pindexBestKnownBlock->GetBlockHash().ToString()
: "<none>");
pto.fDisconnect = true;
} else {
assert(state.m_chain_sync.m_work_header);
LogPrint(
BCLog::NET,
"sending getheaders to outbound peer=%d to verify chain "
"work (current best known block:%s, benchmark blockhash: "
"%s)\n",
pto.GetId(),
state.pindexBestKnownBlock != nullptr
? state.pindexBestKnownBlock->GetBlockHash().ToString()
: "<none>",
state.m_chain_sync.m_work_header->GetBlockHash()
.ToString());
m_connman.PushMessage(
&pto,
msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(
state.m_chain_sync.m_work_header->pprev),
uint256()));
state.m_chain_sync.m_sent_getheaders = true;
// 2 minutes
constexpr int64_t HEADERS_RESPONSE_TIME = 120;
// Bump the timeout to allow a response, which could clear the
// timeout (if the response shows the peer has synced), reset
// the timeout (if the peer syncs to the required work but not
// to our tip), or result in disconnect (if we advance to the
// timeout and pindexBestKnownBlock has not sufficiently
// progressed)
state.m_chain_sync.m_timeout =
time_in_seconds + HEADERS_RESPONSE_TIME;
}
}
}
}
void PeerManager::EvictExtraOutboundPeers(int64_t time_in_seconds) {
// Check whether we have too many outbound peers
int extra_peers = m_connman.GetExtraOutboundCount();
if (extra_peers <= 0) {
return;
}
// If we have more outbound peers than we target, disconnect one.
// Pick the outbound peer that least recently announced us a new block, with
// ties broken by choosing the more recent connection (higher node id)
NodeId worst_peer = -1;
int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
m_connman.ForEachNode([&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(
::cs_main) {
AssertLockHeld(::cs_main);
// Ignore non-outbound peers, or nodes marked for disconnect already
if (!pnode->IsOutboundOrBlockRelayConn() || pnode->fDisconnect) {
return;
}
CNodeState *state = State(pnode->GetId());
if (state == nullptr) {
// shouldn't be possible, but just in case
return;
}
// Don't evict our protected peers
if (state->m_chain_sync.m_protect) {
return;
}
// Don't evict our block-relay-only peers.
if (pnode->m_tx_relay == nullptr) {
return;
}
if (state->m_last_block_announcement < oldest_block_announcement ||
(state->m_last_block_announcement == oldest_block_announcement &&
pnode->GetId() > worst_peer)) {
worst_peer = pnode->GetId();
oldest_block_announcement = state->m_last_block_announcement;
}
});
if (worst_peer == -1) {
return;
}
bool disconnected = m_connman.ForNode(
worst_peer, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
AssertLockHeld(::cs_main);
// Only disconnect a peer that has been connected to us for some
// reasonable fraction of our check-frequency, to give it time for
// new information to have arrived. Also don't disconnect any peer
// we're trying to download a block from.
CNodeState &state = *State(pnode->GetId());
if (time_in_seconds - pnode->nTimeConnected >
MINIMUM_CONNECT_TIME &&
state.nBlocksInFlight == 0) {
LogPrint(BCLog::NET,
"disconnecting extra outbound peer=%d (last block "
"announcement received at time %d)\n",
pnode->GetId(), oldest_block_announcement);
pnode->fDisconnect = true;
return true;
} else {
LogPrint(BCLog::NET,
"keeping outbound peer=%d chosen for eviction "
"(connect time: %d, blocks_in_flight: %d)\n",
pnode->GetId(), pnode->nTimeConnected,
state.nBlocksInFlight);
return false;
}
});
if (disconnected) {
// If we disconnected an extra peer, that means we successfully
// connected to at least one peer after the last time we detected a
// stale tip. Don't try any more extra peers until we next detect a
// stale tip, to limit the load we put on the network from these extra
// connections.
m_connman.SetTryNewOutboundPeer(false);
}
}
void PeerManager::CheckForStaleTipAndEvictPeers() {
LOCK(cs_main);
int64_t time_in_seconds = GetTime();
EvictExtraOutboundPeers(time_in_seconds);
if (time_in_seconds <= m_stale_tip_check_time) {
return;
}
// Check whether our tip is stale, and if so, allow using an extra outbound
// peer.
if (!fImporting && !fReindex && m_connman.GetNetworkActive() &&
m_connman.GetUseAddrmanOutgoing() &&
TipMayBeStale(m_chainparams.GetConsensus())) {
LogPrintf("Potential stale tip detected, will try using extra outbound "
"peer (last tip update: %d seconds ago)\n",
time_in_seconds - g_last_tip_update);
m_connman.SetTryNewOutboundPeer(true);
} else if (m_connman.GetTryNewOutboundPeer()) {
m_connman.SetTryNewOutboundPeer(false);
}
m_stale_tip_check_time = time_in_seconds + STALE_CHECK_INTERVAL;
}
namespace {
class CompareInvMempoolOrder {
CTxMemPool *mp;
public:
explicit CompareInvMempoolOrder(CTxMemPool *_mempool) { mp = _mempool; }
bool operator()(std::set<TxId>::iterator a, std::set<TxId>::iterator b) {
/**
* As std::make_heap produces a max-heap, we want the entries with the
* fewest ancestors/highest fee to sort later.
*/
return mp->CompareDepthAndScore(*b, *a);
}
};
} // namespace
bool PeerManager::SendMessages(const Config &config, CNode *pto,
std::atomic<bool> &interruptMsgProc) {
const Consensus::Params &consensusParams = m_chainparams.GetConsensus();
// We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
// disconnect misbehaving peers even before the version handshake is
// complete.
if (MaybeDiscourageAndDisconnect(*pto)) {
return true;
}
// Don't send anything until the version handshake is complete
if (!pto->fSuccessfullyConnected || pto->fDisconnect) {
return true;
}
// If we get here, the outgoing message serialization version is set and
// can't change.
const CNetMsgMaker msgMaker(pto->GetCommonVersion());
//
// Message: ping
//
bool pingSend = false;
if (pto->fPingQueued) {
// RPC ping request by user
pingSend = true;
}
if (pto->nPingNonceSent == 0 && pto->m_ping_start.load() + PING_INTERVAL <
GetTime<std::chrono::microseconds>()) {
// Ping automatically sent as a latency probe & keepalive.
pingSend = true;
}
if (pingSend) {
uint64_t nonce = 0;
while (nonce == 0) {
GetRandBytes((uint8_t *)&nonce, sizeof(nonce));
}
pto->fPingQueued = false;
pto->m_ping_start = GetTime<std::chrono::microseconds>();
if (pto->GetCommonVersion() > BIP0031_VERSION) {
pto->nPingNonceSent = nonce;
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING, nonce));
} else {
// Peer is too old to support ping command with nonce, pong will
// never arrive.
pto->nPingNonceSent = 0;
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING));
}
}
auto current_time = GetTime<std::chrono::microseconds>();
bool fFetch;
{
LOCK(cs_main);
CNodeState &state = *State(pto->GetId());
// Address refresh broadcast
if (pto->RelayAddrsWithConn() &&
!::ChainstateActive().IsInitialBlockDownload() &&
pto->m_next_local_addr_send < current_time) {
AdvertiseLocal(pto);
pto->m_next_local_addr_send = PoissonNextSend(
current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
}
//
// Message: addr
//
if (pto->RelayAddrsWithConn() && pto->m_next_addr_send < current_time) {
pto->m_next_addr_send =
PoissonNextSend(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
std::vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
assert(pto->m_addr_known);
const char *msg_type;
int make_flags;
if (pto->m_wants_addrv2) {
msg_type = NetMsgType::ADDRV2;
make_flags = ADDRV2_FORMAT;
} else {
msg_type = NetMsgType::ADDR;
make_flags = 0;
}
for (const CAddress &addr : pto->vAddrToSend) {
if (!pto->m_addr_known->contains(addr.GetKey())) {
pto->m_addr_known->insert(addr.GetKey());
vAddr.push_back(addr);
// receiver rejects addr messages larger than
// MAX_ADDR_TO_SEND
if (vAddr.size() >= MAX_ADDR_TO_SEND) {
m_connman.PushMessage(
pto, msgMaker.Make(make_flags, msg_type, vAddr));
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty()) {
m_connman.PushMessage(
pto, msgMaker.Make(make_flags, msg_type, vAddr));
}
// we only send the big addr message once
if (pto->vAddrToSend.capacity() > 40) {
pto->vAddrToSend.shrink_to_fit();
}
}
// Start block sync
if (pindexBestHeader == nullptr) {
pindexBestHeader = ::ChainActive().Tip();
}
// Download if this is a nice peer, or we have no nice peers and this
// one might do.
fFetch = state.fPreferredDownload ||
(nPreferredDownload == 0 && !pto->fClient &&
!pto->IsAddrFetchConn());
if (!state.fSyncStarted && !pto->fClient && !fImporting && !fReindex) {
// Only actively request headers from a single peer, unless we're
// close to today.
if ((nSyncStarted == 0 && fFetch) ||
pindexBestHeader->GetBlockTime() >
GetAdjustedTime() - 24 * 60 * 60) {
state.fSyncStarted = true;
state.nHeadersSyncTimeout =
count_microseconds(current_time) +
HEADERS_DOWNLOAD_TIMEOUT_BASE +
HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER *
(GetAdjustedTime() - pindexBestHeader->GetBlockTime()) /
(consensusParams.nPowTargetSpacing);
nSyncStarted++;
const CBlockIndex *pindexStart = pindexBestHeader;
/**
* If possible, start at the block preceding the currently best
* known header. This ensures that we always get a non-empty
* list of headers back as long as the peer is up-to-date. With
* a non-empty response, we can initialise the peer's known best
* block. This wouldn't be possible if we requested starting at
* pindexBestHeader and got back an empty response.
*/
if (pindexStart->pprev) {
pindexStart = pindexStart->pprev;
}
LogPrint(
BCLog::NET,
"initial getheaders (%d) to peer=%d (startheight:%d)\n",
pindexStart->nHeight, pto->GetId(), pto->nStartingHeight);
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexStart),
uint256()));
}
}
//
// Try sending block announcements via headers
//
{
// If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block
// hashes we're relaying, and our peer wants headers announcements,
// then find the first header not yet known to our peer but would
// connect, and send. If no header would connect, or if we have too
// many blocks, or if the peer doesn't want headers, just add all to
// the inv queue.
LOCK(pto->cs_inventory);
std::vector<CBlock> vHeaders;
bool fRevertToInv =
((!state.fPreferHeaders &&
(!state.fPreferHeaderAndIDs ||
pto->vBlockHashesToAnnounce.size() > 1)) ||
pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE);
// last header queued for delivery
const CBlockIndex *pBestIndex = nullptr;
// ensure pindexBestKnownBlock is up-to-date
ProcessBlockAvailability(pto->GetId());
if (!fRevertToInv) {
bool fFoundStartingHeader = false;
// Try to find first header that our peer doesn't have, and then
// send all headers past that one. If we come across an headers
// that aren't on ::ChainActive(), give up.
for (const BlockHash &hash : pto->vBlockHashesToAnnounce) {
const CBlockIndex *pindex = LookupBlockIndex(hash);
assert(pindex);
if (::ChainActive()[pindex->nHeight] != pindex) {
// Bail out if we reorged away from this block
fRevertToInv = true;
break;
}
if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
// This means that the list of blocks to announce don't
// connect to each other. This shouldn't really be
// possible to hit during regular operation (because
// reorgs should take us to a chain that has some block
// not on the prior chain, which should be caught by the
// prior check), but one way this could happen is by
// using invalidateblock / reconsiderblock repeatedly on
// the tip, causing it to be added multiple times to
// vBlockHashesToAnnounce. Robustly deal with this rare
// situation by reverting to an inv.
fRevertToInv = true;
break;
}
pBestIndex = pindex;
if (fFoundStartingHeader) {
// add this to the headers message
vHeaders.push_back(pindex->GetBlockHeader());
} else if (PeerHasHeader(&state, pindex)) {
// Keep looking for the first new block.
continue;
} else if (pindex->pprev == nullptr ||
PeerHasHeader(&state, pindex->pprev)) {
// Peer doesn't have this header but they do have the
// prior one. Start sending headers.
fFoundStartingHeader = true;
vHeaders.push_back(pindex->GetBlockHeader());
} else {
// Peer doesn't have this header or the prior one --
// nothing will connect, so bail out.
fRevertToInv = true;
break;
}
}
}
if (!fRevertToInv && !vHeaders.empty()) {
if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) {
// We only send up to 1 block as header-and-ids, as
// otherwise probably means we're doing an initial-ish-sync
// or they're slow.
LogPrint(BCLog::NET,
"%s sending header-and-ids %s to peer=%d\n",
__func__, vHeaders.front().GetHash().ToString(),
pto->GetId());
int nSendFlags = 0;
bool fGotBlockFromCache = false;
{
LOCK(cs_most_recent_block);
if (most_recent_block_hash ==
pBestIndex->GetBlockHash()) {
CBlockHeaderAndShortTxIDs cmpctblock(
*most_recent_block);
m_connman.PushMessage(
pto, msgMaker.Make(nSendFlags,
NetMsgType::CMPCTBLOCK,
cmpctblock));
fGotBlockFromCache = true;
}
}
if (!fGotBlockFromCache) {
CBlock block;
bool ret = ReadBlockFromDisk(block, pBestIndex,
consensusParams);
assert(ret);
CBlockHeaderAndShortTxIDs cmpctblock(block);
m_connman.PushMessage(
pto,
msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK,
cmpctblock));
}
state.pindexBestHeaderSent = pBestIndex;
} else if (state.fPreferHeaders) {
if (vHeaders.size() > 1) {
LogPrint(BCLog::NET,
"%s: %u headers, range (%s, %s), to peer=%d\n",
__func__, vHeaders.size(),
vHeaders.front().GetHash().ToString(),
vHeaders.back().GetHash().ToString(),
pto->GetId());
} else {
LogPrint(BCLog::NET,
"%s: sending header %s to peer=%d\n", __func__,
vHeaders.front().GetHash().ToString(),
pto->GetId());
}
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders));
state.pindexBestHeaderSent = pBestIndex;
} else {
fRevertToInv = true;
}
}
if (fRevertToInv) {
// If falling back to using an inv, just try to inv the tip. The
// last entry in vBlockHashesToAnnounce was our tip at some
// point in the past.
if (!pto->vBlockHashesToAnnounce.empty()) {
const BlockHash &hashToAnnounce =
pto->vBlockHashesToAnnounce.back();
const CBlockIndex *pindex =
LookupBlockIndex(hashToAnnounce);
assert(pindex);
// Warn if we're announcing a block that is not on the main
// chain. This should be very rare and could be optimized
// out. Just log for now.
if (::ChainActive()[pindex->nHeight] != pindex) {
LogPrint(
BCLog::NET,
"Announcing block %s not on main chain (tip=%s)\n",
hashToAnnounce.ToString(),
::ChainActive().Tip()->GetBlockHash().ToString());
}
// If the peer's chain has this block, don't inv it back.
if (!PeerHasHeader(&state, pindex)) {
pto->vInventoryBlockToSend.push_back(hashToAnnounce);
LogPrint(BCLog::NET,
"%s: sending inv peer=%d hash=%s\n", __func__,
pto->GetId(), hashToAnnounce.ToString());
}
}
}
pto->vBlockHashesToAnnounce.clear();
}
} // release cs_main
//
// Message: inventory
//
std::vector<CInv> vInv;
auto addInvAndMaybeFlush = [&](uint32_t type, const uint256 &hash) {
vInv.emplace_back(type, hash);
if (vInv.size() == MAX_INV_SZ) {
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::INV, std::move(vInv)));
vInv.clear();
}
};
{
LOCK2(cs_main, pto->cs_inventory);
vInv.reserve(std::max<size_t>(pto->vInventoryBlockToSend.size(),
INVENTORY_BROADCAST_MAX_PER_MB *
config.GetMaxBlockSize() / 1000000));
// Add blocks
for (const BlockHash &hash : pto->vInventoryBlockToSend) {
addInvAndMaybeFlush(MSG_BLOCK, hash);
}
pto->vInventoryBlockToSend.clear();
auto computeNextInvSendTime =
[&](std::chrono::microseconds &next) -> bool {
bool fSendTrickle = pto->HasPermission(PF_NOBAN);
if (next < current_time) {
fSendTrickle = true;
if (pto->IsInboundConn()) {
next = std::chrono::microseconds{
m_connman.PoissonNextSendInbound(
count_microseconds(current_time),
INVENTORY_BROADCAST_INTERVAL)};
} else {
// Skip delay for outbound peers, as there is less privacy
// concern for them.
next = current_time;
}
}
return fSendTrickle;
};
// Add proofs to inventory
if (pto->m_proof_relay != nullptr) {
LOCK(pto->m_proof_relay->cs_proof_inventory);
if (computeNextInvSendTime(pto->m_proof_relay->nextInvSend)) {
auto it = pto->m_proof_relay->setInventoryProofToSend.begin();
while (it !=
pto->m_proof_relay->setInventoryProofToSend.end()) {
const avalanche::ProofId proofid = *it;
it = pto->m_proof_relay->setInventoryProofToSend.erase(it);
if (pto->m_proof_relay->filterProofKnown.contains(
proofid)) {
continue;
}
pto->m_proof_relay->filterProofKnown.insert(proofid);
addInvAndMaybeFlush(MSG_AVA_PROOF, proofid);
State(pto->GetId())
->m_recently_announced_proofs.insert(proofid);
}
}
}
if (pto->m_tx_relay != nullptr) {
LOCK(pto->m_tx_relay->cs_tx_inventory);
// Check whether periodic sends should happen
const bool fSendTrickle =
computeNextInvSendTime(pto->m_tx_relay->nNextInvSend);
// Time to send but the peer has requested we not relay
// transactions.
if (fSendTrickle) {
LOCK(pto->m_tx_relay->cs_filter);
if (!pto->m_tx_relay->fRelayTxes) {
pto->m_tx_relay->setInventoryTxToSend.clear();
}
}
// Respond to BIP35 mempool requests
if (fSendTrickle && pto->m_tx_relay->fSendMempool) {
auto vtxinfo = m_mempool.infoAll();
pto->m_tx_relay->fSendMempool = false;
CFeeRate filterrate;
{
LOCK(pto->m_tx_relay->cs_feeFilter);
filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter);
}
LOCK(pto->m_tx_relay->cs_filter);
for (const auto &txinfo : vtxinfo) {
const TxId &txid = txinfo.tx->GetId();
pto->m_tx_relay->setInventoryTxToSend.erase(txid);
// Don't send transactions that peers will not put into
// their mempool
if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
continue;
}
if (pto->m_tx_relay->pfilter &&
!pto->m_tx_relay->pfilter->IsRelevantAndUpdate(
*txinfo.tx)) {
continue;
}
pto->m_tx_relay->filterInventoryKnown.insert(txid);
// Responses to MEMPOOL requests bypass the
// m_recently_announced_invs filter.
addInvAndMaybeFlush(MSG_TX, txid);
}
pto->m_tx_relay->m_last_mempool_req =
GetTime<std::chrono::seconds>();
}
// Determine transactions to relay
if (fSendTrickle) {
// Produce a vector with all candidates for sending
std::vector<std::set<TxId>::iterator> vInvTx;
vInvTx.reserve(pto->m_tx_relay->setInventoryTxToSend.size());
for (std::set<TxId>::iterator it =
pto->m_tx_relay->setInventoryTxToSend.begin();
it != pto->m_tx_relay->setInventoryTxToSend.end(); it++) {
vInvTx.push_back(it);
}
CFeeRate filterrate;
{
LOCK(pto->m_tx_relay->cs_feeFilter);
filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter);
}
// Topologically and fee-rate sort the inventory we send for
// privacy and priority reasons. A heap is used so that not
// all items need sorting if only a few are being sent.
CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool);
std::make_heap(vInvTx.begin(), vInvTx.end(),
compareInvMempoolOrder);
// No reason to drain out at many times the network's
// capacity, especially since we have many peers and some
// will draw much shorter delays.
unsigned int nRelayedTransactions = 0;
LOCK(pto->m_tx_relay->cs_filter);
while (!vInvTx.empty() &&
nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB *
config.GetMaxBlockSize() /
1000000) {
// Fetch the top element from the heap
std::pop_heap(vInvTx.begin(), vInvTx.end(),
compareInvMempoolOrder);
std::set<TxId>::iterator it = vInvTx.back();
vInvTx.pop_back();
const TxId txid = *it;
// Remove it from the to-be-sent set
pto->m_tx_relay->setInventoryTxToSend.erase(it);
// Check if not in the filter already
if (pto->m_tx_relay->filterInventoryKnown.contains(txid)) {
continue;
}
// Not in the mempool anymore? don't bother sending it.
auto txinfo = m_mempool.info(txid);
if (!txinfo.tx) {
continue;
}
// Peer told you to not send transactions at that
// feerate? Don't bother sending it.
if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
continue;
}
if (pto->m_tx_relay->pfilter &&
!pto->m_tx_relay->pfilter->IsRelevantAndUpdate(
*txinfo.tx)) {
continue;
}
// Send
State(pto->GetId())->m_recently_announced_invs.insert(txid);
addInvAndMaybeFlush(MSG_TX, txid);
nRelayedTransactions++;
{
// Expire old relay messages
while (!vRelayExpiration.empty() &&
vRelayExpiration.front().first <
count_microseconds(current_time)) {
mapRelay.erase(vRelayExpiration.front().second);
vRelayExpiration.pop_front();
}
auto ret = mapRelay.insert(
std::make_pair(txid, std::move(txinfo.tx)));
if (ret.second) {
vRelayExpiration.push_back(std::make_pair(
count_microseconds(current_time) +
std::chrono::microseconds{
RELAY_TX_CACHE_TIME}
.count(),
ret.first));
}
}
pto->m_tx_relay->filterInventoryKnown.insert(txid);
}
}
}
} // release cs_main, pto->cs_inventory
if (!vInv.empty()) {
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
}
{
LOCK(cs_main);
CNodeState &state = *State(pto->GetId());
// Detect whether we're stalling
current_time = GetTime<std::chrono::microseconds>();
if (state.nStallingSince &&
state.nStallingSince < count_microseconds(current_time) -
1000000 * BLOCK_STALLING_TIMEOUT) {
// Stalling only triggers when the block download window cannot
// move. During normal steady state, the download window should be
// much larger than the to-be-downloaded set of blocks, so
// disconnection should only happen during initial block download.
LogPrintf("Peer=%d is stalling block download, disconnecting\n",
pto->GetId());
pto->fDisconnect = true;
return true;
}
// In case there is a block that has been in flight from this peer for 2
// + 0.5 * N times the block interval (with N the number of peers from
// which we're downloading validated blocks), disconnect due to timeout.
// We compensate for other peers to prevent killing off peers due to our
// own downstream link being saturated. We only count validated
// in-flight blocks so peers can't advertise non-existing block hashes
// to unreasonably increase our timeout.
if (state.vBlocksInFlight.size() > 0) {
QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
int nOtherPeersWithValidatedDownloads =
nPeersWithValidatedDownloads -
(state.nBlocksInFlightValidHeaders > 0);
if (count_microseconds(current_time) >
state.nDownloadingSince +
consensusParams.nPowTargetSpacing *
(BLOCK_DOWNLOAD_TIMEOUT_BASE +
BLOCK_DOWNLOAD_TIMEOUT_PER_PEER *
nOtherPeersWithValidatedDownloads)) {
LogPrintf("Timeout downloading block %s from peer=%d, "
"disconnecting\n",
queuedBlock.hash.ToString(), pto->GetId());
pto->fDisconnect = true;
return true;
}
}
// Check for headers sync timeouts
if (state.fSyncStarted &&
state.nHeadersSyncTimeout < std::numeric_limits<int64_t>::max()) {
// Detect whether this is a stalling initial-headers-sync peer
if (pindexBestHeader->GetBlockTime() <=
GetAdjustedTime() - 24 * 60 * 60) {
if (count_microseconds(current_time) >
state.nHeadersSyncTimeout &&
nSyncStarted == 1 &&
(nPreferredDownload - state.fPreferredDownload >= 1)) {
// Disconnect a peer (without the noban permission) if it
// is our only sync peer, and we have others we could be
// using instead.
// Note: If all our peers are inbound, then we won't
// disconnect our sync peer for stalling; we have bigger
// problems if we can't get any outbound peers.
if (!pto->HasPermission(PF_NOBAN)) {
LogPrintf("Timeout downloading headers from peer=%d, "
"disconnecting\n",
pto->GetId());
pto->fDisconnect = true;
return true;
} else {
LogPrintf("Timeout downloading headers from noban "
"peer=%d, not disconnecting\n",
pto->GetId());
// Reset the headers sync state so that we have a chance
// to try downloading from a different peer. Note: this
// will also result in at least one more getheaders
// message to be sent to this peer (eventually).
state.fSyncStarted = false;
nSyncStarted--;
state.nHeadersSyncTimeout = 0;
}
}
} else {
// After we've caught up once, reset the timeout so we can't
// trigger disconnect later.
state.nHeadersSyncTimeout = std::numeric_limits<int64_t>::max();
}
}
// Check that outbound peers have reasonable chains GetTime() is used by
// this anti-DoS logic so we can test this using mocktime.
ConsiderEviction(*pto, GetTime());
} // release cs_main
std::vector<CInv> vGetData;
//
// Message: getdata (blocks)
//
{
LOCK(cs_main);
CNodeState &state = *State(pto->GetId());
if (!pto->fClient &&
((fFetch && !pto->m_limited_node) ||
!::ChainstateActive().IsInitialBlockDownload()) &&
state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
std::vector<const CBlockIndex *> vToDownload;
NodeId staller = -1;
FindNextBlocksToDownload(pto->GetId(),
MAX_BLOCKS_IN_TRANSIT_PER_PEER -
state.nBlocksInFlight,
vToDownload, staller, consensusParams);
for (const CBlockIndex *pindex : vToDownload) {
vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash()));
MarkBlockAsInFlight(config, m_mempool, pto->GetId(),
pindex->GetBlockHash(), consensusParams,
pindex);
LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n",
pindex->GetBlockHash().ToString(), pindex->nHeight,
pto->GetId());
}
if (state.nBlocksInFlight == 0 && staller != -1) {
if (State(staller)->nStallingSince == 0) {
State(staller)->nStallingSince =
count_microseconds(current_time);
LogPrint(BCLog::NET, "Stall started peer=%d\n", staller);
}
}
}
} // release cs_main
auto addGetDataAndMaybeFlush = [&](uint32_t type, const uint256 &hash) {
CInv inv(type, hash);
LogPrint(BCLog::NET, "Requesting %s from peer=%d\n", inv.ToString(),
pto->GetId());
vGetData.push_back(std::move(inv));
if (vGetData.size() >= MAX_GETDATA_SZ) {
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::GETDATA, std::move(vGetData)));
vGetData.clear();
}
};
//
// Message: getdata (proof)
//
{
LOCK(cs_proofrequest);
std::vector<std::pair<NodeId, avalanche::ProofId>> expired;
auto requestable =
m_proofrequest.GetRequestable(pto->GetId(), current_time, &expired);
for (const auto &entry : expired) {
LogPrint(BCLog::AVALANCHE,
"timeout of inflight proof %s from peer=%d\n",
entry.second.ToString(), entry.first);
}
for (const auto &proofid : requestable) {
if (!AlreadyHaveProof(proofid)) {
addGetDataAndMaybeFlush(MSG_AVA_PROOF, proofid);
m_proofrequest.RequestedData(
pto->GetId(), proofid,
current_time + PROOF_REQUEST_PARAMS.getdata_interval);
} else {
// We have already seen this proof, no need to download.
// This is just a belt-and-suspenders, as this should
// already be called whenever a transaction becomes
// AlreadyHaveProof().
m_proofrequest.ForgetInvId(proofid);
}
}
} // release cs_proofrequest
//
// Message: getdata (transactions)
//
{
LOCK(cs_main);
std::vector<std::pair<NodeId, TxId>> expired;
auto requestable =
m_txrequest.GetRequestable(pto->GetId(), current_time, &expired);
for (const auto &entry : expired) {
LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n",
entry.second.ToString(), entry.first);
}
for (const TxId &txid : requestable) {
if (!AlreadyHaveTx(txid, m_mempool)) {
addGetDataAndMaybeFlush(MSG_TX, txid);
m_txrequest.RequestedData(
pto->GetId(), txid,
current_time + TX_REQUEST_PARAMS.getdata_interval);
} else {
// We have already seen this transaction, no need to download.
// This is just a belt-and-suspenders, as this should already be
// called whenever a transaction becomes AlreadyHaveTx().
m_txrequest.ForgetInvId(txid);
}
}
if (!vGetData.empty()) {
m_connman.PushMessage(pto,
msgMaker.Make(NetMsgType::GETDATA, vGetData));
}
//
// Message: feefilter
//
// peers with the forcerelay permission should not filter txs to us
if (pto->m_tx_relay != nullptr &&
pto->GetCommonVersion() >= FEEFILTER_VERSION &&
gArgs.GetBoolArg("-feefilter", DEFAULT_FEEFILTER) &&
!pto->HasPermission(PF_FORCERELAY)) {
Amount currentFilter =
m_mempool
.GetMinFee(
gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) *
1000000)
.GetFeePerK();
static FeeFilterRounder g_filter_rounder{
CFeeRate{DEFAULT_MIN_RELAY_TX_FEE_PER_KB}};
if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) {
// Received tx-inv messages are discarded when the active
// chainstate is in IBD, so tell the peer to not send them.
currentFilter = MAX_MONEY;
} else {
static const Amount MAX_FILTER{
g_filter_rounder.round(MAX_MONEY)};
if (pto->m_tx_relay->lastSentFeeFilter == MAX_FILTER) {
// Send the current filter if we sent MAX_FILTER previously
// and made it out of IBD.
pto->m_tx_relay->nextSendTimeFeeFilter =
count_microseconds(current_time) - 1;
}
}
if (count_microseconds(current_time) >
pto->m_tx_relay->nextSendTimeFeeFilter) {
Amount filterToSend = g_filter_rounder.round(currentFilter);
filterToSend =
std::max(filterToSend, ::minRelayTxFee.GetFeePerK());
if (filterToSend != pto->m_tx_relay->lastSentFeeFilter) {
m_connman.PushMessage(
pto,
msgMaker.Make(NetMsgType::FEEFILTER, filterToSend));
pto->m_tx_relay->lastSentFeeFilter = filterToSend;
}
pto->m_tx_relay->nextSendTimeFeeFilter =
PoissonNextSend(count_microseconds(current_time),
AVG_FEEFILTER_BROADCAST_INTERVAL);
}
// If the fee filter has changed substantially and it's still more
// than MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then
// move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
else if (count_microseconds(current_time) +
MAX_FEEFILTER_CHANGE_DELAY * 1000000 <
pto->m_tx_relay->nextSendTimeFeeFilter &&
(currentFilter <
3 * pto->m_tx_relay->lastSentFeeFilter / 4 ||
currentFilter >
4 * pto->m_tx_relay->lastSentFeeFilter / 3)) {
pto->m_tx_relay->nextSendTimeFeeFilter =
count_microseconds(current_time) +
GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000;
}
}
} // release cs_main
return true;
}
class CNetProcessingCleanup {
public:
CNetProcessingCleanup() {}
~CNetProcessingCleanup() {
// orphan transactions
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
}
};
static CNetProcessingCleanup instance_of_cnetprocessingcleanup;

File Metadata

Mime Type
text/x-diff
Expires
Sun, Apr 27, 10:26 (1 d, 57 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5573248
Default Alt Text
(407 KB)

Event Timeline