Page Menu
Home
Phabricator
Search
Configure Global Search
Log In
Files
F14362748
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
263 KB
Subscribers
None
View Options
This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/src/addrdb.cpp b/src/addrdb.cpp
index a8f3caeaf..0c8b908da 100644
--- a/src/addrdb.cpp
+++ b/src/addrdb.cpp
@@ -1,148 +1,147 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <addrdb.h>
#include <addrman.h>
#include <chainparams.h>
#include <clientversion.h>
#include <fs.h>
#include <hash.h>
#include <random.h>
#include <streams.h>
#include <tinyformat.h>
#include <util/system.h>
namespace {
template <typename Stream, typename Data>
bool SerializeDB(const CChainParams &chainParams, Stream &stream,
const Data &data) {
// Write and commit header, data
try {
CHashWriter hasher(SER_DISK, CLIENT_VERSION);
stream << FLATDATA(chainParams.DiskMagic()) << data;
hasher << FLATDATA(chainParams.DiskMagic()) << data;
stream << hasher.GetHash();
} catch (const std::exception &e) {
return error("%s: Serialize or I/O error - %s", __func__, e.what());
}
return true;
}
template <typename Data>
bool SerializeFileDB(const CChainParams &chainParams, const std::string &prefix,
const fs::path &path, const Data &data) {
// Generate random temporary filename
unsigned short randv = 0;
GetRandBytes((uint8_t *)&randv, sizeof(randv));
std::string tmpfn = strprintf("%s.%04x", prefix, randv);
// open temp output file, and associate with CAutoFile
fs::path pathTmp = GetDataDir() / tmpfn;
FILE *file = fsbridge::fopen(pathTmp, "wb");
CAutoFile fileout(file, SER_DISK, CLIENT_VERSION);
if (fileout.IsNull()) {
return error("%s: Failed to open file %s", __func__, pathTmp.string());
}
// Serialize
if (!SerializeDB(chainParams, fileout, data)) {
return false;
}
if (!FileCommit(fileout.Get())) {
return error("%s: Failed to flush file %s", __func__, pathTmp.string());
}
fileout.fclose();
// replace existing file, if any, with new file
if (!RenameOver(pathTmp, path)) {
return error("%s: Rename-into-place failed", __func__);
}
return true;
}
template <typename Stream, typename Data>
bool DeserializeDB(const CChainParams &chainParams, Stream &stream, Data &data,
bool fCheckSum = true) {
try {
CHashVerifier<Stream> verifier(&stream);
// de-serialize file header (network specific magic number) and ..
uint8_t pchMsgTmp[4];
verifier >> FLATDATA(pchMsgTmp);
// ... verify the network matches ours
if (memcmp(pchMsgTmp, std::begin(chainParams.DiskMagic()),
sizeof(pchMsgTmp))) {
return error("%s: Invalid network magic number", __func__);
}
// de-serialize data
verifier >> data;
// verify checksum
if (fCheckSum) {
uint256 hashTmp;
stream >> hashTmp;
if (hashTmp != verifier.GetHash()) {
return error("%s: Checksum mismatch, data corrupted", __func__);
}
}
} catch (const std::exception &e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
return true;
}
template <typename Data>
bool DeserializeFileDB(const CChainParams &chainParams, const fs::path &path,
Data &data) {
// open input file, and associate with CAutoFile
FILE *file = fsbridge::fopen(path, "rb");
CAutoFile filein(file, SER_DISK, CLIENT_VERSION);
if (filein.IsNull()) {
return error("%s: Failed to open file %s", __func__, path.string());
}
return DeserializeDB(chainParams, filein, data);
}
} // namespace
-CBanDB::CBanDB(const CChainParams &chainParamsIn) : chainParams(chainParamsIn) {
- pathBanlist = GetDataDir() / "banlist.dat";
-}
+CBanDB::CBanDB(fs::path ban_list_path, const CChainParams &_chainParams)
+ : m_ban_list_path(std::move(ban_list_path)), chainParams(_chainParams) {}
bool CBanDB::Write(const banmap_t &banSet) {
- return SerializeFileDB(chainParams, "banlist", pathBanlist, banSet);
+ return SerializeFileDB(chainParams, "banlist", m_ban_list_path, banSet);
}
bool CBanDB::Read(banmap_t &banSet) {
- return DeserializeFileDB(chainParams, pathBanlist, banSet);
+ return DeserializeFileDB(chainParams, m_ban_list_path, banSet);
}
CAddrDB::CAddrDB(const CChainParams &chainParamsIn)
: chainParams(chainParamsIn) {
pathAddr = GetDataDir() / "peers.dat";
}
bool CAddrDB::Write(const CAddrMan &addr) {
return SerializeFileDB(chainParams, "peers", pathAddr, addr);
}
bool CAddrDB::Read(CAddrMan &addr) {
return DeserializeFileDB(chainParams, pathAddr, addr);
}
bool CAddrDB::Read(CAddrMan &addr, CDataStream &ssPeers) {
bool ret = DeserializeDB(chainParams, ssPeers, addr, false);
if (!ret) {
// Ensure addrman is left in a clean state
addr.Clear();
}
return ret;
}
diff --git a/src/addrdb.h b/src/addrdb.h
index a13c45490..98e935337 100644
--- a/src/addrdb.h
+++ b/src/addrdb.h
@@ -1,97 +1,97 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_ADDRDB_H
#define BITCOIN_ADDRDB_H
#include <fs.h>
#include <serialize.h>
#include <map>
#include <string>
class CSubNet;
class CAddrMan;
class CDataStream;
class CChainParams;
typedef enum BanReason {
BanReasonUnknown = 0,
BanReasonNodeMisbehaving = 1,
BanReasonManuallyAdded = 2
} BanReason;
class CBanEntry {
public:
static const int CURRENT_VERSION = 1;
int nVersion;
int64_t nCreateTime;
int64_t nBanUntil;
uint8_t banReason;
CBanEntry() { SetNull(); }
explicit CBanEntry(int64_t nCreateTimeIn) {
SetNull();
nCreateTime = nCreateTimeIn;
}
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream &s, Operation ser_action) {
READWRITE(this->nVersion);
READWRITE(nCreateTime);
READWRITE(nBanUntil);
READWRITE(banReason);
}
void SetNull() {
nVersion = CBanEntry::CURRENT_VERSION;
nCreateTime = 0;
nBanUntil = 0;
banReason = BanReasonUnknown;
}
std::string banReasonToString() const {
switch (banReason) {
case BanReasonNodeMisbehaving:
return "node misbehaving";
case BanReasonManuallyAdded:
return "manually added";
default:
return "unknown";
}
}
};
typedef std::map<CSubNet, CBanEntry> banmap_t;
/** Access to the (IP) address database (peers.dat) */
class CAddrDB {
private:
fs::path pathAddr;
const CChainParams &chainParams;
public:
CAddrDB(const CChainParams &chainParams);
bool Write(const CAddrMan &addr);
bool Read(CAddrMan &addr);
bool Read(CAddrMan &addr, CDataStream &ssPeers);
};
/** Access to the banlist database (banlist.dat) */
class CBanDB {
private:
- fs::path pathBanlist;
+ const fs::path m_ban_list_path;
const CChainParams &chainParams;
public:
- CBanDB(const CChainParams &chainParams);
+ CBanDB(fs::path ban_list_path, const CChainParams &_chainParams);
bool Write(const banmap_t &banSet);
bool Read(banmap_t &banSet);
};
#endif // BITCOIN_ADDRDB_H
diff --git a/src/init.cpp b/src/init.cpp
index 7f2c7b3d2..15022874d 100644
--- a/src/init.cpp
+++ b/src/init.cpp
@@ -1,2510 +1,2511 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <init.h>
#include <addrman.h>
#include <amount.h>
#include <chain.h>
#include <chainparams.h>
#include <checkpoints.h>
#include <compat/sanity.h>
#include <config.h>
#include <consensus/validation.h>
#include <flatfile.h>
#include <fs.h>
#include <httprpc.h>
#include <httpserver.h>
#include <index/txindex.h>
#include <key.h>
#include <miner.h>
#include <net.h>
#include <net_processing.h>
#include <netbase.h>
#include <policy/policy.h>
#include <rpc/blockchain.h>
#include <rpc/register.h>
#include <rpc/server.h>
#include <scheduler.h>
#include <script/scriptcache.h>
#include <script/sigcache.h>
#include <script/standard.h>
#include <timedata.h>
#include <torcontrol.h>
#include <txdb.h>
#include <txmempool.h>
#include <ui_interface.h>
#include <util/moneystr.h>
#include <util/system.h>
#include <validation.h>
#include <validationinterface.h>
#include <walletinitinterface.h>
#include <warnings.h>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/bind.hpp>
#include <boost/interprocess/sync/file_lock.hpp>
#include <boost/thread.hpp>
#if ENABLE_ZMQ
#include <zmq/zmqnotificationinterface.h>
#endif
#ifndef WIN32
#include <csignal>
#endif
#include <cstdint>
#include <cstdio>
#include <memory>
static const bool DEFAULT_PROXYRANDOMIZE = true;
static const bool DEFAULT_REST_ENABLE = false;
static const bool DEFAULT_STOPAFTERBLOCKIMPORT = false;
// Dump addresses to banlist.dat every 15 minutes (900s)
static constexpr int DUMP_BANS_INTERVAL = 60 * 15;
std::unique_ptr<CConnman> g_connman;
std::unique_ptr<PeerLogicValidation> peerLogic;
std::unique_ptr<BanMan> g_banman;
#if !(ENABLE_WALLET)
class DummyWalletInit : public WalletInitInterface {
public:
void AddWalletOptions() const override {}
bool ParameterInteraction() const override { return true; }
void RegisterRPC(CRPCTable &) const override {}
bool Verify(const CChainParams &chainParams) const override { return true; }
bool Open(const CChainParams &chainParams) const override {
LogPrintf("No wallet support compiled in!\n");
return true;
}
void Start(CScheduler &scheduler) const override {}
void Flush() const override {}
void Stop() const override {}
void Close() const override {}
};
const WalletInitInterface &g_wallet_init_interface = DummyWalletInit();
#endif
#if ENABLE_ZMQ
static CZMQNotificationInterface *pzmqNotificationInterface = nullptr;
#endif
#ifdef WIN32
// Win32 LevelDB doesn't use filedescriptors, and the ones used for accessing
// block files don't count towards the fd_set size limit anyway.
#define MIN_CORE_FILEDESCRIPTORS 0
#else
#define MIN_CORE_FILEDESCRIPTORS 150
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Shutdown
//
//
// Thread management and startup/shutdown:
//
// The network-processing threads are all part of a thread group created by
// AppInit() or the Qt main() function.
//
// A clean exit happens when StartShutdown() or the SIGTERM signal handler sets
// fRequestShutdown, which triggers the DetectShutdownThread(), which interrupts
// the main thread group. DetectShutdownThread() then exits, which causes
// AppInit() to continue (it .joins the shutdown thread). Shutdown() is then
// called to clean up database connections, and stop other threads that should
// only be stopped after the main network-processing threads have exited.
//
// Shutdown for Qt is very similar, only it uses a QTimer to detect
// fRequestShutdown getting set, and then does the normal Qt shutdown thing.
//
std::atomic<bool> fRequestShutdown(false);
void StartShutdown() {
fRequestShutdown = true;
}
bool ShutdownRequested() {
return fRequestShutdown;
}
/**
* This is a minimally invasive approach to shutdown on LevelDB read errors from
* the chainstate, while keeping user interface out of the common library, which
* is shared between bitcoind, and bitcoin-qt and non-server tools.
*/
class CCoinsViewErrorCatcher final : public CCoinsViewBacked {
public:
explicit CCoinsViewErrorCatcher(CCoinsView *view)
: CCoinsViewBacked(view) {}
bool GetCoin(const COutPoint &outpoint, Coin &coin) const override {
try {
return CCoinsViewBacked::GetCoin(outpoint, coin);
} catch (const std::runtime_error &e) {
uiInterface.ThreadSafeMessageBox(
_("Error reading from database, shutting down."), "",
CClientUIInterface::MSG_ERROR);
LogPrintf("Error reading from database: %s\n", e.what());
// Starting the shutdown sequence and returning false to the caller
// would be interpreted as 'entry not found' (as opposed to unable
// to read data), and could lead to invalid interpretation. Just
// exit immediately, as we can't continue anyway, and all writes
// should be atomic.
abort();
}
}
// Writes do not need similar protection, as failure to write is handled by
// the caller.
};
static std::unique_ptr<CCoinsViewErrorCatcher> pcoinscatcher;
static std::unique_ptr<ECCVerifyHandle> globalVerifyHandle;
static boost::thread_group threadGroup;
static CScheduler scheduler;
void Interrupt() {
InterruptHTTPServer();
InterruptHTTPRPC();
InterruptRPC();
InterruptREST();
InterruptTorControl();
InterruptMapPort();
if (g_connman) {
g_connman->Interrupt();
}
if (g_txindex) {
g_txindex->Interrupt();
}
}
void Shutdown() {
LogPrintf("%s: In progress...\n", __func__);
static CCriticalSection cs_Shutdown;
TRY_LOCK(cs_Shutdown, lockShutdown);
if (!lockShutdown) {
return;
}
/// Note: Shutdown() must be able to handle cases in which initialization
/// failed part of the way, for example if the data directory was found to
/// be locked. Be sure that anything that writes files or flushes caches
/// only does this if the respective module was initialized.
RenameThread("bitcoin-shutoff");
g_mempool.AddTransactionsUpdated(1);
StopHTTPRPC();
StopREST();
StopRPC();
StopHTTPServer();
g_wallet_init_interface.Flush();
StopMapPort();
// Because these depend on each-other, we make sure that neither can be
// using the other before destroying them.
if (peerLogic) {
UnregisterValidationInterface(peerLogic.get());
}
if (g_connman) {
g_connman->Stop();
}
if (g_txindex) {
g_txindex->Stop();
}
StopTorControl();
// After everything has been shut down, but before things get flushed, stop
// the CScheduler/checkqueue threadGroup
threadGroup.interrupt_all();
threadGroup.join_all();
// After the threads that potentially access these pointers have been
// stopped, destruct and reset all to nullptr.
peerLogic.reset();
g_connman.reset();
g_banman.reset();
g_txindex.reset();
if (g_is_mempool_loaded &&
gArgs.GetArg("-persistmempool", DEFAULT_PERSIST_MEMPOOL)) {
DumpMempool();
}
// FlushStateToDisk generates a ChainStateFlushed callback, which we should
// avoid missing
if (pcoinsTip != nullptr) {
FlushStateToDisk();
}
// After there are no more peers/RPC left to give us new data which may
// generate CValidationInterface callbacks, flush them...
GetMainSignals().FlushBackgroundCallbacks();
// Any future callbacks will be dropped. This should absolutely be safe - if
// missing a callback results in an unrecoverable situation, unclean
// shutdown would too. The only reason to do the above flushes is to let the
// wallet catch up with our current chain to avoid any strange pruning edge
// cases and make next startup faster by avoiding rescan.
{
LOCK(cs_main);
if (pcoinsTip != nullptr) {
FlushStateToDisk();
}
pcoinsTip.reset();
pcoinscatcher.reset();
pcoinsdbview.reset();
pblocktree.reset();
}
g_wallet_init_interface.Stop();
#if ENABLE_ZMQ
if (pzmqNotificationInterface) {
UnregisterValidationInterface(pzmqNotificationInterface);
delete pzmqNotificationInterface;
pzmqNotificationInterface = nullptr;
}
#endif
#ifndef WIN32
try {
fs::remove(GetPidFile());
} catch (const fs::filesystem_error &e) {
LogPrintf("%s: Unable to remove pidfile: %s\n", __func__, e.what());
}
#endif
UnregisterAllValidationInterfaces();
GetMainSignals().UnregisterBackgroundSignalScheduler();
GetMainSignals().UnregisterWithMempoolSignals(g_mempool);
g_wallet_init_interface.Close();
globalVerifyHandle.reset();
ECC_Stop();
LogPrintf("%s: done\n", __func__);
}
/**
* Signal handlers are very limited in what they are allowed to do.
* The execution context the handler is invoked in is not guaranteed,
* so we restrict handler operations to just touching variables:
*/
static void HandleSIGTERM(int) {
fRequestShutdown = true;
}
static void HandleSIGHUP(int) {
GetLogger().m_reopen_file = true;
}
#ifndef WIN32
static void registerSignalHandler(int signal, void (*handler)(int)) {
struct sigaction sa;
sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigaction(signal, &sa, NULL);
}
#endif
static void OnRPCStarted() {
uiInterface.NotifyBlockTip.connect(&RPCNotifyBlockChange);
}
static void OnRPCStopped() {
uiInterface.NotifyBlockTip.disconnect(&RPCNotifyBlockChange);
RPCNotifyBlockChange(false, nullptr);
g_best_block_cv.notify_all();
LogPrint(BCLog::RPC, "RPC stopped.\n");
}
void SetupServerArgs() {
const auto defaultBaseParams =
CreateBaseChainParams(CBaseChainParams::MAIN);
const auto testnetBaseParams =
CreateBaseChainParams(CBaseChainParams::TESTNET);
const auto defaultChainParams = CreateChainParams(CBaseChainParams::MAIN);
const auto testnetChainParams =
CreateChainParams(CBaseChainParams::TESTNET);
// Set all of the args and their help
// When adding new options to the categories, please keep and ensure
// alphabetical ordering. Do not translate _(...) -help-debug options, Many
// technical terms, and only a very small audience, so is unnecessary stress
// to translators.
gArgs.AddArg("-?", _("Print this help message and exit"), false,
OptionsCategory::OPTIONS);
gArgs.AddArg("-version", _("Print version and exit"), false,
OptionsCategory::OPTIONS);
gArgs.AddArg("-alertnotify=<cmd>",
_("Execute command when a relevant alert is received or we "
"see a really long fork (%s in cmd is replaced by message)"),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-assumevalid=<hex>",
strprintf(
_("If this block is in the chain assume that it and its ancestors "
"are valid and potentially skip their script verification (0 to "
"verify all, default: %s, testnet: %s)"),
defaultChainParams->GetConsensus().defaultAssumeValid.GetHex(),
testnetChainParams->GetConsensus().defaultAssumeValid.GetHex()),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-blocksdir=<dir>",
_("Specify directory to hold blocks subdirectory for *.dat "
"files (default: <datadir>)"),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-blocknotify=<cmd>",
_("Execute command when the best block changes (%s in cmd is "
"replaced by block hash)"),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-blockreconstructionextratxn=<n>",
strprintf(_("Extra transactions to keep in memory for compact block "
"reconstructions (default: %u)"),
DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-blocksonly",
strprintf(_("Whether to operate in a blocks only mode (default: %d)"),
DEFAULT_BLOCKSONLY),
true, OptionsCategory::OPTIONS);
gArgs.AddArg("-conf=<file>",
strprintf(_("Specify configuration file. Relative paths will "
"be prefixed by datadir location. (default: %s)"),
BITCOIN_CONF_FILENAME),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-datadir=<dir>", _("Specify data directory"), false,
OptionsCategory::OPTIONS);
gArgs.AddArg(
"-dbbatchsize",
strprintf("Maximum database write batch size in bytes (default: %u)",
nDefaultDbBatchSize),
true, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-dbcache=<n>",
strprintf(
_("Set database cache size in megabytes (%d to %d, default: %d)"),
nMinDbCache, nMaxDbCache, nDefaultDbCache),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-debuglogfile=<file>",
strprintf(
_("Specify location of debug log file. Relative paths will be "
"prefixed by a net-specific datadir location. (default: %s)"),
DEFAULT_DEBUGLOGFILE),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-feefilter",
strprintf("Tell other nodes to filter invs to us by "
"our mempool min fee (default: %d)",
DEFAULT_FEEFILTER),
true, OptionsCategory::OPTIONS);
gArgs.AddArg("-finalizationdelay=<n>",
strprintf("Set the minimum amount of time to wait between a "
"block header reception and the block finalization. "
"Unit is seconds (default: %d)",
DEFAULT_MIN_FINALIZATION_DELAY),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-includeconf=<file>",
_("Specify additional configuration file, relative to the -datadir "
"path (only useable from configuration file, not command line)"),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-maxreorgdepth=<n>",
strprintf("Configure at what depth blocks are considered final "
"(default: %d). Use -1 to disable.",
DEFAULT_MAX_REORG_DEPTH),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-loadblock=<file>",
_("Imports blocks from external blk000??.dat file on startup"),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-maxmempool=<n>",
strprintf(_("Keep the transaction memory pool "
"below <n> megabytes (default: %u)"),
DEFAULT_MAX_MEMPOOL_SIZE),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-maxorphantx=<n>",
strprintf(_("Keep at most <n> unconnectable "
"transactions in memory (default: %u)"),
DEFAULT_MAX_ORPHAN_TRANSACTIONS),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-mempoolexpiry=<n>",
strprintf(_("Do not keep transactions in the mempool "
"longer than <n> hours (default: %u)"),
DEFAULT_MEMPOOL_EXPIRY),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-minimumchainwork=<hex>",
strprintf(
"Minimum work assumed to exist on a valid chain in hex "
"(default: %s, testnet: %s)",
defaultChainParams->GetConsensus().nMinimumChainWork.GetHex(),
testnetChainParams->GetConsensus().nMinimumChainWork.GetHex()),
true, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-par=<n>",
strprintf(_("Set the number of script verification threads (%u to %d, "
"0 = auto, <0 = leave that many cores free, default: %d)"),
-GetNumCores(), MAX_SCRIPTCHECK_THREADS,
DEFAULT_SCRIPTCHECK_THREADS),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-persistmempool",
strprintf(_("Whether to save the mempool on shutdown "
"and load on restart (default: %u)"),
DEFAULT_PERSIST_MEMPOOL),
false, OptionsCategory::OPTIONS);
#ifndef WIN32
gArgs.AddArg(
"-pid=<file>",
strprintf(_("Specify pid file. Relative paths will be prefixed by a "
"net-specific datadir location. (default: %s)"),
BITCOIN_PID_FILENAME),
false, OptionsCategory::OPTIONS);
#endif
gArgs.AddArg(
"-prune=<n>",
strprintf(
_("Reduce storage requirements by enabling pruning (deleting) of "
"old blocks. This allows the pruneblockchain RPC to be called to "
"delete specific blocks, and enables automatic pruning of old "
"blocks if a target size in MiB is provided. This mode is "
"incompatible with -txindex and -rescan. "
"Warning: Reverting this setting requires re-downloading the "
"entire blockchain. "
"(default: 0 = disable pruning blocks, 1 = allow manual pruning "
"via RPC, >%u = automatically prune block files to stay under "
"the specified target size in MiB)"),
MIN_DISK_SPACE_FOR_BLOCK_FILES / 1024 / 1024),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-reindex-chainstate",
_("Rebuild chain state from the currently indexed blocks"),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-reindex",
_("Rebuild chain state and block index from the blk*.dat "
"files on disk"),
false, OptionsCategory::OPTIONS);
#ifndef WIN32
gArgs.AddArg(
"-sysperms",
_("Create new files with system default permissions, instead of umask "
"077 (only effective with disabled wallet functionality)"),
false, OptionsCategory::OPTIONS);
#endif
gArgs.AddArg("-txindex",
strprintf(_("Maintain a full transaction index, used by the "
"getrawtransaction rpc call (default: %d)"),
DEFAULT_TXINDEX),
false, OptionsCategory::OPTIONS);
gArgs.AddArg("-usecashaddr",
_("Use Cash Address for destination encoding instead "
"of base58 (activate by default on Jan, 14)"),
false, OptionsCategory::OPTIONS);
gArgs.AddArg(
"-addnode=<ip>",
_("Add a node to connect to and attempt to keep the connection open "
"(see the `addnode` RPC command help for more info)"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-banscore=<n>",
strprintf(
_("Threshold for disconnecting misbehaving peers (default: %u)"),
DEFAULT_BANSCORE_THRESHOLD),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-bantime=<n>",
strprintf(_("Number of seconds to keep misbehaving peers from "
"reconnecting (default: %u)"),
DEFAULT_MISBEHAVING_BANTIME),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-bind=<addr>",
_("Bind to given address and always listen on it. Use "
"[host]:port notation for IPv6"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-connect=<ip>",
_("Connect only to the specified node(s); -connect=0 disables "
"automatic connections (the rules for this peer are the "
"same as for -addnode)"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-discover",
_("Discover own IP addresses (default: 1 when listening and "
"no -externalip or -proxy)"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-dns",
_("Allow DNS lookups for -addnode, -seednode and -connect") +
" " + strprintf(_("(default: %d)"), DEFAULT_NAME_LOOKUP),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-dnsseed",
_("Query for peer addresses via DNS lookup, if low on "
"addresses (default: 1 unless -connect used)"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-enablebip61",
strprintf(_("Send reject messages per BIP61 (default: %u)"),
DEFAULT_ENABLE_BIP61),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-externalip=<ip>", _("Specify your own public address"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-forcednsseed",
strprintf(
_("Always query for peer addresses via DNS lookup (default: %d)"),
DEFAULT_FORCEDNSSEED),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-listen",
_("Accept connections from outside (default: 1 if no -proxy "
"or -connect)"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-listenonion",
strprintf(_("Automatically create Tor hidden service (default: %d)"),
DEFAULT_LISTEN_ONION),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-maxconnections=<n>",
strprintf(_("Maintain at most <n> connections to peers (default: %u)"),
DEFAULT_MAX_PEER_CONNECTIONS),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-maxreceivebuffer=<n>",
strprintf(_("Maximum per-connection receive buffer, <n>*1000 "
"bytes (default: %u)"),
DEFAULT_MAXRECEIVEBUFFER),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-maxsendbuffer=<n>",
strprintf(_("Maximum per-connection send buffer, <n>*1000 "
"bytes (default: %u)"),
DEFAULT_MAXSENDBUFFER),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-maxtimeadjustment",
strprintf(_("Maximum allowed median peer time offset adjustment. Local "
"perspective of time may be influenced by peers forward or "
"backward by this amount. (default: %u seconds)"),
DEFAULT_MAX_TIME_ADJUSTMENT),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-onion=<ip:port>",
strprintf(_("Use separate SOCKS5 proxy to reach peers via Tor "
"hidden services (default: %s)"),
"-proxy"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-onlynet=<net>",
_("Only connect to nodes in network <net> (ipv4, ipv6 or onion)"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-peerbloomfilters",
strprintf(_("Support filtering of blocks and transaction with "
"bloom filters (default: %d)"),
DEFAULT_PEERBLOOMFILTERS),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-permitbaremultisig",
strprintf(_("Relay non-P2SH multisig (default: %d)"),
DEFAULT_PERMIT_BAREMULTISIG),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-port=<port>",
strprintf(
_("Listen for connections on <port> (default: %u or testnet: %u)"),
defaultChainParams->GetDefaultPort(),
testnetChainParams->GetDefaultPort()),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-proxy=<ip:port>", _("Connect through SOCKS5 proxy"), false,
OptionsCategory::CONNECTION);
gArgs.AddArg(
"-proxyrandomize",
strprintf(_("Randomize credentials for every proxy connection. This "
"enables Tor stream isolation (default: %d)"),
DEFAULT_PROXYRANDOMIZE),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-seednode=<ip>",
_("Connect to a node to retrieve peer addresses, and disconnect"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-timeout=<n>",
strprintf(_("Specify connection timeout in milliseconds "
"(minimum: 1, default: %d)"),
DEFAULT_CONNECT_TIMEOUT),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-torcontrol=<ip>:<port>",
strprintf(_("Tor control port to use if onion listening "
"enabled (default: %s)"),
DEFAULT_TOR_CONTROL),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-torpassword=<pass>",
_("Tor control port password (default: empty)"), false,
OptionsCategory::CONNECTION);
#ifdef USE_UPNP
#if USE_UPNP
gArgs.AddArg("-upnp",
_("Use UPnP to map the listening port (default: 1 when "
"listening and no -proxy)"),
false, OptionsCategory::CONNECTION);
#else
gArgs.AddArg(
"-upnp",
strprintf(_("Use UPnP to map the listening port (default: %u)"), 0),
false, OptionsCategory::CONNECTION);
#endif
#endif
gArgs.AddArg("-whitebind=<addr>",
_("Bind to given address and whitelist peers connecting to "
"it. Use [host]:port notation for IPv6"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg("-whitelist=<IP address or network>",
_("Whitelist peers connecting from the given IP address (e.g. "
"1.2.3.4) or CIDR notated network (e.g. 1.2.3.0/24). Can be "
"specified multiple times.") +
" " +
_("Whitelisted peers cannot be DoS banned and their "
"transactions are always relayed, even if they are "
"already in the mempool, useful e.g. for a gateway"),
false, OptionsCategory::CONNECTION);
gArgs.AddArg(
"-maxuploadtarget=<n>",
strprintf(_("Tries to keep outbound traffic under the given target (in "
"MiB per 24h), 0 = no limit (default: %d)"),
DEFAULT_MAX_UPLOAD_TARGET),
false, OptionsCategory::CONNECTION);
g_wallet_init_interface.AddWalletOptions();
#if ENABLE_ZMQ
gArgs.AddArg("-zmqpubhashblock=<address>",
_("Enable publish hash block in <address>"), false,
OptionsCategory::ZMQ);
gArgs.AddArg("-zmqpubhashtx=<address>",
_("Enable publish hash transaction in <address>"), false,
OptionsCategory::ZMQ);
gArgs.AddArg("-zmqpubrawblock=<address>",
_("Enable publish raw block in <address>"), false,
OptionsCategory::ZMQ);
gArgs.AddArg("-zmqpubrawtx=<address>",
_("Enable publish raw transaction in <address>"), false,
OptionsCategory::ZMQ);
#endif
gArgs.AddArg(
"-checkblocks=<n>",
strprintf(
_("How many blocks to check at startup (default: %u, 0 = all)"),
DEFAULT_CHECKBLOCKS),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-checklevel=<n>",
strprintf(_("How thorough the block verification of "
"-checkblocks is (0-4, default: %u)"),
DEFAULT_CHECKLEVEL),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-checkblockindex",
strprintf("Do a full consistency check for mapBlockIndex, "
"setBlockIndexCandidates, chainActive and mapBlocksUnlinked "
"occasionally. (default: %u)",
defaultChainParams->DefaultConsistencyChecks()),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-checkmempool=<n>",
strprintf("Run checks every <n> transactions (default: %u)",
defaultChainParams->DefaultConsistencyChecks()),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-checkpoints",
strprintf("Only accept block chain matching built-in "
"checkpoints (default: %d)",
DEFAULT_CHECKPOINTS_ENABLED),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-deprecatedrpc=<method>",
"Allows deprecated RPC method(s) to be used", true,
OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-dropmessagestest=<n>",
"Randomly drop 1 of every <n> network messages", true,
OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-stopafterblockimport",
strprintf("Stop running after importing blocks from disk (default: %d)",
DEFAULT_STOPAFTERBLOCKIMPORT),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-stopatheight",
strprintf("Stop running after reaching the given height in "
"the main chain (default: %u)",
DEFAULT_STOPATHEIGHT),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-limitancestorcount=<n>",
strprintf("Do not accept transactions if number of in-mempool "
"ancestors is <n> or more (default: %u)",
DEFAULT_ANCESTOR_LIMIT),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-limitancestorsize=<n>",
strprintf("Do not accept transactions whose size with all in-mempool "
"ancestors exceeds <n> kilobytes (default: %u)",
DEFAULT_ANCESTOR_SIZE_LIMIT),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-limitdescendantcount=<n>",
strprintf("Do not accept transactions if any ancestor would have <n> "
"or more in-mempool descendants (default: %u)",
DEFAULT_DESCENDANT_LIMIT),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-limitdescendantsize=<n>",
strprintf("Do not accept transactions if any ancestor would have more "
"than <n> kilobytes of in-mempool descendants (default: %u).",
DEFAULT_DESCENDANT_SIZE_LIMIT),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-addrmantest", "Allows to test address relay on localhost",
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-debug=<category>",
strprintf(_("Output debugging information (default: %u, "
"supplying <category> is optional)"),
0) +
". " +
_("If <category> is not supplied or if <category> = 1, "
"output all debugging information.") +
_("<category> can be:") + " " + ListLogCategories() + ".",
false, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-debugexclude=<category>",
strprintf(_("Exclude debugging information for a category. Can be used "
"in conjunction with -debug=1 to output debug logs for all "
"categories except one or more specified categories.")),
false, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-help-debug",
_("Show all debugging options (usage: --help -help-debug)"),
false, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-logips",
strprintf(_("Include IP addresses in debug output (default: %d)"),
DEFAULT_LOGIPS),
false, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-logtimestamps",
strprintf(_("Prepend debug output with timestamp (default: %d)"),
DEFAULT_LOGTIMESTAMPS),
false, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-logtimemicros",
strprintf("Add microsecond precision to debug timestamps (default: %d)",
DEFAULT_LOGTIMEMICROS),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-mocktime=<n>",
"Replace actual time with <n> seconds since epoch (default: 0)", true,
OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-maxsigcachesize=<n>",
strprintf("Limit size of signature cache to <n> MiB (default: %u)",
DEFAULT_MAX_SIG_CACHE_SIZE),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-maxscriptcachesize=<n>",
strprintf("Limit size of script cache to <n> MiB (default: %u)",
DEFAULT_MAX_SCRIPT_CACHE_SIZE),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-maxtipage=<n>",
strprintf("Maximum tip age in seconds to consider node in "
"initial block download (default: %u)",
DEFAULT_MAX_TIP_AGE),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg(
"-printtoconsole",
_("Send trace/debug info to console instead of debug.log file"), false,
OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-printpriority",
strprintf("Log transaction priority and fee per kB when "
"mining blocks (default: %d)",
DEFAULT_PRINTPRIORITY),
true, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-shrinkdebugfile",
_("Shrink debug.log file on client startup (default: 1 when "
"no -debug)"),
false, OptionsCategory::DEBUG_TEST);
gArgs.AddArg("-uacomment=<cmt>",
_("Append comment to the user agent string"), false,
OptionsCategory::DEBUG_TEST);
SetupChainParamsBaseOptions();
gArgs.AddArg(
"-acceptnonstdtxn",
strprintf(
"Relay and mine \"non-standard\" transactions (%sdefault: %u)",
"testnet/regtest only; ", defaultChainParams->RequireStandard()),
true, OptionsCategory::NODE_RELAY);
gArgs.AddArg("-excessiveblocksize=<n>",
strprintf(_("Do not accept blocks larger than this limit, in "
"bytes (default: %d)"),
DEFAULT_MAX_BLOCK_SIZE),
true, OptionsCategory::NODE_RELAY);
gArgs.AddArg(
"-dustrelayfee=<amt>",
strprintf("Fee rate (in %s/kB) used to defined dust, the value of an "
"output such that it will cost about 1/3 of its value in "
"fees at this fee rate to spend it. (default: %s)",
CURRENCY_UNIT, FormatMoney(DUST_RELAY_TX_FEE)),
true, OptionsCategory::NODE_RELAY);
gArgs.AddArg("-limitfreerelay=<n>",
strprintf("Continuously rate-limit free transactions to "
"<n>*1000 bytes per minute (default: %u)",
DEFAULT_LIMITFREERELAY),
true, OptionsCategory::NODE_RELAY);
gArgs.AddArg("-relaypriority",
strprintf("Require high priority for relaying free or low-fee "
"transactions (default: %d)",
DEFAULT_RELAYPRIORITY),
true, OptionsCategory::NODE_RELAY);
gArgs.AddArg("-bytespersigop",
strprintf(_("Equivalent bytes per sigop in transactions for "
"relay and mining (default: %u)"),
DEFAULT_BYTES_PER_SIGOP),
false, OptionsCategory::NODE_RELAY);
gArgs.AddArg(
"-datacarrier",
strprintf(_("Relay and mine data carrier transactions (default: %d)"),
DEFAULT_ACCEPT_DATACARRIER),
false, OptionsCategory::NODE_RELAY);
gArgs.AddArg("-datacarriersize",
strprintf(_("Maximum size of data in data carrier "
"transactions we relay and mine (default: %u)"),
MAX_OP_RETURN_RELAY),
false, OptionsCategory::NODE_RELAY);
gArgs.AddArg(
"-minrelaytxfee=<amt>",
strprintf(
_("Fees (in %s/kB) smaller than this are considered zero fee for "
"relaying, mining and transaction creation (default: %s)"),
CURRENCY_UNIT, FormatMoney(DEFAULT_MIN_RELAY_TX_FEE_PER_KB)),
false, OptionsCategory::NODE_RELAY);
gArgs.AddArg(
"-whitelistrelay",
strprintf(_("Accept relayed transactions received from whitelisted "
"peers even when not relaying transactions (default: %d)"),
DEFAULT_WHITELISTRELAY),
false, OptionsCategory::NODE_RELAY);
gArgs.AddArg(
"-whitelistforcerelay",
strprintf(_("Force relay of transactions from whitelisted peers even "
"if they violate local relay policy (default: %d)"),
DEFAULT_WHITELISTFORCERELAY),
false, OptionsCategory::NODE_RELAY);
// Not sure this really belongs here, but it will do for now.
// FIXME: This doesn't work anyways.
gArgs.AddArg("-excessutxocharge=<amt>",
strprintf(_("Fees (in %s/kB) to charge per utxo created for "
"relaying, and mining (default: %s)"),
CURRENCY_UNIT, FormatMoney(DEFAULT_UTXO_FEE)),
true, OptionsCategory::NODE_RELAY);
gArgs.AddArg("-blockmaxsize=<n>",
strprintf(_("Set maximum block size in bytes (default: %d)"),
DEFAULT_MAX_GENERATED_BLOCK_SIZE),
false, OptionsCategory::BLOCK_CREATION);
gArgs.AddArg(
"-blockprioritypercentage=<n>",
strprintf(_("Set maximum percentage of a block reserved to "
"high-priority/low-fee transactions (default: %d)"),
DEFAULT_BLOCK_PRIORITY_PERCENTAGE),
false, OptionsCategory::BLOCK_CREATION);
gArgs.AddArg(
"-blockmintxfee=<amt>",
strprintf(_("Set lowest fee rate (in %s/kB) for transactions to be "
"included in block creation. (default: %s)"),
CURRENCY_UNIT, FormatMoney(DEFAULT_BLOCK_MIN_TX_FEE_PER_KB)),
false, OptionsCategory::BLOCK_CREATION);
gArgs.AddArg("-blockversion=<n>",
"Override block version to test forking scenarios", true,
OptionsCategory::BLOCK_CREATION);
gArgs.AddArg("-server", _("Accept command line and JSON-RPC commands"),
false, OptionsCategory::RPC);
gArgs.AddArg("-rest",
strprintf(_("Accept public REST requests (default: %d)"),
DEFAULT_REST_ENABLE),
false, OptionsCategory::RPC);
gArgs.AddArg(
"-rpcbind=<addr>[:port]",
_("Bind to given address to listen for JSON-RPC connections. This "
"option is ignored unless -rpcallowip is also passed. Port is "
"optional and overrides -rpcport. Use [host]:port notation for IPv6. "
"This option can be specified multiple times (default: 127.0.0.1 and "
"::1 i.e., localhost, or if -rpcallowip has been specified, 0.0.0.0 "
"and :: i.e., all addresses)"),
false, OptionsCategory::RPC);
gArgs.AddArg(
"-rpccookiefile=<loc>",
_("Location of the auth cookie. Relative paths will be prefixed by a "
"net-specific datadir location. (default: data dir)"),
false, OptionsCategory::RPC);
gArgs.AddArg("-rpcuser=<user>", _("Username for JSON-RPC connections"),
false, OptionsCategory::RPC);
gArgs.AddArg("-rpcpassword=<pw>", _("Password for JSON-RPC connections"),
false, OptionsCategory::RPC);
gArgs.AddArg(
"-rpcauth=<userpw>",
_("Username and hashed password for JSON-RPC connections. The field "
"<userpw> comes in the format: <USERNAME>:<SALT>$<HASH>. A canonical "
"python script is included in share/rpcuser. The client then "
"connects normally using the "
"rpcuser=<USERNAME>/rpcpassword=<PASSWORD> pair of arguments. This "
"option can be specified multiple times"),
false, OptionsCategory::RPC);
gArgs.AddArg(
"-rpcport=<port>",
strprintf(_("Listen for JSON-RPC connections on <port> (default: %u or "
"testnet: %u)"),
defaultBaseParams->RPCPort(), testnetBaseParams->RPCPort()),
false, OptionsCategory::RPC);
gArgs.AddArg("-rpcallowip=<ip>",
_("Allow JSON-RPC connections from specified source. Valid "
"for <ip> are a single IP (e.g. 1.2.3.4), a network/netmask "
"(e.g. 1.2.3.4/255.255.255.0) or a network/CIDR (e.g. "
"1.2.3.4/24). This option can be specified multiple times"),
false, OptionsCategory::RPC);
gArgs.AddArg(
"-rpcthreads=<n>",
strprintf(
_("Set the number of threads to service RPC calls (default: %d)"),
DEFAULT_HTTP_THREADS),
false, OptionsCategory::RPC);
gArgs.AddArg(
"-rpccorsdomain=value",
"Domain from which to accept cross origin requests (browser enforced)",
false, OptionsCategory::RPC);
gArgs.AddArg("-rpcworkqueue=<n>",
strprintf("Set the depth of the work queue to service RPC "
"calls (default: %d)",
DEFAULT_HTTP_WORKQUEUE),
true, OptionsCategory::RPC);
gArgs.AddArg("-rpcservertimeout=<n>",
strprintf("Timeout during HTTP requests (default: %d)",
DEFAULT_HTTP_SERVER_TIMEOUT),
true, OptionsCategory::RPC);
// Hidden options
gArgs.AddArg("-rpcssl", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-benchmark", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-h", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-help", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-socks", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-tor", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-debugnet", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-whitelistalwaysrelay", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-blockminsize", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-dbcrashratio", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-forcecompactdb", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-usehd", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-parkdeepreorg", "", false, OptionsCategory::HIDDEN);
gArgs.AddArg("-replayprotectionactivationtime", "", false,
OptionsCategory::HIDDEN);
// TODO remove after the Nov 2019 upgrade
gArgs.AddArg("-gravitonactivationtime", "", false, OptionsCategory::HIDDEN);
}
std::string LicenseInfo() {
const std::string URL_SOURCE_CODE =
"<https://github.com/Bitcoin-ABC/bitcoin-abc>";
const std::string URL_WEBSITE = "<https://www.bitcoinabc.org>";
return CopyrightHolders(
strprintf(_("Copyright (C) %i-%i"), 2009, COPYRIGHT_YEAR) +
" ") +
"\n" + "\n" +
strprintf(_("Please contribute if you find %s useful. "
"Visit %s for further information about the software."),
PACKAGE_NAME, URL_WEBSITE) +
"\n" +
strprintf(_("The source code is available from %s."),
URL_SOURCE_CODE) +
"\n" + "\n" + _("This is experimental software.") + "\n" +
strprintf(_("Distributed under the MIT software license, see the "
"accompanying file %s or %s"),
"COPYING", "<https://opensource.org/licenses/MIT>") +
"\n" + "\n" +
strprintf(_("This product includes software developed by the "
"OpenSSL Project for use in the OpenSSL Toolkit %s and "
"cryptographic software written by Eric Young and UPnP "
"software written by Thomas Bernard."),
"<https://www.openssl.org>") +
"\n";
}
static void BlockNotifyCallback(bool initialSync,
const CBlockIndex *pBlockIndex) {
if (initialSync || !pBlockIndex) {
return;
}
std::string strCmd = gArgs.GetArg("-blocknotify", "");
if (!strCmd.empty()) {
boost::replace_all(strCmd, "%s", pBlockIndex->GetBlockHash().GetHex());
std::thread t(runCommand, strCmd);
// thread runs free
t.detach();
}
}
static bool fHaveGenesis = false;
static Mutex g_genesis_wait_mutex;
static std::condition_variable g_genesis_wait_cv;
static void BlockNotifyGenesisWait(bool, const CBlockIndex *pBlockIndex) {
if (pBlockIndex != nullptr) {
{
LOCK(g_genesis_wait_mutex);
fHaveGenesis = true;
}
g_genesis_wait_cv.notify_all();
}
}
struct CImportingNow {
CImportingNow() {
assert(fImporting == false);
fImporting = true;
}
~CImportingNow() {
assert(fImporting == true);
fImporting = false;
}
};
// If we're using -prune with -reindex, then delete block files that will be
// ignored by the reindex. Since reindexing works by starting at block file 0
// and looping until a blockfile is missing, do the same here to delete any
// later block files after a gap. Also delete all rev files since they'll be
// rewritten by the reindex anyway. This ensures that vinfoBlockFile is in sync
// with what's actually on disk by the time we start downloading, so that
// pruning works correctly.
static void CleanupBlockRevFiles() {
std::map<std::string, fs::path> mapBlockFiles;
// Glob all blk?????.dat and rev?????.dat files from the blocks directory.
// Remove the rev files immediately and insert the blk file paths into an
// ordered map keyed by block file index.
LogPrintf("Removing unusable blk?????.dat and rev?????.dat files for "
"-reindex with -prune\n");
fs::path blocksdir = GetBlocksDir();
for (fs::directory_iterator it(blocksdir); it != fs::directory_iterator();
it++) {
if (fs::is_regular_file(*it) &&
it->path().filename().string().length() == 12 &&
it->path().filename().string().substr(8, 4) == ".dat") {
if (it->path().filename().string().substr(0, 3) == "blk") {
mapBlockFiles[it->path().filename().string().substr(3, 5)] =
it->path();
} else if (it->path().filename().string().substr(0, 3) == "rev") {
remove(it->path());
}
}
}
// Remove all block files that aren't part of a contiguous set starting at
// zero by walking the ordered map (keys are block file indices) by keeping
// a separate counter. Once we hit a gap (or if 0 doesn't exist) start
// removing block files.
int nContigCounter = 0;
for (const std::pair<const std::string, fs::path> &item : mapBlockFiles) {
if (atoi(item.first) == nContigCounter) {
nContigCounter++;
continue;
}
remove(item.second);
}
}
static void ThreadImport(const Config &config,
std::vector<fs::path> vImportFiles) {
RenameThread("bitcoin-loadblk");
ScheduleBatchPriority();
{
CImportingNow imp;
// -reindex
if (fReindex) {
int nFile = 0;
while (true) {
FlatFilePos pos(nFile, 0);
if (!fs::exists(GetBlockPosFilename(pos))) {
// No block files left to reindex
break;
}
FILE *file = OpenBlockFile(pos, true);
if (!file) {
// This error is logged in OpenBlockFile
break;
}
LogPrintf("Reindexing block file blk%05u.dat...\n",
(unsigned int)nFile);
LoadExternalBlockFile(config, file, &pos);
nFile++;
}
pblocktree->WriteReindexing(false);
fReindex = false;
LogPrintf("Reindexing finished\n");
// To avoid ending up in a situation without genesis block, re-try
// initializing (no-op if reindexing worked):
LoadGenesisBlock(config.GetChainParams());
}
// hardcoded $DATADIR/bootstrap.dat
fs::path pathBootstrap = GetDataDir() / "bootstrap.dat";
if (fs::exists(pathBootstrap)) {
FILE *file = fsbridge::fopen(pathBootstrap, "rb");
if (file) {
fs::path pathBootstrapOld = GetDataDir() / "bootstrap.dat.old";
LogPrintf("Importing bootstrap.dat...\n");
LoadExternalBlockFile(config, file);
RenameOver(pathBootstrap, pathBootstrapOld);
} else {
LogPrintf("Warning: Could not open bootstrap file %s\n",
pathBootstrap.string());
}
}
// -loadblock=
for (const fs::path &path : vImportFiles) {
FILE *file = fsbridge::fopen(path, "rb");
if (file) {
LogPrintf("Importing blocks file %s...\n", path.string());
LoadExternalBlockFile(config, file);
} else {
LogPrintf("Warning: Could not open blocks file %s\n",
path.string());
}
}
// scan for better chains in the block chain database, that are not yet
// connected in the active best chain
CValidationState state;
if (!ActivateBestChain(config, state)) {
LogPrintf("Failed to connect best block (%s)\n",
FormatStateMessage(state));
StartShutdown();
return;
}
if (gArgs.GetBoolArg("-stopafterblockimport",
DEFAULT_STOPAFTERBLOCKIMPORT)) {
LogPrintf("Stopping after block import\n");
StartShutdown();
return;
}
} // End scope of CImportingNow
if (gArgs.GetArg("-persistmempool", DEFAULT_PERSIST_MEMPOOL)) {
LoadMempool(config);
}
g_is_mempool_loaded = !fRequestShutdown;
}
/** Sanity checks
* Ensure that Bitcoin is running in a usable environment with all
* necessary library support.
*/
static bool InitSanityCheck() {
if (!ECC_InitSanityCheck()) {
InitError(
"Elliptic curve cryptography sanity check failure. Aborting.");
return false;
}
if (!glibc_sanity_test() || !glibcxx_sanity_test()) {
return false;
}
if (!Random_SanityCheck()) {
InitError("OS cryptographic RNG sanity check failure. Aborting.");
return false;
}
return true;
}
static bool AppInitServers(Config &config,
HTTPRPCRequestProcessor &httpRPCRequestProcessor) {
RPCServerSignals::OnStarted(&OnRPCStarted);
RPCServerSignals::OnStopped(&OnRPCStopped);
if (!InitHTTPServer(config)) {
return false;
}
if (!StartRPC()) {
return false;
}
if (!StartHTTPRPC(config, httpRPCRequestProcessor)) {
return false;
}
if (gArgs.GetBoolArg("-rest", DEFAULT_REST_ENABLE) && !StartREST()) {
return false;
}
if (!StartHTTPServer()) {
return false;
}
return true;
}
// Parameter interaction based on rules
void InitParameterInteraction() {
// when specifying an explicit binding address, you want to listen on it
// even when -connect or -proxy is specified.
if (gArgs.IsArgSet("-bind")) {
if (gArgs.SoftSetBoolArg("-listen", true)) {
LogPrintf(
"%s: parameter interaction: -bind set -> setting -listen=1\n",
__func__);
}
}
if (gArgs.IsArgSet("-whitebind")) {
if (gArgs.SoftSetBoolArg("-listen", true)) {
LogPrintf("%s: parameter interaction: -whitebind set -> setting "
"-listen=1\n",
__func__);
}
}
if (gArgs.IsArgSet("-connect")) {
// when only connecting to trusted nodes, do not seed via DNS, or listen
// by default.
if (gArgs.SoftSetBoolArg("-dnsseed", false)) {
LogPrintf("%s: parameter interaction: -connect set -> setting "
"-dnsseed=0\n",
__func__);
}
if (gArgs.SoftSetBoolArg("-listen", false)) {
LogPrintf("%s: parameter interaction: -connect set -> setting "
"-listen=0\n",
__func__);
}
}
if (gArgs.IsArgSet("-proxy")) {
// to protect privacy, do not listen by default if a default proxy
// server is specified.
if (gArgs.SoftSetBoolArg("-listen", false)) {
LogPrintf(
"%s: parameter interaction: -proxy set -> setting -listen=0\n",
__func__);
}
// to protect privacy, do not use UPNP when a proxy is set. The user may
// still specify -listen=1 to listen locally, so don't rely on this
// happening through -listen below.
if (gArgs.SoftSetBoolArg("-upnp", false)) {
LogPrintf(
"%s: parameter interaction: -proxy set -> setting -upnp=0\n",
__func__);
}
// to protect privacy, do not discover addresses by default
if (gArgs.SoftSetBoolArg("-discover", false)) {
LogPrintf("%s: parameter interaction: -proxy set -> setting "
"-discover=0\n",
__func__);
}
}
if (!gArgs.GetBoolArg("-listen", DEFAULT_LISTEN)) {
// do not map ports or try to retrieve public IP when not listening
// (pointless)
if (gArgs.SoftSetBoolArg("-upnp", false)) {
LogPrintf(
"%s: parameter interaction: -listen=0 -> setting -upnp=0\n",
__func__);
}
if (gArgs.SoftSetBoolArg("-discover", false)) {
LogPrintf(
"%s: parameter interaction: -listen=0 -> setting -discover=0\n",
__func__);
}
if (gArgs.SoftSetBoolArg("-listenonion", false)) {
LogPrintf("%s: parameter interaction: -listen=0 -> setting "
"-listenonion=0\n",
__func__);
}
}
if (gArgs.IsArgSet("-externalip")) {
// if an explicit public IP is specified, do not try to find others
if (gArgs.SoftSetBoolArg("-discover", false)) {
LogPrintf("%s: parameter interaction: -externalip set -> setting "
"-discover=0\n",
__func__);
}
}
// disable whitelistrelay in blocksonly mode
if (gArgs.GetBoolArg("-blocksonly", DEFAULT_BLOCKSONLY)) {
if (gArgs.SoftSetBoolArg("-whitelistrelay", false)) {
LogPrintf("%s: parameter interaction: -blocksonly=1 -> setting "
"-whitelistrelay=0\n",
__func__);
}
}
// Forcing relay from whitelisted hosts implies we will accept relays from
// them in the first place.
if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) {
if (gArgs.SoftSetBoolArg("-whitelistrelay", true)) {
LogPrintf("%s: parameter interaction: -whitelistforcerelay=1 -> "
"setting -whitelistrelay=1\n",
__func__);
}
}
// Warn if network-specific options (-addnode, -connect, etc) are
// specified in default section of config file, but not overridden
// on the command line or in this network's section of the config file.
gArgs.WarnForSectionOnlyArgs();
}
static std::string ResolveErrMsg(const char *const optname,
const std::string &strBind) {
return strprintf(_("Cannot resolve -%s address: '%s'"), optname, strBind);
}
void InitLogging() {
BCLog::Logger &logger = GetLogger();
logger.m_print_to_console = gArgs.GetBoolArg("-printtoconsole", false);
logger.m_log_timestamps =
gArgs.GetBoolArg("-logtimestamps", DEFAULT_LOGTIMESTAMPS);
logger.m_log_time_micros =
gArgs.GetBoolArg("-logtimemicros", DEFAULT_LOGTIMEMICROS);
fLogIPs = gArgs.GetBoolArg("-logips", DEFAULT_LOGIPS);
LogPrintf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
LogPrintf("%s version %s\n", CLIENT_NAME, FormatFullVersion());
}
namespace { // Variables internal to initialization process only
int nMaxConnections;
int nUserMaxConnections;
int nFD;
ServiceFlags nLocalServices = ServiceFlags(NODE_NETWORK | NODE_NETWORK_LIMITED);
} // namespace
[[noreturn]] static void new_handler_terminate() {
// Rather than throwing std::bad-alloc if allocation fails, terminate
// immediately to (try to) avoid chain corruption. Since LogPrintf may
// itself allocate memory, set the handler directly to terminate first.
std::set_new_handler(std::terminate);
LogPrintf("Error: Out of memory. Terminating.\n");
// The log was successful, terminate now.
std::terminate();
};
bool AppInitBasicSetup() {
// Step 1: setup
#ifdef _MSC_VER
// Turn off Microsoft heap dump noise
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, CreateFileA("NUL", GENERIC_WRITE, 0, nullptr,
OPEN_EXISTING, 0, 0));
// Disable confusing "helpful" text message on abort, Ctrl-C
_set_abort_behavior(0, _WRITE_ABORT_MSG | _CALL_REPORTFAULT);
#endif
#ifdef WIN32
// Enable Data Execution Prevention (DEP)
// Minimum supported OS versions: WinXP SP3, WinVista >= SP1, Win Server 2008
// A failure is non-critical and needs no further attention!
#ifndef PROCESS_DEP_ENABLE
// We define this here, because GCCs winbase.h limits this to _WIN32_WINNT >=
// 0x0601 (Windows 7), which is not correct. Can be removed, when GCCs winbase.h
// is fixed!
#define PROCESS_DEP_ENABLE 0x00000001
#endif
typedef BOOL(WINAPI * PSETPROCDEPPOL)(DWORD);
PSETPROCDEPPOL setProcDEPPol = (PSETPROCDEPPOL)GetProcAddress(
GetModuleHandleA("Kernel32.dll"), "SetProcessDEPPolicy");
if (setProcDEPPol != nullptr) {
setProcDEPPol(PROCESS_DEP_ENABLE);
}
#endif
if (!SetupNetworking()) {
return InitError("Initializing networking failed");
}
#ifndef WIN32
if (!gArgs.GetBoolArg("-sysperms", false)) {
umask(077);
}
// Clean shutdown on SIGTERM
registerSignalHandler(SIGTERM, HandleSIGTERM);
registerSignalHandler(SIGINT, HandleSIGTERM);
// Reopen debug.log on SIGHUP
registerSignalHandler(SIGHUP, HandleSIGHUP);
// Ignore SIGPIPE, otherwise it will bring the daemon down if the client
// closes unexpectedly
signal(SIGPIPE, SIG_IGN);
#endif
std::set_new_handler(new_handler_terminate);
return true;
}
bool AppInitParameterInteraction(Config &config) {
const CChainParams &chainparams = config.GetChainParams();
// Step 2: parameter interactions
// also see: InitParameterInteraction()
if (!fs::is_directory(GetBlocksDir())) {
return InitError(
strprintf(_("Specified blocks directory \"%s\" does not exist.\n"),
gArgs.GetArg("-blocksdir", "").c_str()));
}
// if using block pruning, then disallow txindex
if (gArgs.GetArg("-prune", 0)) {
if (gArgs.GetBoolArg("-txindex", DEFAULT_TXINDEX)) {
return InitError(_("Prune mode is incompatible with -txindex."));
}
}
// if space reserved for high priority transactions is misconfigured
// stop program execution and warn the user with a proper error message
const int64_t blkprio = gArgs.GetArg("-blockprioritypercentage",
DEFAULT_BLOCK_PRIORITY_PERCENTAGE);
if (!config.SetBlockPriorityPercentage(blkprio)) {
return InitError(_("Block priority percentage has to belong to the "
"[0..100] interval."));
}
// -bind and -whitebind can't be set when not listening
size_t nUserBind =
gArgs.GetArgs("-bind").size() + gArgs.GetArgs("-whitebind").size();
if (nUserBind != 0 && !gArgs.GetBoolArg("-listen", DEFAULT_LISTEN)) {
return InitError(
"Cannot set -bind or -whitebind together with -listen=0");
}
// Make sure enough file descriptors are available
int nBind = std::max(nUserBind, size_t(1));
nUserMaxConnections =
gArgs.GetArg("-maxconnections", DEFAULT_MAX_PEER_CONNECTIONS);
nMaxConnections = std::max(nUserMaxConnections, 0);
// Trim requested connection counts, to fit into system limitations
nMaxConnections =
std::max(std::min(nMaxConnections,
(int)(FD_SETSIZE - nBind - MIN_CORE_FILEDESCRIPTORS -
MAX_ADDNODE_CONNECTIONS)),
0);
nFD = RaiseFileDescriptorLimit(nMaxConnections + MIN_CORE_FILEDESCRIPTORS +
MAX_ADDNODE_CONNECTIONS);
if (nFD < MIN_CORE_FILEDESCRIPTORS) {
return InitError(_("Not enough file descriptors available."));
}
nMaxConnections =
std::min(nFD - MIN_CORE_FILEDESCRIPTORS - MAX_ADDNODE_CONNECTIONS,
nMaxConnections);
if (nMaxConnections < nUserMaxConnections) {
InitWarning(strprintf(_("Reducing -maxconnections from %d to %d, "
"because of system limitations."),
nUserMaxConnections, nMaxConnections));
}
// Step 3: parameter-to-internal-flags
if (gArgs.IsArgSet("-debug")) {
// Special-case: if -debug=0/-nodebug is set, turn off debugging
// messages
const std::vector<std::string> &categories = gArgs.GetArgs("-debug");
if (find(categories.begin(), categories.end(), std::string("0")) ==
categories.end()) {
for (const auto &cat : categories) {
BCLog::LogFlags flag = BCLog::NONE;
if (!GetLogCategory(flag, cat)) {
InitWarning(
strprintf(_("Unsupported logging category %s=%s."),
"-debug", cat));
continue;
}
GetLogger().EnableCategory(flag);
}
}
}
// Now remove the logging categories which were explicitly excluded
for (const std::string &cat : gArgs.GetArgs("-debugexclude")) {
BCLog::LogFlags flag = BCLog::NONE;
if (!GetLogCategory(flag, cat)) {
InitWarning(strprintf(_("Unsupported logging category %s=%s."),
"-debugexclude", cat));
continue;
}
GetLogger().DisableCategory(flag);
}
// Check for -debugnet
if (gArgs.GetBoolArg("-debugnet", false)) {
InitWarning(
_("Unsupported argument -debugnet ignored, use -debug=net."));
}
// Check for -socks - as this is a privacy risk to continue, exit here
if (gArgs.IsArgSet("-socks")) {
return InitError(
_("Unsupported argument -socks found. Setting SOCKS version isn't "
"possible anymore, only SOCKS5 proxies are supported."));
}
// Check for -tor - as this is a privacy risk to continue, exit here
if (gArgs.GetBoolArg("-tor", false)) {
return InitError(_("Unsupported argument -tor found, use -onion."));
}
if (gArgs.GetBoolArg("-benchmark", false)) {
InitWarning(
_("Unsupported argument -benchmark ignored, use -debug=bench."));
}
if (gArgs.GetBoolArg("-whitelistalwaysrelay", false)) {
InitWarning(_("Unsupported argument -whitelistalwaysrelay ignored, use "
"-whitelistrelay and/or -whitelistforcerelay."));
}
if (gArgs.IsArgSet("-blockminsize")) {
InitWarning("Unsupported argument -blockminsize ignored.");
}
// Checkmempool and checkblockindex default to true in regtest mode
int ratio = std::min<int>(
std::max<int>(
gArgs.GetArg("-checkmempool",
chainparams.DefaultConsistencyChecks() ? 1 : 0),
0),
1000000);
if (ratio != 0) {
g_mempool.setSanityCheck(1.0 / ratio);
}
fCheckBlockIndex = gArgs.GetBoolArg("-checkblockindex",
chainparams.DefaultConsistencyChecks());
fCheckpointsEnabled =
gArgs.GetBoolArg("-checkpoints", DEFAULT_CHECKPOINTS_ENABLED);
if (fCheckpointsEnabled) {
LogPrintf("Checkpoints will be verified.\n");
} else {
LogPrintf("Skipping checkpoint verification.\n");
}
hashAssumeValid = uint256S(
gArgs.GetArg("-assumevalid",
chainparams.GetConsensus().defaultAssumeValid.GetHex()));
if (!hashAssumeValid.IsNull()) {
LogPrintf("Assuming ancestors of block %s have valid signatures.\n",
hashAssumeValid.GetHex());
} else {
LogPrintf("Validating signatures for all blocks.\n");
}
if (gArgs.IsArgSet("-minimumchainwork")) {
const std::string minChainWorkStr =
gArgs.GetArg("-minimumchainwork", "");
if (!IsHexNumber(minChainWorkStr)) {
return InitError(strprintf(
"Invalid non-hex (%s) minimum chain work value specified",
minChainWorkStr));
}
nMinimumChainWork = UintToArith256(uint256S(minChainWorkStr));
} else {
nMinimumChainWork =
UintToArith256(chainparams.GetConsensus().nMinimumChainWork);
}
LogPrintf("Setting nMinimumChainWork=%s\n", nMinimumChainWork.GetHex());
if (nMinimumChainWork <
UintToArith256(chainparams.GetConsensus().nMinimumChainWork)) {
LogPrintf("Warning: nMinimumChainWork set below default value of %s\n",
chainparams.GetConsensus().nMinimumChainWork.GetHex());
}
// mempool limits
int64_t nMempoolSizeMax =
gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000;
int64_t nMempoolSizeMin =
gArgs.GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT) *
1000 * 40;
if (nMempoolSizeMax < 0 || nMempoolSizeMax < nMempoolSizeMin) {
return InitError(strprintf(_("-maxmempool must be at least %d MB"),
std::ceil(nMempoolSizeMin / 1000000.0)));
}
// -par=0 means autodetect, but nScriptCheckThreads==0 means no concurrency
nScriptCheckThreads = gArgs.GetArg("-par", DEFAULT_SCRIPTCHECK_THREADS);
if (nScriptCheckThreads <= 0) {
nScriptCheckThreads += GetNumCores();
}
if (nScriptCheckThreads <= 1) {
nScriptCheckThreads = 0;
} else if (nScriptCheckThreads > MAX_SCRIPTCHECK_THREADS) {
nScriptCheckThreads = MAX_SCRIPTCHECK_THREADS;
}
// Configure excessive block size.
const uint64_t nProposedExcessiveBlockSize =
gArgs.GetArg("-excessiveblocksize", DEFAULT_MAX_BLOCK_SIZE);
if (!config.SetMaxBlockSize(nProposedExcessiveBlockSize)) {
return InitError(
_("Excessive block size must be > 1,000,000 bytes (1MB)"));
}
// Check blockmaxsize does not exceed maximum accepted block size.
const uint64_t nProposedMaxGeneratedBlockSize =
gArgs.GetArg("-blockmaxsize", DEFAULT_MAX_GENERATED_BLOCK_SIZE);
if (nProposedMaxGeneratedBlockSize > config.GetMaxBlockSize()) {
auto msg = _("Max generated block size (blockmaxsize) cannot exceed "
"the excessive block size (excessiveblocksize)");
return InitError(msg);
}
// block pruning; get the amount of disk space (in MiB) to allot for block &
// undo files
int64_t nPruneArg = gArgs.GetArg("-prune", 0);
if (nPruneArg < 0) {
return InitError(
_("Prune cannot be configured with a negative value."));
}
nPruneTarget = (uint64_t)nPruneArg * 1024 * 1024;
if (nPruneArg == 1) {
// manual pruning: -prune=1
LogPrintf("Block pruning enabled. Use RPC call "
"pruneblockchain(height) to manually prune block and undo "
"files.\n");
nPruneTarget = std::numeric_limits<uint64_t>::max();
fPruneMode = true;
} else if (nPruneTarget) {
if (nPruneTarget < MIN_DISK_SPACE_FOR_BLOCK_FILES) {
return InitError(
strprintf(_("Prune configured below the minimum of %d MiB. "
"Please use a higher number."),
MIN_DISK_SPACE_FOR_BLOCK_FILES / 1024 / 1024));
}
LogPrintf("Prune configured to target %uMiB on disk for block and undo "
"files.\n",
nPruneTarget / 1024 / 1024);
fPruneMode = true;
}
nConnectTimeout = gArgs.GetArg("-timeout", DEFAULT_CONNECT_TIMEOUT);
if (nConnectTimeout <= 0) {
nConnectTimeout = DEFAULT_CONNECT_TIMEOUT;
}
// Obtain the amount to charge excess UTXO
if (gArgs.IsArgSet("-excessutxocharge")) {
Amount n = Amount::zero();
auto parsed = ParseMoney(gArgs.GetArg("-excessutxocharge", ""), n);
if (!parsed || Amount::zero() > n) {
return InitError(AmountErrMsg(
"excessutxocharge", gArgs.GetArg("-excessutxocharge", "")));
}
config.SetExcessUTXOCharge(n);
} else {
config.SetExcessUTXOCharge(DEFAULT_UTXO_FEE);
}
if (gArgs.IsArgSet("-minrelaytxfee")) {
Amount n = Amount::zero();
auto parsed = ParseMoney(gArgs.GetArg("-minrelaytxfee", ""), n);
if (!parsed || n == Amount::zero()) {
return InitError(AmountErrMsg("minrelaytxfee",
gArgs.GetArg("-minrelaytxfee", "")));
}
// High fee check is done afterward in WalletParameterInteraction()
::minRelayTxFee = CFeeRate(n);
}
// Sanity check argument for min fee for including tx in block
// TODO: Harmonize which arguments need sanity checking and where that
// happens.
if (gArgs.IsArgSet("-blockmintxfee")) {
Amount n = Amount::zero();
if (!ParseMoney(gArgs.GetArg("-blockmintxfee", ""), n)) {
return InitError(AmountErrMsg("blockmintxfee",
gArgs.GetArg("-blockmintxfee", "")));
}
}
// Feerate used to define dust. Shouldn't be changed lightly as old
// implementations may inadvertently create non-standard transactions.
if (gArgs.IsArgSet("-dustrelayfee")) {
Amount n = Amount::zero();
auto parsed = ParseMoney(gArgs.GetArg("-dustrelayfee", ""), n);
if (!parsed || Amount::zero() == n) {
return InitError(AmountErrMsg("dustrelayfee",
gArgs.GetArg("-dustrelayfee", "")));
}
dustRelayFee = CFeeRate(n);
}
fRequireStandard =
!gArgs.GetBoolArg("-acceptnonstdtxn", !chainparams.RequireStandard());
if (chainparams.RequireStandard() && !fRequireStandard) {
return InitError(
strprintf("acceptnonstdtxn is not currently supported for %s chain",
chainparams.NetworkIDString()));
}
nBytesPerSigOp = gArgs.GetArg("-bytespersigop", nBytesPerSigOp);
if (!g_wallet_init_interface.ParameterInteraction()) {
return false;
}
fIsBareMultisigStd =
gArgs.GetBoolArg("-permitbaremultisig", DEFAULT_PERMIT_BAREMULTISIG);
fAcceptDatacarrier =
gArgs.GetBoolArg("-datacarrier", DEFAULT_ACCEPT_DATACARRIER);
// Option to startup with mocktime set (used for regression testing):
SetMockTime(gArgs.GetArg("-mocktime", 0)); // SetMockTime(0) is a no-op
if (gArgs.GetBoolArg("-peerbloomfilters", DEFAULT_PEERBLOOMFILTERS)) {
nLocalServices = ServiceFlags(nLocalServices | NODE_BLOOM);
}
// Signal Bitcoin Cash support.
// TODO: remove some time after the hardfork when no longer needed
// to differentiate the network nodes.
nLocalServices = ServiceFlags(nLocalServices | NODE_BITCOIN_CASH);
nMaxTipAge = gArgs.GetArg("-maxtipage", DEFAULT_MAX_TIP_AGE);
return true;
}
static bool LockDataDirectory(bool probeOnly) {
// Make sure only a single Bitcoin process is using the data directory.
fs::path datadir = GetDataDir();
if (!DirIsWritable(datadir)) {
return InitError(strprintf(
_("Cannot write to data directory '%s'; check permissions."),
datadir.string()));
}
if (!LockDirectory(datadir, ".lock", probeOnly)) {
return InitError(strprintf(_("Cannot obtain a lock on data directory "
"%s. %s is probably already running."),
datadir.string(), _(PACKAGE_NAME)));
}
return true;
}
bool AppInitSanityChecks() {
// Step 4: sanity checks
// Initialize elliptic curve code
std::string sha256_algo = SHA256AutoDetect();
LogPrintf("Using the '%s' SHA256 implementation\n", sha256_algo);
RandomInit();
ECC_Start();
globalVerifyHandle.reset(new ECCVerifyHandle());
// Sanity check
if (!InitSanityCheck()) {
return InitError(strprintf(
_("Initialization sanity check failed. %s is shutting down."),
_(PACKAGE_NAME)));
}
// Probe the data directory lock to give an early error message, if possible
// We cannot hold the data directory lock here, as the forking for daemon()
// hasn't yet happened, and a fork will cause weird behavior to it.
return LockDataDirectory(true);
}
bool AppInitLockDataDirectory() {
// After daemonization get the data directory lock again and hold on to it
// until exit. This creates a slight window for a race condition to happen,
// however this condition is harmless: it will at most make us exit without
// printing a message to console.
if (!LockDataDirectory(false)) {
// Detailed error printed inside LockDataDirectory
return false;
}
return true;
}
bool AppInitMain(Config &config, RPCServer &rpcServer,
HTTPRPCRequestProcessor &httpRPCRequestProcessor) {
// Step 4a: application initialization
const CChainParams &chainparams = config.GetChainParams();
#ifndef WIN32
CreatePidFile(GetPidFile(), getpid());
#endif
BCLog::Logger &logger = GetLogger();
bool default_shrinkdebugfile = logger.DefaultShrinkDebugFile();
if (gArgs.GetBoolArg("-shrinkdebugfile", default_shrinkdebugfile)) {
// Do this first since it both loads a bunch of debug.log into memory,
// and because this needs to happen before any other debug.log printing.
logger.ShrinkDebugFile();
}
if (logger.m_print_to_file) {
if (!logger.OpenDebugLog()) {
return InitError(strprintf("Could not open debug log file %s",
logger.GetDebugLogPath().string()));
}
}
if (!logger.m_log_timestamps) {
LogPrintf("Startup time: %s\n", FormatISO8601DateTime(GetTime()));
}
LogPrintf("Default data directory %s\n", GetDefaultDataDir().string());
LogPrintf("Using data directory %s\n", GetDataDir().string());
LogPrintf(
"Using config file %s\n",
GetConfigFile(gArgs.GetArg("-conf", BITCOIN_CONF_FILENAME)).string());
LogPrintf("Using at most %i automatic connections (%i file descriptors "
"available)\n",
nMaxConnections, nFD);
// Warn about relative -datadir path.
if (gArgs.IsArgSet("-datadir") &&
!fs::path(gArgs.GetArg("-datadir", "")).is_absolute()) {
LogPrintf("Warning: relative datadir option '%s' specified, which will "
"be interpreted relative to the current working directory "
"'%s'. This is fragile, because if bitcoin is started in the "
"future from a different location, it will be unable to "
"locate the current data files. There could also be data "
"loss if bitcoin is started while in a temporary "
"directory.\n",
gArgs.GetArg("-datadir", ""), fs::current_path().string());
}
InitSignatureCache();
InitScriptExecutionCache();
LogPrintf("Using %u threads for script verification\n",
nScriptCheckThreads);
if (nScriptCheckThreads) {
for (int i = 0; i < nScriptCheckThreads - 1; i++) {
threadGroup.create_thread(&ThreadScriptCheck);
}
}
// Start the lightweight task scheduler thread
CScheduler::Function serviceLoop =
boost::bind(&CScheduler::serviceQueue, &scheduler);
threadGroup.create_thread(boost::bind(&TraceThread<CScheduler::Function>,
"scheduler", serviceLoop));
GetMainSignals().RegisterBackgroundSignalScheduler(scheduler);
GetMainSignals().RegisterWithMempoolSignals(g_mempool);
/**
* Register RPC commands regardless of -server setting so they will be
* available in the GUI RPC console even if external calls are disabled.
*/
RegisterAllRPCCommands(config, rpcServer, tableRPC);
g_wallet_init_interface.RegisterRPC(tableRPC);
/**
* Start the RPC server. It will be started in "warmup" mode and not
* process calls yet (but it will verify that the server is there and will
* be ready later). Warmup mode will be completed when initialisation is
* finished.
*/
if (gArgs.GetBoolArg("-server", false)) {
uiInterface.InitMessage.connect(SetRPCWarmupStatus);
if (!AppInitServers(config, httpRPCRequestProcessor)) {
return InitError(
_("Unable to start HTTP server. See debug log for details."));
}
}
// Step 5: verify wallet database integrity
if (!g_wallet_init_interface.Verify(chainparams)) {
return false;
}
// Step 6: network initialization
// Note that we absolutely cannot open any actual connections
// until the very end ("start node") as the UTXO/block state
// is not yet setup and may end up being set up twice if we
// need to reindex later.
assert(!g_banman);
- g_banman = std::make_unique<BanMan>(config.GetChainParams(), &uiInterface);
+ g_banman = std::make_unique<BanMan>(GetDataDir() / "banlist.dat",
+ config.GetChainParams(), &uiInterface);
assert(!g_connman);
g_connman = std::make_unique<CConnman>(
config, GetRand(std::numeric_limits<uint64_t>::max()),
GetRand(std::numeric_limits<uint64_t>::max()));
peerLogic.reset(new PeerLogicValidation(
g_connman.get(), g_banman.get(), scheduler,
gArgs.GetBoolArg("-enablebip61", DEFAULT_ENABLE_BIP61)));
RegisterValidationInterface(peerLogic.get());
// sanitize comments per BIP-0014, format user agent and check total size
std::vector<std::string> uacomments;
for (const std::string &cmt : gArgs.GetArgs("-uacomment")) {
if (cmt != SanitizeString(cmt, SAFE_CHARS_UA_COMMENT))
return InitError(strprintf(
_("User Agent comment (%s) contains unsafe characters."), cmt));
uacomments.push_back(cmt);
}
const std::string strSubVersion =
FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, uacomments);
if (strSubVersion.size() > MAX_SUBVERSION_LENGTH) {
return InitError(strprintf(
_("Total length of network version string (%i) exceeds maximum "
"length (%i). Reduce the number or size of uacomments."),
strSubVersion.size(), MAX_SUBVERSION_LENGTH));
}
if (gArgs.IsArgSet("-onlynet")) {
std::set<enum Network> nets;
for (const std::string &snet : gArgs.GetArgs("-onlynet")) {
enum Network net = ParseNetwork(snet);
if (net == NET_UNROUTABLE) {
return InitError(strprintf(
_("Unknown network specified in -onlynet: '%s'"), snet));
}
nets.insert(net);
}
for (int n = 0; n < NET_MAX; n++) {
enum Network net = (enum Network)n;
if (!nets.count(net)) SetLimited(net);
}
}
// Check for host lookup allowed before parsing any network related
// parameters
fNameLookup = gArgs.GetBoolArg("-dns", DEFAULT_NAME_LOOKUP);
bool proxyRandomize =
gArgs.GetBoolArg("-proxyrandomize", DEFAULT_PROXYRANDOMIZE);
// -proxy sets a proxy for all outgoing network traffic
// -noproxy (or -proxy=0) as well as the empty string can be used to not set
// a proxy, this is the default
std::string proxyArg = gArgs.GetArg("-proxy", "");
SetLimited(NET_ONION);
if (proxyArg != "" && proxyArg != "0") {
CService proxyAddr;
if (!Lookup(proxyArg.c_str(), proxyAddr, 9050, fNameLookup)) {
return InitError(strprintf(
_("Invalid -proxy address or hostname: '%s'"), proxyArg));
}
proxyType addrProxy = proxyType(proxyAddr, proxyRandomize);
if (!addrProxy.IsValid()) {
return InitError(strprintf(
_("Invalid -proxy address or hostname: '%s'"), proxyArg));
}
SetProxy(NET_IPV4, addrProxy);
SetProxy(NET_IPV6, addrProxy);
SetProxy(NET_ONION, addrProxy);
SetNameProxy(addrProxy);
// by default, -proxy sets onion as reachable, unless -noonion later
SetLimited(NET_ONION, false);
}
// -onion can be used to set only a proxy for .onion, or override normal
// proxy for .onion addresses.
// -noonion (or -onion=0) disables connecting to .onion entirely. An empty
// string is used to not override the onion proxy (in which case it defaults
// to -proxy set above, or none)
std::string onionArg = gArgs.GetArg("-onion", "");
if (onionArg != "") {
if (onionArg == "0") { // Handle -noonion/-onion=0
SetLimited(NET_ONION); // set onions as unreachable
} else {
CService onionProxy;
if (!Lookup(onionArg.c_str(), onionProxy, 9050, fNameLookup)) {
return InitError(strprintf(
_("Invalid -onion address or hostname: '%s'"), onionArg));
}
proxyType addrOnion = proxyType(onionProxy, proxyRandomize);
if (!addrOnion.IsValid()) {
return InitError(strprintf(
_("Invalid -onion address or hostname: '%s'"), onionArg));
}
SetProxy(NET_ONION, addrOnion);
SetLimited(NET_ONION, false);
}
}
// see Step 2: parameter interactions for more information about these
fListen = gArgs.GetBoolArg("-listen", DEFAULT_LISTEN);
fDiscover = gArgs.GetBoolArg("-discover", true);
fRelayTxes = !gArgs.GetBoolArg("-blocksonly", DEFAULT_BLOCKSONLY);
for (const std::string &strAddr : gArgs.GetArgs("-externalip")) {
CService addrLocal;
if (Lookup(strAddr.c_str(), addrLocal, GetListenPort(), fNameLookup) &&
addrLocal.IsValid()) {
AddLocal(addrLocal, LOCAL_MANUAL);
} else {
return InitError(ResolveErrMsg("externalip", strAddr));
}
}
#if ENABLE_ZMQ
pzmqNotificationInterface = CZMQNotificationInterface::Create();
if (pzmqNotificationInterface) {
RegisterValidationInterface(pzmqNotificationInterface);
}
#endif
// unlimited unless -maxuploadtarget is set
uint64_t nMaxOutboundLimit = 0;
uint64_t nMaxOutboundTimeframe = MAX_UPLOAD_TIMEFRAME;
if (gArgs.IsArgSet("-maxuploadtarget")) {
nMaxOutboundLimit =
gArgs.GetArg("-maxuploadtarget", DEFAULT_MAX_UPLOAD_TARGET) * 1024 *
1024;
}
// Step 7: load block chain
fReindex = gArgs.GetBoolArg("-reindex", false);
bool fReindexChainState = gArgs.GetBoolArg("-reindex-chainstate", false);
// cache size calculations
int64_t nTotalCache = (gArgs.GetArg("-dbcache", nDefaultDbCache) << 20);
// total cache cannot be less than nMinDbCache
nTotalCache = std::max(nTotalCache, nMinDbCache << 20);
// total cache cannot be greater than nMaxDbcache
nTotalCache = std::min(nTotalCache, nMaxDbCache << 20);
int64_t nBlockTreeDBCache =
std::min(nTotalCache / 8, nMaxBlockDBCache << 20);
nTotalCache -= nBlockTreeDBCache;
int64_t nTxIndexCache =
std::min(nTotalCache / 8, gArgs.GetBoolArg("-txindex", DEFAULT_TXINDEX)
? nMaxTxIndexCache << 20
: 0);
nTotalCache -= nTxIndexCache;
// use 25%-50% of the remainder for disk cache
int64_t nCoinDBCache =
std::min(nTotalCache / 2, (nTotalCache / 4) + (1 << 23));
// cap total coins db cache
nCoinDBCache = std::min(nCoinDBCache, nMaxCoinsDBCache << 20);
nTotalCache -= nCoinDBCache;
// the rest goes to in-memory cache
nCoinCacheUsage = nTotalCache;
int64_t nMempoolSizeMax =
gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000;
LogPrintf("Cache configuration:\n");
LogPrintf("* Using %.1fMiB for block index database\n",
nBlockTreeDBCache * (1.0 / 1024 / 1024));
if (gArgs.GetBoolArg("-txindex", DEFAULT_TXINDEX)) {
LogPrintf("* Using %.1fMiB for transaction index database\n",
nTxIndexCache * (1.0 / 1024 / 1024));
}
LogPrintf("* Using %.1fMiB for chain state database\n",
nCoinDBCache * (1.0 / 1024 / 1024));
LogPrintf("* Using %.1fMiB for in-memory UTXO set (plus up to %.1fMiB of "
"unused mempool space)\n",
nCoinCacheUsage * (1.0 / 1024 / 1024),
nMempoolSizeMax * (1.0 / 1024 / 1024));
int64_t nStart = 0;
bool fLoaded = false;
while (!fLoaded && !fRequestShutdown) {
bool fReset = fReindex;
std::string strLoadError;
uiInterface.InitMessage(_("Loading block index..."));
LOCK(cs_main);
nStart = GetTimeMillis();
do {
try {
UnloadBlockIndex();
pcoinsTip.reset();
pcoinsdbview.reset();
pcoinscatcher.reset();
pblocktree.reset(
new CBlockTreeDB(nBlockTreeDBCache, false, fReset));
if (fReset) {
pblocktree->WriteReindexing(true);
// If we're reindexing in prune mode, wipe away unusable
// block files and all undo data files
if (fPruneMode) {
CleanupBlockRevFiles();
}
}
if (fRequestShutdown) {
break;
}
// LoadBlockIndex will load fHavePruned if we've ever removed a
// block file from disk.
// Note that it also sets fReindex based on the disk flag!
// From here on out fReindex and fReset mean something
// different!
if (!LoadBlockIndex(config)) {
strLoadError = _("Error loading block database");
break;
}
// If the loaded chain has a wrong genesis, bail out immediately
// (we're likely using a testnet datadir, or the other way
// around).
if (!mapBlockIndex.empty() &&
!LookupBlockIndex(
chainparams.GetConsensus().hashGenesisBlock)) {
return InitError(_("Incorrect or no genesis block found. "
"Wrong datadir for network?"));
}
// Check for changed -prune state. What we are concerned about
// is a user who has pruned blocks in the past, but is now
// trying to run unpruned.
if (fHavePruned && !fPruneMode) {
strLoadError =
_("You need to rebuild the database using -reindex to "
"go back to unpruned mode. This will redownload the "
"entire blockchain");
break;
}
// At this point blocktree args are consistent with what's on
// disk. If we're not mid-reindex (based on disk + args), add a
// genesis block on disk (otherwise we use the one already on
// disk).
// This is called again in ThreadImport after the reindex
// completes.
if (!fReindex && !LoadGenesisBlock(chainparams)) {
strLoadError = _("Error initializing block database");
break;
}
// At this point we're either in reindex or we've loaded a
// useful block tree into mapBlockIndex!
pcoinsdbview.reset(new CCoinsViewDB(
nCoinDBCache, false, fReset || fReindexChainState));
pcoinscatcher.reset(
new CCoinsViewErrorCatcher(pcoinsdbview.get()));
// If necessary, upgrade from older database format.
// This is a no-op if we cleared the coinsviewdb with -reindex
// or -reindex-chainstate
if (!pcoinsdbview->Upgrade()) {
strLoadError = _("Error upgrading chainstate database");
break;
}
// ReplayBlocks is a no-op if we cleared the coinsviewdb with
// -reindex or -reindex-chainstate
if (!ReplayBlocks(chainparams.GetConsensus(),
pcoinsdbview.get())) {
strLoadError =
_("Unable to replay blocks. You will need to rebuild "
"the database using -reindex-chainstate.");
break;
}
// The on-disk coinsdb is now in a good state, create the cache
pcoinsTip.reset(new CCoinsViewCache(pcoinscatcher.get()));
bool is_coinsview_empty = fReset || fReindexChainState ||
pcoinsTip->GetBestBlock().IsNull();
if (!is_coinsview_empty) {
// LoadChainTip sets chainActive based on pcoinsTip's best
// block
if (!LoadChainTip(config)) {
strLoadError = _("Error initializing block database");
break;
}
assert(chainActive.Tip() != nullptr);
}
if (!fReset) {
// Note that RewindBlockIndex MUST run even if we're about
// to -reindex-chainstate. It both disconnects blocks based
// on chainActive, and drops block data in mapBlockIndex
// based on lack of available witness data.
uiInterface.InitMessage(_("Rewinding blocks..."));
if (!RewindBlockIndex(config)) {
strLoadError = _("Unable to rewind the database to a "
"pre-fork state. You will need to "
"redownload the blockchain");
break;
}
}
if (!is_coinsview_empty) {
uiInterface.InitMessage(_("Verifying blocks..."));
if (fHavePruned &&
gArgs.GetArg("-checkblocks", DEFAULT_CHECKBLOCKS) >
MIN_BLOCKS_TO_KEEP) {
LogPrintf(
"Prune: pruned datadir may not have more than %d "
"blocks; only checking available blocks\n",
MIN_BLOCKS_TO_KEEP);
}
CBlockIndex *tip = chainActive.Tip();
RPCNotifyBlockChange(true, tip);
if (tip && tip->nTime >
GetAdjustedTime() + MAX_FUTURE_BLOCK_TIME) {
strLoadError = _(
"The block database contains a block which appears "
"to be from the future. This may be due to your "
"computer's date and time being set incorrectly. "
"Only rebuild the block database if you are sure "
"that your computer's date and time are correct");
break;
}
if (!CVerifyDB().VerifyDB(
config, pcoinsdbview.get(),
gArgs.GetArg("-checklevel", DEFAULT_CHECKLEVEL),
gArgs.GetArg("-checkblocks",
DEFAULT_CHECKBLOCKS))) {
strLoadError = _("Corrupted block database detected");
break;
}
}
} catch (const std::exception &e) {
LogPrintf("%s\n", e.what());
strLoadError = _("Error opening block database");
break;
}
fLoaded = true;
} while (false);
if (!fLoaded && !fRequestShutdown) {
// first suggest a reindex
if (!fReset) {
bool fRet = uiInterface.ThreadSafeQuestion(
strLoadError + ".\n\n" +
_("Do you want to rebuild the block database now?"),
strLoadError + ".\nPlease restart with -reindex or "
"-reindex-chainstate to recover.",
"",
CClientUIInterface::MSG_ERROR |
CClientUIInterface::BTN_ABORT);
if (fRet) {
fReindex = true;
fRequestShutdown = false;
} else {
LogPrintf("Aborted block database rebuild. Exiting.\n");
return false;
}
} else {
return InitError(strLoadError);
}
}
}
// As LoadBlockIndex can take several minutes, it's possible the user
// requested to kill the GUI during the last operation. If so, exit.
// As the program has not fully started yet, Shutdown() is possibly
// overkill.
if (fRequestShutdown) {
LogPrintf("Shutdown requested. Exiting.\n");
return false;
}
if (fLoaded) {
LogPrintf(" block index %15dms\n", GetTimeMillis() - nStart);
}
// Encoded addresses using cashaddr instead of base58.
// We do this by default to avoid confusion with BTC addresses.
config.SetCashAddrEncoding(gArgs.GetBoolArg("-usecashaddr", true));
// Step 8: load indexers
if (gArgs.GetBoolArg("-txindex", DEFAULT_TXINDEX)) {
g_txindex = std::make_unique<TxIndex>(nTxIndexCache, false, fReindex);
g_txindex->Start();
}
// Step 9: load wallet
if (!g_wallet_init_interface.Open(chainparams)) {
return false;
}
// Step 10: data directory maintenance
// if pruning, unset the service bit and perform the initial blockstore
// prune after any wallet rescanning has taken place.
if (fPruneMode) {
LogPrintf("Unsetting NODE_NETWORK on prune mode\n");
nLocalServices = ServiceFlags(nLocalServices & ~NODE_NETWORK);
if (!fReindex) {
uiInterface.InitMessage(_("Pruning blockstore..."));
PruneAndFlush();
}
}
// Step 11: import blocks
if (!CheckDiskSpace(GetDataDir())) {
InitError(
strprintf(_("Error: Disk space is low for %s"), GetDataDir()));
return false;
}
if (!CheckDiskSpace(GetBlocksDir())) {
InitError(
strprintf(_("Error: Disk space is low for %s"), GetBlocksDir()));
return false;
}
// Either install a handler to notify us when genesis activates, or set
// fHaveGenesis directly.
// No locking, as this happens before any background thread is started.
if (chainActive.Tip() == nullptr) {
uiInterface.NotifyBlockTip.connect(BlockNotifyGenesisWait);
} else {
fHaveGenesis = true;
}
if (gArgs.IsArgSet("-blocknotify")) {
uiInterface.NotifyBlockTip.connect(BlockNotifyCallback);
}
std::vector<fs::path> vImportFiles;
for (const std::string &strFile : gArgs.GetArgs("-loadblock")) {
vImportFiles.push_back(strFile);
}
threadGroup.create_thread(
boost::bind(&ThreadImport, std::ref(config), vImportFiles));
// Wait for genesis block to be processed
{
WAIT_LOCK(g_genesis_wait_mutex, lock);
// We previously could hang here if StartShutdown() is called prior to
// ThreadImport getting started, so instead we just wait on a timer to
// check ShutdownRequested() regularly.
while (!fHaveGenesis && !ShutdownRequested()) {
g_genesis_wait_cv.wait_for(lock, std::chrono::milliseconds(500));
}
uiInterface.NotifyBlockTip.disconnect(BlockNotifyGenesisWait);
}
if (ShutdownRequested()) {
return false;
}
// Step 12: start node
int chain_active_height;
//// debug print
{
LOCK(cs_main);
LogPrintf("mapBlockIndex.size() = %u\n", mapBlockIndex.size());
chain_active_height = chainActive.Height();
}
LogPrintf("nBestHeight = %d\n", chain_active_height);
if (gArgs.GetBoolArg("-listenonion", DEFAULT_LISTEN_ONION)) {
StartTorControl();
}
Discover();
// Map ports with UPnP
if (gArgs.GetBoolArg("-upnp", DEFAULT_UPNP)) {
StartMapPort();
}
CConnman::Options connOptions;
connOptions.nLocalServices = nLocalServices;
connOptions.nMaxConnections = nMaxConnections;
connOptions.nMaxOutbound =
std::min(MAX_OUTBOUND_CONNECTIONS, connOptions.nMaxConnections);
connOptions.nMaxAddnode = MAX_ADDNODE_CONNECTIONS;
connOptions.nMaxFeeler = 1;
connOptions.nBestHeight = chain_active_height;
connOptions.uiInterface = &uiInterface;
connOptions.m_banman = g_banman.get();
connOptions.m_msgproc = peerLogic.get();
connOptions.nSendBufferMaxSize =
1000 * gArgs.GetArg("-maxsendbuffer", DEFAULT_MAXSENDBUFFER);
connOptions.nReceiveFloodSize =
1000 * gArgs.GetArg("-maxreceivebuffer", DEFAULT_MAXRECEIVEBUFFER);
connOptions.m_added_nodes = gArgs.GetArgs("-addnode");
connOptions.nMaxOutboundTimeframe = nMaxOutboundTimeframe;
connOptions.nMaxOutboundLimit = nMaxOutboundLimit;
for (const std::string &strBind : gArgs.GetArgs("-bind")) {
CService addrBind;
if (!Lookup(strBind.c_str(), addrBind, GetListenPort(), false)) {
return InitError(ResolveErrMsg("bind", strBind));
}
connOptions.vBinds.push_back(addrBind);
}
for (const std::string &strBind : gArgs.GetArgs("-whitebind")) {
CService addrBind;
if (!Lookup(strBind.c_str(), addrBind, 0, false)) {
return InitError(ResolveErrMsg("whitebind", strBind));
}
if (addrBind.GetPort() == 0) {
return InitError(strprintf(
_("Need to specify a port with -whitebind: '%s'"), strBind));
}
connOptions.vWhiteBinds.push_back(addrBind);
}
for (const auto &net : gArgs.GetArgs("-whitelist")) {
CSubNet subnet;
LookupSubNet(net.c_str(), subnet);
if (!subnet.IsValid()) {
return InitError(strprintf(
_("Invalid netmask specified in -whitelist: '%s'"), net));
}
connOptions.vWhitelistedRange.push_back(subnet);
}
connOptions.vSeedNodes = gArgs.GetArgs("-seednode");
// Initiate outbound connections unless connect=0
connOptions.m_use_addrman_outgoing = !gArgs.IsArgSet("-connect");
if (!connOptions.m_use_addrman_outgoing) {
const auto connect = gArgs.GetArgs("-connect");
if (connect.size() != 1 || connect[0] != "0") {
connOptions.m_specified_outgoing = connect;
}
}
if (!g_connman->Start(scheduler, connOptions)) {
return false;
}
// Step 13: finished
SetRPCWarmupFinished();
uiInterface.InitMessage(_("Done loading"));
g_wallet_init_interface.Start(scheduler);
scheduler.scheduleEvery(
[] {
g_banman->DumpBanlist();
return true;
},
DUMP_BANS_INTERVAL * 1000);
return true;
}
diff --git a/src/net.cpp b/src/net.cpp
index b59340a76..468e062fe 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -1,3078 +1,3078 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <net.h>
#include <addrman.h>
#include <chainparams.h>
#include <clientversion.h>
#include <config.h>
#include <consensus/consensus.h>
#include <crypto/common.h>
#include <crypto/sha256.h>
#include <hash.h>
#include <netbase.h>
#include <primitives/transaction.h>
#include <scheduler.h>
#include <ui_interface.h>
#include <util/strencodings.h>
#ifdef WIN32
#include <cstring>
#else
#include <fcntl.h>
#endif
#ifdef USE_UPNP
#include <miniupnpc/miniupnpc.h>
#include <miniupnpc/miniwget.h>
#include <miniupnpc/upnpcommands.h>
#include <miniupnpc/upnperrors.h>
#endif
#include <cmath>
// Dump addresses to peers.dat every 15 minutes (900s)
static constexpr int DUMP_PEERS_INTERVAL = 15 * 60;
// We add a random period time (0 to 1 seconds) to feeler connections to prevent
// synchronization.
#define FEELER_SLEEP_WINDOW 1
// MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define
// it as 0
#if !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
// MSG_DONTWAIT is not available on some platforms, if it doesn't exist define
// it as 0
#if !defined(MSG_DONTWAIT)
#define MSG_DONTWAIT 0
#endif
// Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
// Todo: Can be removed when our pull-tester is upgraded to a modern MinGW
// version.
#ifdef WIN32
#ifndef PROTECTION_LEVEL_UNRESTRICTED
#define PROTECTION_LEVEL_UNRESTRICTED 10
#endif
#ifndef IPV6_PROTECTION_LEVEL
#define IPV6_PROTECTION_LEVEL 23
#endif
#endif
/** Used to pass flags to the Bind() function */
enum BindFlags {
BF_NONE = 0,
BF_EXPLICIT = (1U << 0),
BF_REPORT_ERROR = (1U << 1),
BF_WHITELIST = (1U << 2),
};
const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
// SHA256("netgroup")[0:8]
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL;
// SHA256("localhostnonce")[0:8]
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL;
//
// Global state variables
//
bool fDiscover = true;
bool fListen = true;
bool fRelayTxes = true;
CCriticalSection cs_mapLocalHost;
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
limitedmap<uint256, int64_t> mapAlreadyAskedFor(MAX_INV_SZ);
void CConnman::AddOneShot(const std::string &strDest) {
LOCK(cs_vOneShots);
vOneShots.push_back(strDest);
}
unsigned short GetListenPort() {
return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort()));
}
// find 'best' local address for a particular peer
bool GetLocal(CService &addr, const CNetAddr *paddrPeer) {
if (!fListen) {
return false;
}
int nBestScore = -1;
int nBestReachability = -1;
{
LOCK(cs_mapLocalHost);
for (const auto &entry : mapLocalHost) {
int nScore = entry.second.nScore;
int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
if (nReachability > nBestReachability ||
(nReachability == nBestReachability && nScore > nBestScore)) {
addr = CService(entry.first, entry.second.nPort);
nBestReachability = nReachability;
nBestScore = nScore;
}
}
}
return nBestScore >= 0;
}
//! Convert the pnSeeds6 array into usable address objects.
static std::vector<CAddress>
convertSeed6(const std::vector<SeedSpec6> &vSeedsIn) {
// It'll only connect to one or two seed nodes because once it connects,
// it'll get a pile of addresses with newer timestamps. Seed nodes are given
// a random 'last seen time' of between one and two weeks ago.
const int64_t nOneWeek = 7 * 24 * 60 * 60;
std::vector<CAddress> vSeedsOut;
vSeedsOut.reserve(vSeedsIn.size());
FastRandomContext rng;
for (const auto &seed_in : vSeedsIn) {
struct in6_addr ip;
memcpy(&ip, seed_in.addr, sizeof(ip));
CAddress addr(CService(ip, seed_in.port),
GetDesirableServiceFlags(NODE_NONE));
addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
vSeedsOut.push_back(addr);
}
return vSeedsOut;
}
// Get best local address for a particular peer as a CAddress. Otherwise, return
// the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP
// may be changed to a useful one by discovery.
CAddress GetLocalAddress(const CNetAddr *paddrPeer,
ServiceFlags nLocalServices) {
CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices);
CService addr;
if (GetLocal(addr, paddrPeer)) {
ret = CAddress(addr, nLocalServices);
}
ret.nTime = GetAdjustedTime();
return ret;
}
static int GetnScore(const CService &addr) {
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == LOCAL_NONE) {
return 0;
}
return mapLocalHost[addr].nScore;
}
// Is our peer's addrLocal potentially useful as an external IP source?
bool IsPeerAddrLocalGood(CNode *pnode) {
CService addrLocal = pnode->GetAddrLocal();
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
!IsLimited(addrLocal.GetNetwork());
}
// Pushes our own address to a peer.
void AdvertiseLocal(CNode *pnode) {
if (fListen && pnode->fSuccessfullyConnected) {
CAddress addrLocal =
GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
if (gArgs.GetBoolArg("-addrmantest", false)) {
// use IPv4 loopback during addrmantest
addrLocal =
CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())),
pnode->GetLocalServices());
}
// If discovery is enabled, sometimes give our peer the address it
// tells us that it sees us as in case it has a better idea of our
// address than we do.
FastRandomContext rng;
if (IsPeerAddrLocalGood(pnode) &&
(!addrLocal.IsRoutable() ||
rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) ==
0)) {
addrLocal.SetIP(pnode->GetAddrLocal());
}
if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) {
LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n",
addrLocal.ToString());
pnode->PushAddress(addrLocal, rng);
}
}
}
// Learn a new local address.
bool AddLocal(const CService &addr, int nScore) {
if (!addr.IsRoutable()) {
return false;
}
if (!fDiscover && nScore < LOCAL_MANUAL) {
return false;
}
if (IsLimited(addr)) {
return false;
}
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
{
LOCK(cs_mapLocalHost);
bool fAlready = mapLocalHost.count(addr) > 0;
LocalServiceInfo &info = mapLocalHost[addr];
if (!fAlready || nScore >= info.nScore) {
info.nScore = nScore + (fAlready ? 1 : 0);
info.nPort = addr.GetPort();
}
}
return true;
}
bool AddLocal(const CNetAddr &addr, int nScore) {
return AddLocal(CService(addr, GetListenPort()), nScore);
}
void RemoveLocal(const CService &addr) {
LOCK(cs_mapLocalHost);
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
mapLocalHost.erase(addr);
}
/**
* Make a particular network entirely off-limits (no automatic connects to it).
*/
void SetLimited(enum Network net, bool fLimited) {
if (net == NET_UNROUTABLE || net == NET_INTERNAL) {
return;
}
LOCK(cs_mapLocalHost);
vfLimited[net] = fLimited;
}
bool IsLimited(enum Network net) {
LOCK(cs_mapLocalHost);
return vfLimited[net];
}
bool IsLimited(const CNetAddr &addr) {
return IsLimited(addr.GetNetwork());
}
/** vote for a local address */
bool SeenLocal(const CService &addr) {
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == 0) {
return false;
}
mapLocalHost[addr].nScore++;
return true;
}
/** check whether a given address is potentially local */
bool IsLocal(const CService &addr) {
LOCK(cs_mapLocalHost);
return mapLocalHost.count(addr) > 0;
}
/** check whether a given network is one we can probably connect to */
bool IsReachable(enum Network net) {
LOCK(cs_mapLocalHost);
return !vfLimited[net];
}
/** check whether a given address is in a network we can probably connect to */
bool IsReachable(const CNetAddr &addr) {
enum Network net = addr.GetNetwork();
return IsReachable(net);
}
CNode *CConnman::FindNode(const CNetAddr &ip) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (static_cast<CNetAddr>(pnode->addr) == ip) {
return pnode;
}
}
return nullptr;
}
CNode *CConnman::FindNode(const CSubNet &subNet) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
return pnode;
}
}
return nullptr;
}
CNode *CConnman::FindNode(const std::string &addrName) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (pnode->GetAddrName() == addrName) {
return pnode;
}
}
return nullptr;
}
CNode *CConnman::FindNode(const CService &addr) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (static_cast<CService>(pnode->addr) == addr) {
return pnode;
}
}
return nullptr;
}
bool CConnman::CheckIncomingNonce(uint64_t nonce) {
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (!pnode->fSuccessfullyConnected && !pnode->fInbound &&
pnode->GetLocalNonce() == nonce)
return false;
}
return true;
}
/** Get the bind address for a socket as CAddress */
static CAddress GetBindAddress(SOCKET sock) {
CAddress addr_bind;
struct sockaddr_storage sockaddr_bind;
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
if (sock != INVALID_SOCKET) {
if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind,
&sockaddr_bind_len)) {
addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind);
} else {
LogPrint(BCLog::NET, "Warning: getsockname failed\n");
}
}
return addr_bind;
}
CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest,
bool fCountFailure, bool manual_connection) {
if (pszDest == nullptr) {
if (IsLocal(addrConnect)) {
return nullptr;
}
// Look for an existing connection
CNode *pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode) {
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
/// debug print
LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
pszDest ? pszDest : addrConnect.ToString(),
pszDest
? 0.0
: (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0);
// Resolve
const int default_port = Params().GetDefaultPort();
if (pszDest) {
std::vector<CService> resolved;
if (Lookup(pszDest, resolved, default_port,
fNameLookup && !HaveNameProxy(), 256) &&
!resolved.empty()) {
addrConnect =
CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
if (!addrConnect.IsValid()) {
LogPrint(BCLog::NET,
"Resolver returned invalid address %s for %s\n",
addrConnect.ToString(), pszDest);
return nullptr;
}
// It is possible that we already have a connection to the IP/port
// pszDest resolved to. In that case, drop the connection that was
// just created, and return the existing CNode instead. Also store
// the name we used to connect in that CNode, so that future
// FindNode() calls to that name catch this early.
LOCK(cs_vNodes);
CNode *pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode) {
pnode->MaybeSetAddrName(std::string(pszDest));
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
}
// Connect
bool connected = false;
SOCKET hSocket = INVALID_SOCKET;
proxyType proxy;
if (addrConnect.IsValid()) {
bool proxyConnectionFailed = false;
if (GetProxy(addrConnect.GetNetwork(), proxy)) {
hSocket = CreateSocket(proxy.proxy);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
connected = ConnectThroughProxy(
proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket,
nConnectTimeout, &proxyConnectionFailed);
} else {
// no proxy needed (none set for target network)
hSocket = CreateSocket(addrConnect);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
connected = ConnectSocketDirectly(
addrConnect, hSocket, nConnectTimeout, manual_connection);
}
if (!proxyConnectionFailed) {
// If a connection to the node was attempted, and failure (if any)
// is not caused by a problem connecting to the proxy, mark this as
// an attempt.
addrman.Attempt(addrConnect, fCountFailure);
}
} else if (pszDest && GetNameProxy(proxy)) {
hSocket = CreateSocket(proxy.proxy);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
std::string host;
int port = default_port;
SplitHostPort(std::string(pszDest), port, host);
connected = ConnectThroughProxy(proxy, host, port, hSocket,
nConnectTimeout, nullptr);
}
if (!connected) {
CloseSocket(hSocket);
return nullptr;
}
// Add node
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
.Write(id)
.Finalize();
CAddress addr_bind = GetBindAddress(hSocket);
CNode *pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket,
addrConnect, CalculateKeyedNetGroup(addrConnect),
nonce, addr_bind, pszDest ? pszDest : "", false);
pnode->AddRef();
return pnode;
}
void BanMan::DumpBanlist() {
// Clean unused entries (if bantime has expired)
SweepBanned();
if (!BannedSetIsDirty()) {
return;
}
int64_t nStart = GetTimeMillis();
- CBanDB bandb(params);
+
banmap_t banmap;
GetBanned(banmap);
- if (bandb.Write(banmap)) {
+ if (m_ban_db.Write(banmap)) {
SetBannedSetDirty(false);
}
LogPrint(BCLog::NET,
"Flushed %d banned node ips/subnets to banlist.dat %dms\n",
banmap.size(), GetTimeMillis() - nStart);
}
void CNode::CloseSocketDisconnect() {
fDisconnect = true;
LOCK(cs_hSocket);
if (hSocket != INVALID_SOCKET) {
LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
CloseSocket(hSocket);
}
}
void BanMan::ClearBanned() {
{
LOCK(cs_setBanned);
setBanned.clear();
setBannedIsDirty = true;
}
// Store banlist to disk.
DumpBanlist();
if (clientInterface) {
clientInterface->BannedListChanged();
}
}
bool BanMan::IsBanned(CNetAddr ip) {
LOCK(cs_setBanned);
for (const auto &it : setBanned) {
CSubNet subNet = it.first;
CBanEntry banEntry = it.second;
if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil) {
return true;
}
}
return false;
}
bool BanMan::IsBanned(CSubNet subnet) {
LOCK(cs_setBanned);
banmap_t::iterator i = setBanned.find(subnet);
if (i != setBanned.end()) {
CBanEntry banEntry = (*i).second;
if (GetTime() < banEntry.nBanUntil) {
return true;
}
}
return false;
}
void BanMan::Ban(const CNetAddr &addr, const BanReason &banReason,
int64_t bantimeoffset, bool sinceUnixEpoch) {
CSubNet subNet(addr);
Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
}
void BanMan::Ban(const CSubNet &subNet, const BanReason &banReason,
int64_t bantimeoffset, bool sinceUnixEpoch) {
CBanEntry banEntry(GetTime());
banEntry.banReason = banReason;
if (bantimeoffset <= 0) {
bantimeoffset = gArgs.GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME);
sinceUnixEpoch = false;
}
banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime()) + bantimeoffset;
{
LOCK(cs_setBanned);
if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
setBanned[subNet] = banEntry;
setBannedIsDirty = true;
} else {
return;
}
}
if (clientInterface) {
clientInterface->BannedListChanged();
}
if (banReason == BanReasonManuallyAdded) {
// Store banlist to disk immediately if user requested ban.
DumpBanlist();
}
}
bool BanMan::Unban(const CNetAddr &addr) {
CSubNet subNet(addr);
return Unban(subNet);
}
bool BanMan::Unban(const CSubNet &subNet) {
{
LOCK(cs_setBanned);
if (!setBanned.erase(subNet)) {
return false;
}
setBannedIsDirty = true;
}
if (clientInterface) {
clientInterface->BannedListChanged();
}
// Store banlist to disk immediately.
DumpBanlist();
return true;
}
void BanMan::GetBanned(banmap_t &banMap) {
LOCK(cs_setBanned);
// Sweep the banlist so expired bans are not returned
SweepBanned();
// Create a thread safe copy.
banMap = setBanned;
}
void BanMan::SetBanned(const banmap_t &banMap) {
LOCK(cs_setBanned);
setBanned = banMap;
setBannedIsDirty = true;
}
void BanMan::SweepBanned() {
int64_t now = GetTime();
bool notifyUI = false;
{
LOCK(cs_setBanned);
banmap_t::iterator it = setBanned.begin();
while (it != setBanned.end()) {
CSubNet subNet = (*it).first;
CBanEntry banEntry = (*it).second;
if (now > banEntry.nBanUntil) {
setBanned.erase(it++);
setBannedIsDirty = true;
notifyUI = true;
LogPrint(
BCLog::NET,
"%s: Removed banned node ip/subnet from banlist.dat: %s\n",
__func__, subNet.ToString());
} else {
++it;
}
}
}
// update UI
if (notifyUI && clientInterface) {
clientInterface->BannedListChanged();
}
}
bool BanMan::BannedSetIsDirty() {
LOCK(cs_setBanned);
return setBannedIsDirty;
}
void BanMan::SetBannedSetDirty(bool dirty) {
// Reuse setBanned lock for the isDirty flag.
LOCK(cs_setBanned);
setBannedIsDirty = dirty;
}
bool CConnman::IsWhitelistedRange(const CNetAddr &addr) {
for (const CSubNet &subnet : vWhitelistedRange) {
if (subnet.Match(addr)) {
return true;
}
}
return false;
}
std::string CNode::GetAddrName() const {
LOCK(cs_addrName);
return addrName;
}
void CNode::MaybeSetAddrName(const std::string &addrNameIn) {
LOCK(cs_addrName);
if (addrName.empty()) {
addrName = addrNameIn;
}
}
CService CNode::GetAddrLocal() const {
LOCK(cs_addrLocal);
return addrLocal;
}
void CNode::SetAddrLocal(const CService &addrLocalIn) {
LOCK(cs_addrLocal);
if (addrLocal.IsValid()) {
error("Addr local already set for node: %i. Refusing to change from %s "
"to %s",
id, addrLocal.ToString(), addrLocalIn.ToString());
} else {
addrLocal = addrLocalIn;
}
}
void CNode::copyStats(CNodeStats &stats) {
stats.nodeid = this->GetId();
stats.nServices = nServices;
stats.addr = addr;
stats.addrBind = addrBind;
{
LOCK(cs_filter);
stats.fRelayTxes = fRelayTxes;
}
stats.nLastSend = nLastSend;
stats.nLastRecv = nLastRecv;
stats.nTimeConnected = nTimeConnected;
stats.nTimeOffset = nTimeOffset;
stats.addrName = GetAddrName();
stats.nVersion = nVersion;
{
LOCK(cs_SubVer);
stats.cleanSubVer = cleanSubVer;
}
stats.fInbound = fInbound;
stats.m_manual_connection = m_manual_connection;
stats.nStartingHeight = nStartingHeight;
{
LOCK(cs_vSend);
stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd;
stats.nSendBytes = nSendBytes;
}
{
LOCK(cs_vRecv);
stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd;
stats.nRecvBytes = nRecvBytes;
}
stats.fWhitelisted = fWhitelisted;
{
LOCK(cs_feeFilter);
stats.minFeeFilter = minFeeFilter;
}
// It is common for nodes with good ping times to suddenly become lagged,
// due to a new block arriving or other large transfer. Merely reporting
// pingtime might fool the caller into thinking the node was still
// responsive, since pingtime does not update until the ping is complete,
// which might take a while. So, if a ping is taking an unusually long time
// in flight, the caller can immediately detect that this is happening.
int64_t nPingUsecWait = 0;
if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
nPingUsecWait = GetTimeMicros() - nPingUsecStart;
}
// Raw ping time is in microseconds, but show it to user as whole seconds
// (Bitcoin users should be well used to small numbers with many decimal
// places by now :)
stats.dPingTime = ((double(nPingUsecTime)) / 1e6);
stats.dMinPing = ((double(nMinPingUsecTime)) / 1e6);
stats.dPingWait = ((double(nPingUsecWait)) / 1e6);
// Leave string empty if addrLocal invalid (not filled in yet)
CService addrLocalUnlocked = GetAddrLocal();
stats.addrLocal =
addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
}
static bool IsOversizedMessage(const Config &config, const CNetMessage &msg) {
if (!msg.in_data) {
// Header only, cannot be oversized.
return false;
}
return msg.hdr.IsOversized(config);
}
bool CNode::ReceiveMsgBytes(const Config &config, const char *pch,
uint32_t nBytes, bool &complete) {
complete = false;
int64_t nTimeMicros = GetTimeMicros();
LOCK(cs_vRecv);
nLastRecv = nTimeMicros / 1000000;
nRecvBytes += nBytes;
while (nBytes > 0) {
// Get current incomplete message, or create a new one.
if (vRecvMsg.empty() || vRecvMsg.back().complete()) {
vRecvMsg.push_back(CNetMessage(config.GetChainParams().NetMagic(),
SER_NETWORK, INIT_PROTO_VERSION));
}
CNetMessage &msg = vRecvMsg.back();
// Absorb network data.
int handled;
if (!msg.in_data) {
handled = msg.readHeader(config, pch, nBytes);
} else {
handled = msg.readData(pch, nBytes);
}
if (handled < 0) {
return false;
}
if (IsOversizedMessage(config, msg)) {
LogPrint(BCLog::NET,
"Oversized message from peer=%i, disconnecting\n",
GetId());
return false;
}
pch += handled;
nBytes -= handled;
if (msg.complete()) {
// Store received bytes per message command to prevent a memory DOS,
// only allow valid commands.
mapMsgCmdSize::iterator i =
mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand.data());
if (i == mapRecvBytesPerMsgCmd.end()) {
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
}
assert(i != mapRecvBytesPerMsgCmd.end());
i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
msg.nTime = nTimeMicros;
complete = true;
}
}
return true;
}
void CNode::SetSendVersion(int nVersionIn) {
// Send version may only be changed in the version message, and only one
// version message is allowed per session. We can therefore treat this value
// as const and even atomic as long as it's only used once a version message
// has been successfully processed. Any attempt to set this twice is an
// error.
if (nSendVersion != 0) {
error("Send version already set for node: %i. Refusing to change from "
"%i to %i",
id, nSendVersion, nVersionIn);
} else {
nSendVersion = nVersionIn;
}
}
int CNode::GetSendVersion() const {
// The send version should always be explicitly set to INIT_PROTO_VERSION
// rather than using this value until SetSendVersion has been called.
if (nSendVersion == 0) {
error("Requesting unset send version for node: %i. Using %i", id,
INIT_PROTO_VERSION);
return INIT_PROTO_VERSION;
}
return nSendVersion;
}
int CNetMessage::readHeader(const Config &config, const char *pch,
uint32_t nBytes) {
// copy data to temporary parsing buffer
uint32_t nRemaining = 24 - nHdrPos;
uint32_t nCopy = std::min(nRemaining, nBytes);
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
nHdrPos += nCopy;
// if header incomplete, exit
if (nHdrPos < 24) {
return nCopy;
}
// deserialize to CMessageHeader
try {
hdrbuf >> hdr;
} catch (const std::exception &) {
return -1;
}
// Reject oversized messages
if (hdr.IsOversized(config)) {
LogPrint(BCLog::NET, "Oversized header detected\n");
return -1;
}
// switch state to reading message data
in_data = true;
return nCopy;
}
int CNetMessage::readData(const char *pch, uint32_t nBytes) {
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
if (vRecv.size() < nDataPos + nCopy) {
// Allocate up to 256 KiB ahead, but never more than the total message
// size.
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
}
hasher.Write((const uint8_t *)pch, nCopy);
memcpy(&vRecv[nDataPos], pch, nCopy);
nDataPos += nCopy;
return nCopy;
}
const uint256 &CNetMessage::GetMessageHash() const {
assert(complete());
if (data_hash.IsNull()) {
hasher.Finalize(data_hash.begin());
}
return data_hash;
}
size_t CConnman::SocketSendData(CNode *pnode) const
EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend) {
size_t nSentSize = 0;
size_t nMsgCount = 0;
for (const auto &data : pnode->vSendMsg) {
assert(data.size() > pnode->nSendOffset);
int nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
break;
}
nBytes = send(pnode->hSocket,
reinterpret_cast<const char *>(data.data()) +
pnode->nSendOffset,
data.size() - pnode->nSendOffset,
MSG_NOSIGNAL | MSG_DONTWAIT);
}
if (nBytes == 0) {
// couldn't send anything at all
break;
}
if (nBytes < 0) {
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
pnode->CloseSocketDisconnect();
}
break;
}
assert(nBytes > 0);
pnode->nLastSend = GetSystemTimeInSeconds();
pnode->nSendBytes += nBytes;
pnode->nSendOffset += nBytes;
nSentSize += nBytes;
if (pnode->nSendOffset != data.size()) {
// could not send full message; stop sending more
break;
}
pnode->nSendOffset = 0;
pnode->nSendSize -= data.size();
pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
nMsgCount++;
}
pnode->vSendMsg.erase(pnode->vSendMsg.begin(),
pnode->vSendMsg.begin() + nMsgCount);
if (pnode->vSendMsg.empty()) {
assert(pnode->nSendOffset == 0);
assert(pnode->nSendSize == 0);
}
return nSentSize;
}
struct NodeEvictionCandidate {
NodeId id;
int64_t nTimeConnected;
int64_t nMinPingUsecTime;
int64_t nLastBlockTime;
int64_t nLastTXTime;
bool fRelevantServices;
bool fRelayTxes;
bool fBloomFilter;
CAddress addr;
uint64_t nKeyedNetGroup;
};
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
return a.nMinPingUsecTime > b.nMinPingUsecTime;
}
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
return a.nKeyedNetGroup < b.nKeyedNetGroup;
}
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
// There is a fall-through here because it is common for a node to have many
// peers which have not yet relayed a block.
if (a.nLastBlockTime != b.nLastBlockTime) {
return a.nLastBlockTime < b.nLastBlockTime;
}
if (a.fRelevantServices != b.fRelevantServices) {
return b.fRelevantServices;
}
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNodeTXTime(const NodeEvictionCandidate &a,
const NodeEvictionCandidate &b) {
// There is a fall-through here because it is common for a node to have more
// than a few peers that have not yet relayed txn.
if (a.nLastTXTime != b.nLastTXTime) {
return a.nLastTXTime < b.nLastTXTime;
}
if (a.fRelayTxes != b.fRelayTxes) {
return b.fRelayTxes;
}
if (a.fBloomFilter != b.fBloomFilter) {
return a.fBloomFilter;
}
return a.nTimeConnected > b.nTimeConnected;
}
//! Sort an array by the specified comparator, then erase the last K elements.
template <typename T, typename Comparator>
static void EraseLastKElements(std::vector<T> &elements, Comparator comparator,
size_t k) {
std::sort(elements.begin(), elements.end(), comparator);
size_t eraseSize = std::min(k, elements.size());
elements.erase(elements.end() - eraseSize, elements.end());
}
/**
* Try to find a connection to evict when the node is full.
* Extreme care must be taken to avoid opening the node to attacker triggered
* network partitioning.
* The strategy used here is to protect a small number of peers for each of
* several distinct characteristics which are difficult to forge. In order to
* partition a node the attacker must be simultaneously better at all of them
* than honest peers.
*/
bool CConnman::AttemptToEvictConnection() {
std::vector<NodeEvictionCandidate> vEvictionCandidates;
{
LOCK(cs_vNodes);
for (CNode *node : vNodes) {
if (node->fWhitelisted || !node->fInbound || node->fDisconnect) {
continue;
}
LOCK(node->cs_filter);
NodeEvictionCandidate candidate = {
node->GetId(),
node->nTimeConnected,
node->nMinPingUsecTime,
node->nLastBlockTime,
node->nLastTXTime,
HasAllDesirableServiceFlags(node->nServices),
node->fRelayTxes,
node->pfilter != nullptr,
node->addr,
node->nKeyedNetGroup};
vEvictionCandidates.push_back(candidate);
}
}
// Protect connections with certain characteristics
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
// Protect the 8 nodes with the lowest minimum ping time.
// An attacker cannot manipulate this metric without physically moving nodes
// closer to the target.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
// Protect 4 nodes that most recently sent us transactions.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
// Protect 4 nodes that most recently sent us blocks.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
// Protect the half of the remaining nodes which have been connected the
// longest. This replicates the non-eviction implicit behavior, and
// precludes attacks that start later.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected,
vEvictionCandidates.size() / 2);
if (vEvictionCandidates.empty()) {
return false;
}
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
uint64_t naMostConnections;
unsigned int nMostConnections = 0;
int64_t nMostConnectionsTime = 0;
std::map<uint64_t, std::vector<NodeEvictionCandidate>> mapNetGroupNodes;
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
std::vector<NodeEvictionCandidate> &group =
mapNetGroupNodes[node.nKeyedNetGroup];
group.push_back(node);
int64_t grouptime = group[0].nTimeConnected;
size_t group_size = group.size();
if (group_size > nMostConnections ||
(group_size == nMostConnections &&
grouptime > nMostConnectionsTime)) {
nMostConnections = group_size;
nMostConnectionsTime = grouptime;
naMostConnections = node.nKeyedNetGroup;
}
}
// Reduce to the network group with the most connections
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
// Disconnect from the network group with the most connections
NodeId evicted = vEvictionCandidates.front().id;
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (pnode->GetId() == evicted) {
pnode->fDisconnect = true;
return true;
}
}
return false;
}
void CConnman::AcceptConnection(const ListenSocket &hListenSocket) {
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
SOCKET hSocket =
accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len);
CAddress addr;
int nInbound = 0;
int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler);
if (hSocket != INVALID_SOCKET) {
if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) {
LogPrintf("Warning: Unknown socket family\n");
}
}
bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr);
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (pnode->fInbound) {
nInbound++;
}
}
}
if (hSocket == INVALID_SOCKET) {
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK) {
LogPrintf("socket error accept failed: %s\n",
NetworkErrorString(nErr));
}
return;
}
if (!fNetworkActive) {
LogPrintf("connection from %s dropped: not accepting new connections\n",
addr.ToString());
CloseSocket(hSocket);
return;
}
if (!IsSelectableSocket(hSocket)) {
LogPrintf("connection from %s dropped: non-selectable socket\n",
addr.ToString());
CloseSocket(hSocket);
return;
}
// According to the internet TCP_NODELAY is not carried into accepted
// sockets on all platforms. Set it again here just to be sure.
SetSocketNoDelay(hSocket);
if (m_banman && m_banman->IsBanned(addr) && !whitelisted) {
LogPrint(BCLog::NET, "connection from %s dropped (banned)\n",
addr.ToString());
CloseSocket(hSocket);
return;
}
if (nInbound >= nMaxInbound) {
if (!AttemptToEvictConnection()) {
// No connection to evict, disconnect the new connection
LogPrint(BCLog::NET, "failed to find an eviction candidate - "
"connection dropped (full)\n");
CloseSocket(hSocket);
return;
}
}
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
.Write(id)
.Finalize();
CAddress addr_bind = GetBindAddress(hSocket);
CNode *pnode =
new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr,
CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true);
pnode->AddRef();
pnode->fWhitelisted = whitelisted;
m_msgproc->InitializeNode(*config, pnode);
LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
}
}
void CConnman::DisconnectNodes() {
{
LOCK(cs_vNodes);
if (!fNetworkActive) {
// Disconnect any connected nodes
for (CNode *pnode : vNodes) {
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET,
"Network not active, dropping peer=%d\n",
pnode->GetId());
pnode->fDisconnect = true;
}
}
}
// Disconnect unused nodes
std::vector<CNode *> vNodesCopy = vNodes;
for (CNode *pnode : vNodesCopy) {
if (pnode->fDisconnect) {
// remove from vNodes
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode),
vNodes.end());
// release outbound grant (if any)
pnode->grantOutbound.Release();
// close socket and cleanup
pnode->CloseSocketDisconnect();
// hold in disconnected pool until all refs are released
pnode->Release();
vNodesDisconnected.push_back(pnode);
}
}
}
{
// Delete disconnected nodes
std::list<CNode *> vNodesDisconnectedCopy = vNodesDisconnected;
for (CNode *pnode : vNodesDisconnectedCopy) {
// wait until threads are done using it
if (pnode->GetRefCount() <= 0) {
bool fDelete = false;
{
TRY_LOCK(pnode->cs_inventory, lockInv);
if (lockInv) {
TRY_LOCK(pnode->cs_vSend, lockSend);
if (lockSend) {
fDelete = true;
}
}
}
if (fDelete) {
vNodesDisconnected.remove(pnode);
DeleteNode(pnode);
}
}
}
}
}
void CConnman::NotifyNumConnectionsChanged() {
size_t vNodesSize;
{
LOCK(cs_vNodes);
vNodesSize = vNodes.size();
}
if (vNodesSize != nPrevNodeCount) {
nPrevNodeCount = vNodesSize;
if (clientInterface) {
clientInterface->NotifyNumConnectionsChanged(vNodesSize);
}
}
}
void CConnman::InactivityCheck(CNode *pnode) {
int64_t nTime = GetSystemTimeInSeconds();
if (nTime - pnode->nTimeConnected > 60) {
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) {
LogPrint(BCLog::NET,
"socket no message in first 60 seconds, %d %d from %d\n",
pnode->nLastRecv != 0, pnode->nLastSend != 0,
pnode->GetId());
pnode->fDisconnect = true;
} else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) {
LogPrintf("socket sending timeout: %is\n",
nTime - pnode->nLastSend);
pnode->fDisconnect = true;
} else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION
? TIMEOUT_INTERVAL
: 90 * 60)) {
LogPrintf("socket receive timeout: %is\n",
nTime - pnode->nLastRecv);
pnode->fDisconnect = true;
} else if (pnode->nPingNonceSent &&
pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 <
GetTimeMicros()) {
LogPrintf("ping timeout: %fs\n",
0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
pnode->fDisconnect = true;
} else if (!pnode->fSuccessfullyConnected) {
LogPrint(BCLog::NET, "version handshake timeout from %d\n",
pnode->GetId());
pnode->fDisconnect = true;
}
}
}
void CConnman::SocketHandler() {
//
// Find which sockets have data to receive
//
struct timeval timeout;
timeout.tv_sec = 0;
// Frequency to poll pnode->vSend
timeout.tv_usec = 50000;
fd_set fdsetRecv;
fd_set fdsetSend;
fd_set fdsetError;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
SOCKET hSocketMax = 0;
bool have_fds = false;
for (const ListenSocket &hListenSocket : vhListenSocket) {
FD_SET(hListenSocket.socket, &fdsetRecv);
hSocketMax = std::max(hSocketMax, hListenSocket.socket);
have_fds = true;
}
{
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
// Implement the following logic:
// * If there is data to send, select() for sending data. As this
// only happens when optimistic write failed, we choose to first
// drain the write buffer in this case before receiving more. This
// avoids needlessly queueing received data, if the remote peer is
// not themselves receiving data. This means properly utilizing
// TCP flow control signalling.
// * Otherwise, if there is space left in the receive buffer,
// select() for receiving data.
// * Hand off all complete messages to the processor, to be handled
// without blocking here.
bool select_recv = !pnode->fPauseRecv;
bool select_send;
{
LOCK(pnode->cs_vSend);
select_send = !pnode->vSendMsg.empty();
}
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
continue;
}
FD_SET(pnode->hSocket, &fdsetError);
hSocketMax = std::max(hSocketMax, pnode->hSocket);
have_fds = true;
if (select_send) {
FD_SET(pnode->hSocket, &fdsetSend);
continue;
}
if (select_recv) {
FD_SET(pnode->hSocket, &fdsetRecv);
}
}
}
int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend,
&fdsetError, &timeout);
if (interruptNet) {
return;
}
if (nSelect == SOCKET_ERROR) {
if (have_fds) {
int nErr = WSAGetLastError();
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
for (unsigned int i = 0; i <= hSocketMax; i++) {
FD_SET(i, &fdsetRecv);
}
}
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
if (!interruptNet.sleep_for(
std::chrono::milliseconds(timeout.tv_usec / 1000))) {
return;
}
}
//
// Accept new connections
//
for (const ListenSocket &hListenSocket : vhListenSocket) {
if (hListenSocket.socket != INVALID_SOCKET &&
FD_ISSET(hListenSocket.socket, &fdsetRecv)) {
AcceptConnection(hListenSocket);
}
}
//
// Service each socket
//
std::vector<CNode *> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode *pnode : vNodesCopy) {
pnode->AddRef();
}
}
for (CNode *pnode : vNodesCopy) {
if (interruptNet) {
return;
}
//
// Receive
//
bool recvSet = false;
bool sendSet = false;
bool errorSet = false;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
continue;
}
recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv);
sendSet = FD_ISSET(pnode->hSocket, &fdsetSend);
errorSet = FD_ISSET(pnode->hSocket, &fdsetError);
}
if (recvSet || errorSet) {
// typical socket buffer is 8K-64K
char pchBuf[0x10000];
int32_t nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
continue;
}
nBytes =
recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
}
if (nBytes > 0) {
bool notify = false;
if (!pnode->ReceiveMsgBytes(*config, pchBuf, nBytes, notify)) {
pnode->CloseSocketDisconnect();
}
RecordBytesRecv(nBytes);
if (notify) {
size_t nSizeAdded = 0;
auto it(pnode->vRecvMsg.begin());
for (; it != pnode->vRecvMsg.end(); ++it) {
if (!it->complete()) {
break;
}
nSizeAdded +=
it->vRecv.size() + CMessageHeader::HEADER_SIZE;
}
{
LOCK(pnode->cs_vProcessMsg);
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(),
pnode->vRecvMsg,
pnode->vRecvMsg.begin(), it);
pnode->nProcessQueueSize += nSizeAdded;
pnode->fPauseRecv =
pnode->nProcessQueueSize > nReceiveFloodSize;
}
WakeMessageHandler();
}
} else if (nBytes == 0) {
// socket closed gracefully
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "socket closed\n");
}
pnode->CloseSocketDisconnect();
} else if (nBytes < 0) {
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
if (!pnode->fDisconnect) {
LogPrintf("socket recv error %s\n",
NetworkErrorString(nErr));
}
pnode->CloseSocketDisconnect();
}
}
}
//
// Send
//
if (sendSet) {
LOCK(pnode->cs_vSend);
size_t nBytes = SocketSendData(pnode);
if (nBytes) {
RecordBytesSent(nBytes);
}
}
InactivityCheck(pnode);
}
{
LOCK(cs_vNodes);
for (CNode *pnode : vNodesCopy) {
pnode->Release();
}
}
}
void CConnman::ThreadSocketHandler() {
while (!interruptNet) {
DisconnectNodes();
NotifyNumConnectionsChanged();
SocketHandler();
}
}
void CConnman::WakeMessageHandler() {
{
std::lock_guard<std::mutex> lock(mutexMsgProc);
fMsgProcWake = true;
}
condMsgProc.notify_one();
}
#ifdef USE_UPNP
static CThreadInterrupt g_upnp_interrupt;
static std::thread g_upnp_thread;
static void ThreadMapPort() {
std::string port = strprintf("%u", GetListenPort());
const char *multicastif = nullptr;
const char *minissdpdpath = nullptr;
struct UPNPDev *devlist = nullptr;
char lanaddr[64];
#ifndef UPNPDISCOVER_SUCCESS
/* miniupnpc 1.5 */
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0);
#elif MINIUPNPC_API_VERSION < 14
/* miniupnpc 1.6 */
int error = 0;
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
#else
/* miniupnpc 1.9.20150730 */
int error = 0;
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
#endif
struct UPNPUrls urls;
struct IGDdatas data;
int r;
r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
if (r == 1) {
if (fDiscover) {
char externalIPAddress[40];
r = UPNP_GetExternalIPAddress(
urls.controlURL, data.first.servicetype, externalIPAddress);
if (r != UPNPCOMMAND_SUCCESS) {
LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
} else {
if (externalIPAddress[0]) {
CNetAddr resolved;
if (LookupHost(externalIPAddress, resolved, false)) {
LogPrintf("UPnP: ExternalIPAddress = %s\n",
resolved.ToString().c_str());
AddLocal(resolved, LOCAL_UPNP);
}
} else {
LogPrintf("UPnP: GetExternalIPAddress failed.\n");
}
}
}
std::string strDesc = "Bitcoin " + FormatFullVersion();
do {
#ifndef UPNPDISCOVER_SUCCESS
/* miniupnpc 1.5 */
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
port.c_str(), port.c_str(), lanaddr,
strDesc.c_str(), "TCP", 0);
#else
/* miniupnpc 1.6 */
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
port.c_str(), port.c_str(), lanaddr,
strDesc.c_str(), "TCP", 0, "0");
#endif
if (r != UPNPCOMMAND_SUCCESS) {
LogPrintf(
"AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
port, port, lanaddr, r, strupnperror(r));
} else {
LogPrintf("UPnP Port Mapping successful.\n");
}
} while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20)));
r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype,
port.c_str(), "TCP", 0);
LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
freeUPNPDevlist(devlist);
devlist = nullptr;
FreeUPNPUrls(&urls);
} else {
LogPrintf("No valid UPnP IGDs found\n");
freeUPNPDevlist(devlist);
devlist = nullptr;
if (r != 0) {
FreeUPNPUrls(&urls);
}
}
}
void StartMapPort() {
if (!g_upnp_thread.joinable()) {
assert(!g_upnp_interrupt);
g_upnp_thread = std::thread(
(std::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)));
}
}
void InterruptMapPort() {
if (g_upnp_thread.joinable()) {
g_upnp_interrupt();
}
}
void StopMapPort() {
if (g_upnp_thread.joinable()) {
g_upnp_thread.join();
g_upnp_interrupt.reset();
}
}
#else
void StartMapPort() {
// Intentionally left blank.
}
void InterruptMapPort() {
// Intentionally left blank.
}
void StopMapPort() {
// Intentionally left blank.
}
#endif
void CConnman::ThreadDNSAddressSeed() {
// goal: only query DNS seeds if address need is acute.
// Avoiding DNS seeds when we don't need them improves user privacy by
// creating fewer identifying DNS requests, reduces trust by giving seeds
// less influence on the network topology, and reduces traffic to the seeds.
if ((addrman.size() > 0) &&
(!gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) {
if (!interruptNet.sleep_for(std::chrono::seconds(11))) {
return;
}
LOCK(cs_vNodes);
int nRelevant = 0;
for (const CNode *pnode : vNodes) {
nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler &&
!pnode->fOneShot && !pnode->m_manual_connection &&
!pnode->fInbound;
}
if (nRelevant >= 2) {
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
return;
}
}
const std::vector<std::string> &vSeeds =
config->GetChainParams().DNSSeeds();
int found = 0;
LogPrintf("Loading addresses from DNS seeds (could take a while)\n");
for (const std::string &seed : vSeeds) {
if (interruptNet) {
return;
}
if (HaveNameProxy()) {
AddOneShot(seed);
} else {
std::vector<CNetAddr> vIPs;
std::vector<CAddress> vAdd;
ServiceFlags requiredServiceBits =
GetDesirableServiceFlags(NODE_NONE);
std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
CNetAddr resolveSource;
if (!resolveSource.SetInternal(host)) {
continue;
}
// Limits number of IPs learned from a DNS seed
unsigned int nMaxIPs = 256;
if (LookupHost(host.c_str(), vIPs, nMaxIPs, true)) {
for (const CNetAddr &ip : vIPs) {
int nOneDay = 24 * 3600;
CAddress addr = CAddress(
CService(ip, config->GetChainParams().GetDefaultPort()),
requiredServiceBits);
// Use a random age between 3 and 7 days old.
addr.nTime = GetTime() - 3 * nOneDay - GetRand(4 * nOneDay);
vAdd.push_back(addr);
found++;
}
addrman.Add(vAdd, resolveSource);
} else {
// We now avoid directly using results from DNS Seeds which do
// not support service bit filtering, instead using them as a
// oneshot to get nodes with our desired service bits.
AddOneShot(seed);
}
}
}
LogPrintf("%d addresses found from DNS seeds\n", found);
}
void CConnman::DumpAddresses() {
int64_t nStart = GetTimeMillis();
CAddrDB adb(config->GetChainParams());
adb.Write(addrman);
LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
addrman.size(), GetTimeMillis() - nStart);
}
void CConnman::ProcessOneShot() {
std::string strDest;
{
LOCK(cs_vOneShots);
if (vOneShots.empty()) {
return;
}
strDest = vOneShots.front();
vOneShots.pop_front();
}
CAddress addr;
CSemaphoreGrant grant(*semOutbound, true);
if (grant) {
OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true);
}
}
bool CConnman::GetTryNewOutboundPeer() {
return m_try_another_outbound_peer;
}
void CConnman::SetTryNewOutboundPeer(bool flag) {
m_try_another_outbound_peer = flag;
LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n",
flag ? "true" : "false");
}
// Return the number of peers we have over our outbound connection limit.
// Exclude peers that are marked for disconnect, or are going to be disconnected
// soon (eg one-shots and feelers).
// Also exclude peers that haven't finished initial connection handshake yet (so
// that we don't decide we're over our desired connection limit, and then evict
// some peer that has finished the handshake).
int CConnman::GetExtraOutboundCount() {
int nOutbound = 0;
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (!pnode->fInbound && !pnode->m_manual_connection &&
!pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot &&
pnode->fSuccessfullyConnected) {
++nOutbound;
}
}
}
return std::max(nOutbound - nMaxOutbound, 0);
}
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect) {
// Connect to specific addresses
if (!connect.empty()) {
for (int64_t nLoop = 0;; nLoop++) {
ProcessOneShot();
for (const std::string &strAddr : connect) {
CAddress addr(CService(), NODE_NONE);
OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(),
false, false, true);
for (int i = 0; i < 10 && i < nLoop; i++) {
if (!interruptNet.sleep_for(
std::chrono::milliseconds(500))) {
return;
}
}
}
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
return;
}
}
}
// Initiate network connections
int64_t nStart = GetTime();
// Minimum time before next feeler connection (in microseconds).
int64_t nNextFeeler =
PoissonNextSend(nStart * 1000 * 1000, FEELER_INTERVAL);
while (!interruptNet) {
ProcessOneShot();
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
return;
}
CSemaphoreGrant grant(*semOutbound);
if (interruptNet) {
return;
}
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
static bool done = false;
if (!done) {
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be "
"available.\n");
CNetAddr local;
local.SetInternal("fixedseeds");
addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()),
local);
done = true;
}
}
//
// Choose an address to connect to based on most recently seen
//
CAddress addrConnect;
// Only connect out to one peer per network group (/16 for IPv4). Do
// this here so we don't have to critsect vNodes inside mapAddresses
// critsect.
int nOutbound = 0;
std::set<std::vector<uint8_t>> setConnected;
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (!pnode->fInbound && !pnode->m_manual_connection) {
// Netgroups for inbound and addnode peers are not excluded
// because our goal here is to not use multiple of our
// limited outbound slots on a single netgroup but inbound
// and addnode peers do not use our outbound slots. Inbound
// peers also have the added issue that they're attacker
// controlled and could be used to prevent us from
// connecting to particular hosts if we used them here.
setConnected.insert(pnode->addr.GetGroup());
nOutbound++;
}
}
}
// Feeler Connections
//
// Design goals:
// * Increase the number of connectable addresses in the tried table.
//
// Method:
// * Choose a random address from new and attempt to connect to it if
// we can connect successfully it is added to tried.
// * Start attempting feeler connections only after node finishes
// making outbound connections.
// * Only make a feeler connection once every few minutes.
//
bool fFeeler = false;
if (nOutbound >= nMaxOutbound && !GetTryNewOutboundPeer()) {
// The current time right now (in microseconds).
int64_t nTime = GetTimeMicros();
if (nTime > nNextFeeler) {
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
fFeeler = true;
} else {
continue;
}
}
addrman.ResolveCollisions();
int64_t nANow = GetAdjustedTime();
int nTries = 0;
while (!interruptNet) {
CAddrInfo addr = addrman.SelectTriedCollision();
// SelectTriedCollision returns an invalid address if it is empty.
if (!fFeeler || !addr.IsValid()) {
addr = addrman.Select(fFeeler);
}
// if we selected an invalid address, restart
if (!addr.IsValid() || setConnected.count(addr.GetGroup()) ||
IsLocal(addr)) {
break;
}
// If we didn't find an appropriate destination after trying 100
// addresses fetched from addrman, stop this loop, and let the outer
// loop run again (which sleeps, adds seed nodes, recalculates
// already-connected network ranges, ...) before trying new addrman
// addresses.
nTries++;
if (nTries > 100) {
break;
}
if (IsLimited(addr)) {
continue;
}
// only consider very recently tried nodes after 30 failed attempts
if (nANow - addr.nLastTry < 600 && nTries < 30) {
continue;
}
// for non-feelers, require all the services we'll want,
// for feelers, only require they be a full node (only because most
// SPV clients don't have a good address DB available)
if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
continue;
}
if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
continue;
}
// do not allow non-default ports, unless after 50 invalid addresses
// selected already.
if (addr.GetPort() != config->GetChainParams().GetDefaultPort() &&
nTries < 50) {
continue;
}
addrConnect = addr;
break;
}
if (addrConnect.IsValid()) {
if (fFeeler) {
// Add small amount of random noise before connection to avoid
// synchronization.
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
if (!interruptNet.sleep_for(
std::chrono::milliseconds(randsleep))) {
return;
}
LogPrint(BCLog::NET, "Making feeler connection to %s\n",
addrConnect.ToString());
}
OpenNetworkConnection(addrConnect,
(int)setConnected.size() >=
std::min(nMaxConnections - 1, 2),
&grant, nullptr, false, fFeeler);
}
}
}
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() {
std::vector<AddedNodeInfo> ret;
std::list<std::string> lAddresses(0);
{
LOCK(cs_vAddedNodes);
ret.reserve(vAddedNodes.size());
std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(),
std::back_inserter(lAddresses));
}
// Build a map of all already connected addresses (by IP:port and by name)
// to inbound/outbound and resolved CService
std::map<CService, bool> mapConnected;
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
{
LOCK(cs_vNodes);
for (const CNode *pnode : vNodes) {
if (pnode->addr.IsValid()) {
mapConnected[pnode->addr] = pnode->fInbound;
}
std::string addrName = pnode->GetAddrName();
if (!addrName.empty()) {
mapConnectedByName[std::move(addrName)] =
std::make_pair(pnode->fInbound,
static_cast<const CService &>(pnode->addr));
}
}
}
for (const std::string &strAddNode : lAddresses) {
CService service(
LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort()));
AddedNodeInfo addedNode{strAddNode, CService(), false, false};
if (service.IsValid()) {
// strAddNode is an IP:port
auto it = mapConnected.find(service);
if (it != mapConnected.end()) {
addedNode.resolvedAddress = service;
addedNode.fConnected = true;
addedNode.fInbound = it->second;
}
} else {
// strAddNode is a name
auto it = mapConnectedByName.find(strAddNode);
if (it != mapConnectedByName.end()) {
addedNode.resolvedAddress = it->second.second;
addedNode.fConnected = true;
addedNode.fInbound = it->second.first;
}
}
ret.emplace_back(std::move(addedNode));
}
return ret;
}
void CConnman::ThreadOpenAddedConnections() {
while (true) {
CSemaphoreGrant grant(*semAddnode);
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
bool tried = false;
for (const AddedNodeInfo &info : vInfo) {
if (!info.fConnected) {
if (!grant.TryAcquire()) {
// If we've used up our semaphore and need a new one, lets
// not wait here since while we are waiting the
// addednodeinfo state might change.
break;
}
tried = true;
CAddress addr(CService(), NODE_NONE);
OpenNetworkConnection(addr, false, &grant,
info.strAddedNode.c_str(), false, false,
true);
if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
return;
}
}
}
// Retry every 60 seconds if a connection was attempted, otherwise two
// seconds.
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) {
return;
}
}
}
// If successful, this moves the passed grant to the constructed node.
void CConnman::OpenNetworkConnection(const CAddress &addrConnect,
bool fCountFailure,
CSemaphoreGrant *grantOutbound,
const char *pszDest, bool fOneShot,
bool fFeeler, bool manual_connection) {
//
// Initiate outbound network connection
//
if (interruptNet) {
return;
}
if (!fNetworkActive) {
return;
}
if (!pszDest) {
if (IsLocal(addrConnect) ||
FindNode(static_cast<CNetAddr>(addrConnect)) ||
(m_banman && m_banman->IsBanned(addrConnect)) ||
FindNode(addrConnect.ToStringIPPort())) {
return;
}
} else if (FindNode(std::string(pszDest))) {
return;
}
CNode *pnode =
ConnectNode(addrConnect, pszDest, fCountFailure, manual_connection);
if (!pnode) {
return;
}
if (grantOutbound) {
grantOutbound->MoveTo(pnode->grantOutbound);
}
if (fOneShot) {
pnode->fOneShot = true;
}
if (fFeeler) {
pnode->fFeeler = true;
}
if (manual_connection) {
pnode->m_manual_connection = true;
}
m_msgproc->InitializeNode(*config, pnode);
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
}
}
void CConnman::ThreadMessageHandler() {
while (!flagInterruptMsgProc) {
std::vector<CNode *> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode *pnode : vNodesCopy) {
pnode->AddRef();
}
}
bool fMoreWork = false;
for (CNode *pnode : vNodesCopy) {
if (pnode->fDisconnect) {
continue;
}
// Receive messages
bool fMoreNodeWork = m_msgproc->ProcessMessages(
*config, pnode, flagInterruptMsgProc);
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
if (flagInterruptMsgProc) {
return;
}
// Send messages
{
LOCK(pnode->cs_sendProcessing);
m_msgproc->SendMessages(*config, pnode, flagInterruptMsgProc);
}
if (flagInterruptMsgProc) {
return;
}
}
{
LOCK(cs_vNodes);
for (CNode *pnode : vNodesCopy) {
pnode->Release();
}
}
WAIT_LOCK(mutexMsgProc, lock);
if (!fMoreWork) {
condMsgProc.wait_until(lock,
std::chrono::steady_clock::now() +
std::chrono::milliseconds(100),
[this] { return fMsgProcWake; });
}
fMsgProcWake = false;
}
}
bool CConnman::BindListenPort(const CService &addrBind, std::string &strError,
bool fWhitelisted) {
strError = "";
int nOne = 1;
// Create socket for listening for incoming connections
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) {
strError = strprintf("Error: Bind address family for %s not supported",
addrBind.ToString());
LogPrintf("%s\n", strError);
return false;
}
SOCKET hListenSocket = CreateSocket(addrBind);
if (hListenSocket == INVALID_SOCKET) {
strError = strprintf("Error: Couldn't open socket for incoming "
"connections (socket returned error %s)",
NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError);
return false;
}
// Allow binding if the port is still in TIME_WAIT state after
// the program was closed and restarted.
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne,
sizeof(int));
// Some systems don't have IPV6_V6ONLY but are always v6only; others do have
// the option and enable it by default or not. Try to enable it, if
// possible.
if (addrBind.IsIPv6()) {
#ifdef IPV6_V6ONLY
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY,
(sockopt_arg_type)&nOne, sizeof(int));
#endif
#ifdef WIN32
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL,
(sockopt_arg_type)&nProtLevel, sizeof(int));
#endif
}
if (::bind(hListenSocket, (struct sockaddr *)&sockaddr, len) ==
SOCKET_ERROR) {
int nErr = WSAGetLastError();
if (nErr == WSAEADDRINUSE) {
strError = strprintf(_("Unable to bind to %s on this computer. %s "
"is probably already running."),
addrBind.ToString(), _(PACKAGE_NAME));
} else {
strError = strprintf(_("Unable to bind to %s on this computer "
"(bind returned error %s)"),
addrBind.ToString(), NetworkErrorString(nErr));
}
LogPrintf("%s\n", strError);
CloseSocket(hListenSocket);
return false;
}
LogPrintf("Bound to %s\n", addrBind.ToString());
// Listen for incoming connections
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) {
strError = strprintf(_("Error: Listening for incoming connections "
"failed (listen returned error %s)"),
NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError);
CloseSocket(hListenSocket);
return false;
}
vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted));
if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) {
AddLocal(addrBind, LOCAL_BIND);
}
return true;
}
void Discover() {
if (!fDiscover) {
return;
}
#ifdef WIN32
// Get local host IP
char pszHostName[256] = "";
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) {
std::vector<CNetAddr> vaddr;
if (LookupHost(pszHostName, vaddr, 0, true)) {
for (const CNetAddr &addr : vaddr) {
if (AddLocal(addr, LOCAL_IF)) {
LogPrintf("%s: %s - %s\n", __func__, pszHostName,
addr.ToString());
}
}
}
}
#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
// Get local host ip
struct ifaddrs *myaddrs;
if (getifaddrs(&myaddrs) == 0) {
for (struct ifaddrs *ifa = myaddrs; ifa != nullptr;
ifa = ifa->ifa_next) {
if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 ||
strcmp(ifa->ifa_name, "lo") == 0 ||
strcmp(ifa->ifa_name, "lo0") == 0) {
continue;
}
if (ifa->ifa_addr->sa_family == AF_INET) {
struct sockaddr_in *s4 =
reinterpret_cast<struct sockaddr_in *>(ifa->ifa_addr);
CNetAddr addr(s4->sin_addr);
if (AddLocal(addr, LOCAL_IF)) {
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name,
addr.ToString());
}
} else if (ifa->ifa_addr->sa_family == AF_INET6) {
struct sockaddr_in6 *s6 =
reinterpret_cast<struct sockaddr_in6 *>(ifa->ifa_addr);
CNetAddr addr(s6->sin6_addr);
if (AddLocal(addr, LOCAL_IF)) {
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name,
addr.ToString());
}
}
}
freeifaddrs(myaddrs);
}
#endif
}
void CConnman::SetNetworkActive(bool active) {
LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active);
if (fNetworkActive == active) {
return;
}
fNetworkActive = active;
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
}
CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In)
: config(&configIn), nSeed0(nSeed0In), nSeed1(nSeed1In) {
SetTryNewOutboundPeer(false);
Options connOptions;
Init(connOptions);
}
NodeId CConnman::GetNewNodeId() {
return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
}
bool CConnman::Bind(const CService &addr, unsigned int flags) {
if (!(flags & BF_EXPLICIT) && IsLimited(addr)) {
return false;
}
std::string strError;
if (!BindListenPort(addr, strError, (flags & BF_WHITELIST) != 0)) {
if ((flags & BF_REPORT_ERROR) && clientInterface) {
clientInterface->ThreadSafeMessageBox(
strError, "", CClientUIInterface::MSG_ERROR);
}
return false;
}
return true;
}
bool CConnman::InitBinds(const std::vector<CService> &binds,
const std::vector<CService> &whiteBinds) {
bool fBound = false;
for (const auto &addrBind : binds) {
fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR));
}
for (const auto &addrBind : whiteBinds) {
fBound |=
Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR | BF_WHITELIST));
}
if (binds.empty() && whiteBinds.empty()) {
struct in_addr inaddr_any;
inaddr_any.s_addr = INADDR_ANY;
struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE);
fBound |= Bind(CService(inaddr_any, GetListenPort()),
!fBound ? BF_REPORT_ERROR : BF_NONE);
}
return fBound;
}
bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) {
Init(connOptions);
{
LOCK(cs_totalBytesRecv);
nTotalBytesRecv = 0;
}
{
LOCK(cs_totalBytesSent);
nTotalBytesSent = 0;
nMaxOutboundTotalBytesSentInCycle = 0;
nMaxOutboundCycleStartTime = 0;
}
if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Failed to listen on any port. Use -listen=0 if you want "
"this."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
for (const auto &strDest : connOptions.vSeedNodes) {
AddOneShot(strDest);
}
if (clientInterface) {
clientInterface->InitMessage(_("Loading P2P addresses..."));
}
// Load addresses from peers.dat
int64_t nStart = GetTimeMillis();
{
CAddrDB adb(config->GetChainParams());
if (adb.Read(addrman)) {
LogPrintf("Loaded %i addresses from peers.dat %dms\n",
addrman.size(), GetTimeMillis() - nStart);
} else {
// Addrman can be in an inconsistent state after failure, reset it
addrman.Clear();
LogPrintf("Invalid or missing peers.dat; recreating\n");
DumpAddresses();
}
}
uiInterface.InitMessage(_("Starting network threads..."));
fAddressesInitialized = true;
if (semOutbound == nullptr) {
// initialize semaphore
semOutbound = std::make_unique<CSemaphore>(
std::min((nMaxOutbound + nMaxFeeler), nMaxConnections));
}
if (semAddnode == nullptr) {
// initialize semaphore
semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
}
//
// Start threads
//
assert(m_msgproc);
InterruptSocks5(false);
interruptNet.reset();
flagInterruptMsgProc = false;
{
LOCK(mutexMsgProc);
fMsgProcWake = false;
}
// Send and receive from sockets, accept connections
threadSocketHandler = std::thread(
&TraceThread<std::function<void()>>, "net",
std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
if (!gArgs.GetBoolArg("-dnsseed", true)) {
LogPrintf("DNS seeding disabled\n");
} else {
threadDNSAddressSeed =
std::thread(&TraceThread<std::function<void()>>, "dnsseed",
std::function<void()>(
std::bind(&CConnman::ThreadDNSAddressSeed, this)));
}
// Initiate outbound connections from -addnode
threadOpenAddedConnections =
std::thread(&TraceThread<std::function<void()>>, "addcon",
std::function<void()>(std::bind(
&CConnman::ThreadOpenAddedConnections, this)));
if (connOptions.m_use_addrman_outgoing &&
!connOptions.m_specified_outgoing.empty()) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Cannot provide specific connections and have addrman find "
"outgoing connections at the same."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
if (connOptions.m_use_addrman_outgoing ||
!connOptions.m_specified_outgoing.empty()) {
threadOpenConnections =
std::thread(&TraceThread<std::function<void()>>, "opencon",
std::function<void()>(
std::bind(&CConnman::ThreadOpenConnections, this,
connOptions.m_specified_outgoing)));
}
// Process messages
threadMessageHandler =
std::thread(&TraceThread<std::function<void()>>, "msghand",
std::function<void()>(
std::bind(&CConnman::ThreadMessageHandler, this)));
// Dump network addresses
scheduler.scheduleEvery(
[this]() {
this->DumpAddresses();
return true;
},
DUMP_PEERS_INTERVAL * 1000);
return true;
}
-BanMan::BanMan(const CChainParams &_params,
+BanMan::BanMan(fs::path ban_file, const CChainParams &chainParams,
CClientUIInterface *client_interface)
- : clientInterface(client_interface), params(_params) {
+ : clientInterface(client_interface),
+ m_ban_db(std::move(ban_file), chainParams) {
if (clientInterface) {
clientInterface->InitMessage(_("Loading banlist..."));
}
// Load addresses from banlist.dat
int64_t nStart = GetTimeMillis();
setBannedIsDirty = false;
- CBanDB bandb(params);
banmap_t banmap;
- if (bandb.Read(banmap)) {
+ if (m_ban_db.Read(banmap)) {
// thread save setter
SetBanned(banmap);
// no need to write down, just read data
SetBannedSetDirty(false);
// sweep out unused entries
SweepBanned();
LogPrint(BCLog::NET,
"Loaded %d banned node ips/subnets from banlist.dat %dms\n",
banmap.size(), GetTimeMillis() - nStart);
} else {
LogPrintf("Invalid or missing banlist.dat; recreating\n");
// force write
SetBannedSetDirty(true);
DumpBanlist();
}
}
BanMan::~BanMan() {
DumpBanlist();
}
class CNetCleanup {
public:
CNetCleanup() {}
~CNetCleanup() {
#ifdef WIN32
// Shutdown Windows Sockets
WSACleanup();
#endif
}
} instance_of_cnetcleanup;
void CConnman::Interrupt() {
{
std::lock_guard<std::mutex> lock(mutexMsgProc);
flagInterruptMsgProc = true;
}
condMsgProc.notify_all();
interruptNet();
InterruptSocks5(true);
if (semOutbound) {
for (int i = 0; i < (nMaxOutbound + nMaxFeeler); i++) {
semOutbound->post();
}
}
if (semAddnode) {
for (int i = 0; i < nMaxAddnode; i++) {
semAddnode->post();
}
}
}
void CConnman::Stop() {
if (threadMessageHandler.joinable()) {
threadMessageHandler.join();
}
if (threadOpenConnections.joinable()) {
threadOpenConnections.join();
}
if (threadOpenAddedConnections.joinable()) {
threadOpenAddedConnections.join();
}
if (threadDNSAddressSeed.joinable()) {
threadDNSAddressSeed.join();
}
if (threadSocketHandler.joinable()) {
threadSocketHandler.join();
}
if (fAddressesInitialized) {
DumpAddresses();
fAddressesInitialized = false;
}
// Close sockets
for (CNode *pnode : vNodes) {
pnode->CloseSocketDisconnect();
}
for (ListenSocket &hListenSocket : vhListenSocket) {
if (hListenSocket.socket != INVALID_SOCKET) {
if (!CloseSocket(hListenSocket.socket)) {
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n",
NetworkErrorString(WSAGetLastError()));
}
}
}
// clean up some globals (to help leak detection)
for (CNode *pnode : vNodes) {
DeleteNode(pnode);
}
for (CNode *pnode : vNodesDisconnected) {
DeleteNode(pnode);
}
vNodes.clear();
vNodesDisconnected.clear();
vhListenSocket.clear();
semOutbound.reset();
semAddnode.reset();
}
void CConnman::DeleteNode(CNode *pnode) {
assert(pnode);
bool fUpdateConnectionTime = false;
m_msgproc->FinalizeNode(*config, pnode->GetId(), fUpdateConnectionTime);
if (fUpdateConnectionTime) {
addrman.Connected(pnode->addr);
}
delete pnode;
}
CConnman::~CConnman() {
Interrupt();
Stop();
}
size_t CConnman::GetAddressCount() const {
return addrman.size();
}
void CConnman::SetServices(const CService &addr, ServiceFlags nServices) {
addrman.SetServices(addr, nServices);
}
void CConnman::MarkAddressGood(const CAddress &addr) {
addrman.Good(addr);
}
void CConnman::AddNewAddresses(const std::vector<CAddress> &vAddr,
const CAddress &addrFrom, int64_t nTimePenalty) {
addrman.Add(vAddr, addrFrom, nTimePenalty);
}
std::vector<CAddress> CConnman::GetAddresses() {
return addrman.GetAddr();
}
bool CConnman::AddNode(const std::string &strNode) {
LOCK(cs_vAddedNodes);
for (const std::string &it : vAddedNodes) {
if (strNode == it) {
return false;
}
}
vAddedNodes.push_back(strNode);
return true;
}
bool CConnman::RemoveAddedNode(const std::string &strNode) {
LOCK(cs_vAddedNodes);
for (std::vector<std::string>::iterator it = vAddedNodes.begin();
it != vAddedNodes.end(); ++it) {
if (strNode == *it) {
vAddedNodes.erase(it);
return true;
}
}
return false;
}
size_t CConnman::GetNodeCount(NumConnections flags) {
LOCK(cs_vNodes);
// Shortcut if we want total
if (flags == CConnman::CONNECTIONS_ALL) {
return vNodes.size();
}
int nNum = 0;
for (const auto &pnode : vNodes) {
if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
nNum++;
}
}
return nNum;
}
void CConnman::GetNodeStats(std::vector<CNodeStats> &vstats) {
vstats.clear();
LOCK(cs_vNodes);
vstats.reserve(vNodes.size());
for (CNode *pnode : vNodes) {
vstats.emplace_back();
pnode->copyStats(vstats.back());
}
}
bool CConnman::DisconnectNode(const std::string &strNode) {
LOCK(cs_vNodes);
if (CNode *pnode = FindNode(strNode)) {
pnode->fDisconnect = true;
return true;
}
return false;
}
bool CConnman::DisconnectNode(const CSubNet &subnet) {
bool disconnected = false;
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (subnet.Match(pnode->addr)) {
pnode->fDisconnect = true;
disconnected = true;
}
}
return disconnected;
}
bool CConnman::DisconnectNode(const CNetAddr &addr) {
return DisconnectNode(CSubNet(addr));
}
bool CConnman::DisconnectNode(NodeId id) {
LOCK(cs_vNodes);
for (CNode *pnode : vNodes) {
if (id == pnode->GetId()) {
pnode->fDisconnect = true;
return true;
}
}
return false;
}
void CConnman::RecordBytesRecv(uint64_t bytes) {
LOCK(cs_totalBytesRecv);
nTotalBytesRecv += bytes;
}
void CConnman::RecordBytesSent(uint64_t bytes) {
LOCK(cs_totalBytesSent);
nTotalBytesSent += bytes;
uint64_t now = GetTime();
if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) {
// timeframe expired, reset cycle
nMaxOutboundCycleStartTime = now;
nMaxOutboundTotalBytesSentInCycle = 0;
}
// TODO, exclude whitebind peers
nMaxOutboundTotalBytesSentInCycle += bytes;
}
void CConnman::SetMaxOutboundTarget(uint64_t limit) {
LOCK(cs_totalBytesSent);
nMaxOutboundLimit = limit;
}
uint64_t CConnman::GetMaxOutboundTarget() {
LOCK(cs_totalBytesSent);
return nMaxOutboundLimit;
}
uint64_t CConnman::GetMaxOutboundTimeframe() {
LOCK(cs_totalBytesSent);
return nMaxOutboundTimeframe;
}
uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() {
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0) {
return 0;
}
if (nMaxOutboundCycleStartTime == 0) {
return nMaxOutboundTimeframe;
}
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
uint64_t now = GetTime();
return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
}
void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) {
LOCK(cs_totalBytesSent);
if (nMaxOutboundTimeframe != timeframe) {
// reset measure-cycle in case of changing the timeframe.
nMaxOutboundCycleStartTime = GetTime();
}
nMaxOutboundTimeframe = timeframe;
}
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) {
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0) {
return false;
}
if (historicalBlockServingLimit) {
// keep a large enough buffer to at least relay each block once.
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
uint64_t buffer = timeLeftInCycle / 600 * ONE_MEGABYTE;
if (buffer >= nMaxOutboundLimit ||
nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) {
return true;
}
} else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) {
return true;
}
return false;
}
uint64_t CConnman::GetOutboundTargetBytesLeft() {
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0) {
return 0;
}
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
? 0
: nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
}
uint64_t CConnman::GetTotalBytesRecv() {
LOCK(cs_totalBytesRecv);
return nTotalBytesRecv;
}
uint64_t CConnman::GetTotalBytesSent() {
LOCK(cs_totalBytesSent);
return nTotalBytesSent;
}
ServiceFlags CConnman::GetLocalServices() const {
return nLocalServices;
}
void CConnman::SetBestHeight(int height) {
nBestHeight.store(height, std::memory_order_release);
}
int CConnman::GetBestHeight() const {
return nBestHeight.load(std::memory_order_acquire);
}
unsigned int CConnman::GetReceiveFloodSize() const {
return nReceiveFloodSize;
}
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn,
int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn,
uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn,
const CAddress &addrBindIn, const std::string &addrNameIn,
bool fInboundIn)
: nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn),
addrBind(addrBindIn), fInbound(fInboundIn),
nKeyedNetGroup(nKeyedNetGroupIn), addrKnown(5000, 0.001),
filterInventoryKnown(50000, 0.000001), id(idIn),
nLocalHostNonce(nLocalHostNonceIn), nLocalServices(nLocalServicesIn),
nMyStartingHeight(nMyStartingHeightIn) {
hSocket = hSocketIn;
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
strSubVer = "";
hashContinue = uint256();
filterInventoryKnown.reset();
pfilter = std::make_unique<CBloomFilter>();
for (const std::string &msg : getAllNetMessageTypes()) {
mapRecvBytesPerMsgCmd[msg] = 0;
}
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
if (fLogIPs) {
LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
} else {
LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
}
}
CNode::~CNode() {
CloseSocket(hSocket);
}
void CNode::AskFor(const CInv &inv) {
if (mapAskFor.size() > MAPASKFOR_MAX_SZ ||
setAskFor.size() > SETASKFOR_MAX_SZ) {
return;
}
// a peer may not have multiple non-responded queue positions for a single
// inv item.
if (!setAskFor.insert(inv.hash).second) {
return;
}
// We're using mapAskFor as a priority queue, the key is the earliest time
// the request can be sent.
int64_t nRequestTime;
limitedmap<uint256, int64_t>::const_iterator it =
mapAlreadyAskedFor.find(inv.hash);
if (it != mapAlreadyAskedFor.end()) {
nRequestTime = it->second;
} else {
nRequestTime = 0;
}
LogPrint(BCLog::NET, "askfor %s %d (%s) peer=%d\n", inv.ToString(),
nRequestTime, FormatISO8601DateTime(nRequestTime / 1000000), id);
// Make sure not to reuse time indexes to keep things in the same order
int64_t nNow = GetTimeMicros() - 1000000;
static int64_t nLastTime;
++nLastTime;
nNow = std::max(nNow, nLastTime);
nLastTime = nNow;
// Each retry is 2 minutes after the last
nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow);
if (it != mapAlreadyAskedFor.end()) {
mapAlreadyAskedFor.update(it, nRequestTime);
} else {
mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime));
}
mapAskFor.insert(std::make_pair(nRequestTime, inv));
}
bool CConnman::NodeFullyConnected(const CNode *pnode) {
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
}
void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) {
size_t nMessageSize = msg.data.size();
size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE;
LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n",
SanitizeString(msg.command.c_str()), nMessageSize, pnode->GetId());
std::vector<uint8_t> serializedHeader;
serializedHeader.reserve(CMessageHeader::HEADER_SIZE);
uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize);
CMessageHeader hdr(config->GetChainParams().NetMagic(), msg.command.c_str(),
nMessageSize);
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr};
size_t nBytesSent = 0;
{
LOCK(pnode->cs_vSend);
bool optimisticSend(pnode->vSendMsg.empty());
// log total amount of bytes per command
pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize;
pnode->nSendSize += nTotalSize;
if (pnode->nSendSize > nSendBufferMaxSize) {
pnode->fPauseSend = true;
}
pnode->vSendMsg.push_back(std::move(serializedHeader));
if (nMessageSize) {
pnode->vSendMsg.push_back(std::move(msg.data));
}
// If write queue empty, attempt "optimistic write"
if (optimisticSend == true) {
nBytesSent = SocketSendData(pnode);
}
}
if (nBytesSent) {
RecordBytesSent(nBytesSent);
}
}
bool CConnman::ForNode(NodeId id, std::function<bool(CNode *pnode)> func) {
CNode *found = nullptr;
LOCK(cs_vNodes);
for (auto &&pnode : vNodes) {
if (pnode->GetId() == id) {
found = pnode;
break;
}
}
return found != nullptr && NodeFullyConnected(found) && func(found);
}
int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) {
return nNow + int64_t(log1p(GetRand(1ULL << 48) *
-0.0000000000000035527136788 /* -1/2^48 */) *
average_interval_seconds * -1000000.0 +
0.5);
}
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const {
return CSipHasher(nSeed0, nSeed1).Write(id);
}
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const {
std::vector<uint8_t> vchNetGroup(ad.GetGroup());
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP)
.Write(vchNetGroup.data(), vchNetGroup.size())
.Finalize();
}
/**
* This function convert MaxBlockSize from byte to
* MB with a decimal precision one digit rounded down
* E.g.
* 1660000 -> 1.6
* 2010000 -> 2.0
* 1000000 -> 1.0
* 230000 -> 0.2
* 50000 -> 0.0
*
* NB behavior for EB<1MB not standardized yet still
* the function applies the same algo used for
* EB greater or equal to 1MB
*/
std::string getSubVersionEB(uint64_t MaxBlockSize) {
// Prepare EB string we are going to add to SubVer:
// 1) translate from byte to MB and convert to string
// 2) limit the EB string to the first decimal digit (floored)
std::stringstream ebMBs;
ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10));
std::string eb = ebMBs.str();
eb.insert(eb.size() - 1, ".", 1);
if (eb.substr(0, 1) == ".") {
eb = "0" + eb;
}
return eb;
}
std::string userAgent(const Config &config) {
// format excessive blocksize value
std::string eb = getSubVersionEB(config.GetMaxBlockSize());
std::vector<std::string> uacomments;
uacomments.push_back("EB" + eb);
// Comments are checked for char compliance at startup, it is safe to add
// them to the user agent string
for (const std::string &cmt : gArgs.GetArgs("-uacomment")) {
uacomments.push_back(cmt);
}
// Size compliance is checked at startup, it is safe to not check it again
std::string subversion =
FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, uacomments);
return subversion;
}
diff --git a/src/net.h b/src/net.h
index 5fa8aec43..0ceeeca64 100644
--- a/src/net.h
+++ b/src/net.h
@@ -1,901 +1,901 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Copyright (c) 2017 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
#include <addrdb.h>
#include <addrman.h>
#include <amount.h>
#include <bloom.h>
#include <chainparams.h>
#include <compat.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <limitedmap.h>
#include <netaddress.h>
#include <protocol.h>
#include <random.h>
#include <streams.h>
#include <sync.h>
#include <threadinterrupt.h>
#include <uint256.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <deque>
#include <memory>
#include <thread>
#ifndef WIN32
#include <arpa/inet.h>
#endif
class Config;
class CNode;
class CScheduler;
/**
* Time between pings automatically sent out for latency probing and keepalive
* (in seconds).
*/
static const int PING_INTERVAL = 2 * 60;
/**
* Time after which to disconnect, after waiting for a ping response (or
* inactivity).
*/
static const int TIMEOUT_INTERVAL = 20 * 60;
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
static const int FEELER_INTERVAL = 120;
/** The maximum number of entries in an 'inv' protocol message */
static const unsigned int MAX_INV_SZ = 50000;
static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv),
"Max protocol message length must be greater than largest "
"possible INV message");
/** The maximum number of new addresses to accumulate before announcing. */
static const unsigned int MAX_ADDR_TO_SEND = 1000;
/** Maximum length of strSubVer in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
/** Maximum number of automatic outgoing nodes */
static const int MAX_OUTBOUND_CONNECTIONS = 8;
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** -upnp default */
#ifdef USE_UPNP
static const bool DEFAULT_UPNP = USE_UPNP;
#else
static const bool DEFAULT_UPNP = false;
#endif
/** The maximum number of entries in mapAskFor */
static const size_t MAPASKFOR_MAX_SZ = MAX_INV_SZ;
/** The maximum number of entries in setAskFor (larger due to getdata latency)*/
static const size_t SETASKFOR_MAX_SZ = 2 * MAX_INV_SZ;
/** The maximum number of peer connections to maintain. */
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
/** The default for -maxuploadtarget. 0 = Unlimited */
static const uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
/** The default timeframe for -maxuploadtarget. 1 day. */
static const uint64_t MAX_UPLOAD_TIMEFRAME = 60 * 60 * 24;
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
static const bool DEFAULT_FORCEDNSSEED = false;
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
// Default 24-hour ban.
// NOTE: When adjusting this, update rpcnet:setban's help ("24h")
static constexpr unsigned int DEFAULT_MISBEHAVING_BANTIME = 60 * 60 * 24;
typedef int64_t NodeId;
struct AddedNodeInfo {
std::string strAddedNode;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
struct CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg {
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg &&) = default;
CSerializedNetMsg &operator=(CSerializedNetMsg &&) = default;
// No copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg &msg) = delete;
CSerializedNetMsg &operator=(const CSerializedNetMsg &) = delete;
std::vector<uint8_t> data;
std::string command;
};
class BanMan {
public:
// Denial-of-service detection/prevention
// The idea is to detect peers that are behaving
// badly and disconnect/ban them, but do it in a
// one-coding-mistake-won't-shatter-the-entire-network
// way.
// IMPORTANT: There should be nothing I can give a
// node that it will forward on that will make that
// node's peers drop it. If there is, an attacker
// can isolate a node and/or try to split the network.
// Dropping a node for sending stuff that is invalid
// now but might be valid in a later version is also
// dangerous, because it can cause a network split
// between nodes running old code and nodes running
// new code.
~BanMan();
- BanMan(const CChainParams &_params, CClientUIInterface *client_interface);
+ BanMan(fs::path ban_file, const CChainParams &chainParams,
+ CClientUIInterface *client_interface);
void Ban(const CNetAddr &netAddr, const BanReason &reason,
int64_t bantimeoffset = 0, bool sinceUnixEpoch = false);
void Ban(const CSubNet &subNet, const BanReason &reason,
int64_t bantimeoffset = 0, bool sinceUnixEpoch = false);
// needed for unit testing
void ClearBanned();
bool IsBanned(CNetAddr ip);
bool IsBanned(CSubNet subnet);
bool Unban(const CNetAddr &ip);
bool Unban(const CSubNet &ip);
void GetBanned(banmap_t &banmap);
void DumpBanlist();
private:
void SetBanned(const banmap_t &banmap);
bool BannedSetIsDirty();
//! set the "dirty" flag for the banlist
void SetBannedSetDirty(bool dirty = true);
//! clean unused entries (if bantime has expired)
void SweepBanned();
banmap_t setBanned;
CCriticalSection cs_setBanned;
bool setBannedIsDirty;
CClientUIInterface *clientInterface = nullptr;
-
- const CChainParams ¶ms;
+ CBanDB m_ban_db;
};
class NetEventsInterface;
class CConnman {
public:
enum NumConnections {
CONNECTIONS_NONE = 0,
CONNECTIONS_IN = (1U << 0),
CONNECTIONS_OUT = (1U << 1),
CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
};
struct Options {
ServiceFlags nLocalServices = NODE_NONE;
int nMaxConnections = 0;
int nMaxOutbound = 0;
int nMaxAddnode = 0;
int nMaxFeeler = 0;
int nBestHeight = 0;
CClientUIInterface *uiInterface = nullptr;
NetEventsInterface *m_msgproc = nullptr;
BanMan *m_banman = nullptr;
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundTimeframe = 0;
uint64_t nMaxOutboundLimit = 0;
std::vector<std::string> vSeedNodes;
std::vector<CSubNet> vWhitelistedRange;
std::vector<CService> vBinds, vWhiteBinds;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
};
void Init(const Options &connOptions) {
nLocalServices = connOptions.nLocalServices;
nMaxConnections = connOptions.nMaxConnections;
nMaxOutbound =
std::min(connOptions.nMaxOutbound, connOptions.nMaxConnections);
nMaxAddnode = connOptions.nMaxAddnode;
nMaxFeeler = connOptions.nMaxFeeler;
nBestHeight = connOptions.nBestHeight;
clientInterface = connOptions.uiInterface;
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
{
LOCK(cs_totalBytesSent);
nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
vWhitelistedRange = connOptions.vWhitelistedRange;
{
LOCK(cs_vAddedNodes);
vAddedNodes = connOptions.m_added_nodes;
}
}
CConnman(const Config &configIn, uint64_t seed0, uint64_t seed1);
~CConnman();
bool Start(CScheduler &scheduler, const Options &options);
void Stop();
void Interrupt();
bool GetNetworkActive() const { return fNetworkActive; };
void SetNetworkActive(bool active);
void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure,
CSemaphoreGrant *grantOutbound = nullptr,
const char *strDest = nullptr,
bool fOneShot = false, bool fFeeler = false,
bool manual_connection = false);
bool CheckIncomingNonce(uint64_t nonce);
bool ForNode(NodeId id, std::function<bool(CNode *pnode)> func);
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg);
template <typename Callable> void ForEachNode(Callable &&func) {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
func(node);
}
}
};
template <typename Callable> void ForEachNode(Callable &&func) const {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
func(node);
}
}
};
template <typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable &&pre, CallableAfter &&post) {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
pre(node);
}
}
post();
};
template <typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable &&pre, CallableAfter &&post) const {
LOCK(cs_vNodes);
for (auto &&node : vNodes) {
if (NodeFullyConnected(node)) {
pre(node);
}
}
post();
};
// Addrman functions
size_t GetAddressCount() const;
void SetServices(const CService &addr, ServiceFlags nServices);
void MarkAddressGood(const CAddress &addr);
void AddNewAddresses(const std::vector<CAddress> &vAddr,
const CAddress &addrFrom, int64_t nTimePenalty = 0);
std::vector<CAddress> GetAddresses();
// This allows temporarily exceeding nMaxOutbound, with the goal of finding
// a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer();
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraOutboundCount();
bool AddNode(const std::string &node);
bool RemoveAddedNode(const std::string &node);
std::vector<AddedNodeInfo> GetAddedNodeInfo();
size_t GetNodeCount(NumConnections num);
void GetNodeStats(std::vector<CNodeStats> &vstats);
bool DisconnectNode(const std::string &node);
bool DisconnectNode(const CSubNet &subnet);
bool DisconnectNode(const CNetAddr &addr);
bool DisconnectNode(NodeId id);
ServiceFlags GetLocalServices() const;
//! set the max outbound target in bytes.
void SetMaxOutboundTarget(uint64_t limit);
uint64_t GetMaxOutboundTarget();
//! set the timeframe for the max outbound target.
void SetMaxOutboundTimeframe(uint64_t timeframe);
uint64_t GetMaxOutboundTimeframe();
//! check if the outbound target is reached.
// If param historicalBlockServingLimit is set true, the function will
// response true if the limit for serving historical blocks has been
// reached.
bool OutboundTargetReached(bool historicalBlockServingLimit);
//! response the bytes left in the current max outbound cycle
// in case of no limit, it will always response 0
uint64_t GetOutboundTargetBytesLeft();
//! response the time in second left in the current max outbound cycle
// in case of no limit, it will always response 0
uint64_t GetMaxOutboundTimeLeftInCycle();
uint64_t GetTotalBytesRecv();
uint64_t GetTotalBytesSent();
void SetBestHeight(int height);
int GetBestHeight() const;
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
unsigned int GetReceiveFloodSize() const;
void WakeMessageHandler();
private:
struct ListenSocket {
SOCKET socket;
bool whitelisted;
ListenSocket(SOCKET socket_, bool whitelisted_)
: socket(socket_), whitelisted(whitelisted_) {}
};
bool BindListenPort(const CService &bindAddr, std::string &strError,
bool fWhitelisted = false);
bool Bind(const CService &addr, unsigned int flags);
bool InitBinds(const std::vector<CService> &binds,
const std::vector<CService> &whiteBinds);
void ThreadOpenAddedConnections();
void AddOneShot(const std::string &strDest);
void ProcessOneShot();
void ThreadOpenConnections(std::vector<std::string> connect);
void ThreadMessageHandler();
void AcceptConnection(const ListenSocket &hListenSocket);
void DisconnectNodes();
void NotifyNumConnectionsChanged();
void InactivityCheck(CNode *pnode);
void SocketHandler();
void ThreadSocketHandler();
void ThreadDNSAddressSeed();
uint64_t CalculateKeyedNetGroup(const CAddress &ad) const;
CNode *FindNode(const CNetAddr &ip);
CNode *FindNode(const CSubNet &subNet);
CNode *FindNode(const std::string &addrName);
CNode *FindNode(const CService &addr);
bool AttemptToEvictConnection();
CNode *ConnectNode(CAddress addrConnect, const char *pszDest,
bool fCountFailure, bool manual_connection);
bool IsWhitelistedRange(const CNetAddr &addr);
void DeleteNode(CNode *pnode);
NodeId GetNewNodeId();
size_t SocketSendData(CNode *pnode) const;
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes);
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode *pnode);
const Config *config;
// Network usage totals
CCriticalSection cs_totalBytesRecv;
CCriticalSection cs_totalBytesSent;
uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv);
uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent);
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundTimeframe GUARDED_BY(cs_totalBytesSent);
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
std::vector<CSubNet> vWhitelistedRange;
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
CAddrMan addrman;
std::deque<std::string> vOneShots GUARDED_BY(cs_vOneShots);
CCriticalSection cs_vOneShots;
std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
CCriticalSection cs_vAddedNodes;
std::vector<CNode *> vNodes;
std::list<CNode *> vNodesDisconnected;
mutable CCriticalSection cs_vNodes;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
/** Services this instance offers */
ServiceFlags nLocalServices;
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
int nMaxConnections;
int nMaxOutbound;
int nMaxAddnode;
int nMaxFeeler;
std::atomic<int> nBestHeight;
CClientUIInterface *clientInterface;
NetEventsInterface *m_msgproc;
BanMan *m_banman;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
/** flag for waking the message processor. */
bool fMsgProcWake;
std::condition_variable condMsgProc;
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
CThreadInterrupt interruptNet;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadMessageHandler;
/**
* Flag for deciding to connect to an extra outbound peer, in excess of
* nMaxOutbound.
* This takes the place of a feeler connection.
*/
std::atomic_bool m_try_another_outbound_peer;
friend struct CConnmanTest;
};
extern std::unique_ptr<CConnman> g_connman;
extern std::unique_ptr<BanMan> g_banman;
void Discover();
void StartMapPort();
void InterruptMapPort();
void StopMapPort();
unsigned short GetListenPort();
bool BindListenPort(const CService &bindAddr, std::string &strError,
bool fWhitelisted = false);
/**
* Interface for message handling
*/
class NetEventsInterface {
public:
virtual bool ProcessMessages(const Config &config, CNode *pnode,
std::atomic<bool> &interrupt) = 0;
virtual bool SendMessages(const Config &config, CNode *pnode,
std::atomic<bool> &interrupt) = 0;
virtual void InitializeNode(const Config &config, CNode *pnode) = 0;
virtual void FinalizeNode(const Config &config, NodeId id,
bool &update_connection_time) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived
* classes. If that restriction is no longer desired, this should be made
* public and virtual.
*/
~NetEventsInterface() = default;
};
enum {
// unknown
LOCAL_NONE,
// address a local interface listens on
LOCAL_IF,
// address explicit bound to
LOCAL_BIND,
// address reported by UPnP
LOCAL_UPNP,
// address explicitly specified (-externalip=)
LOCAL_MANUAL,
LOCAL_MAX
};
bool IsPeerAddrLocalGood(CNode *pnode);
void AdvertiseLocal(CNode *pnode);
void SetLimited(enum Network net, bool fLimited = true);
bool IsLimited(enum Network net);
bool IsLimited(const CNetAddr &addr);
bool AddLocal(const CService &addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr &addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService &addr);
bool SeenLocal(const CService &addr);
bool IsLocal(const CService &addr);
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
bool IsReachable(enum Network net);
bool IsReachable(const CNetAddr &addr);
CAddress GetLocalAddress(const CNetAddr *paddrPeer,
ServiceFlags nLocalServices);
extern bool fDiscover;
extern bool fListen;
extern bool fRelayTxes;
extern limitedmap<uint256, int64_t> mapAlreadyAskedFor;
struct LocalServiceInfo {
int nScore;
int nPort;
};
extern CCriticalSection cs_mapLocalHost;
extern std::map<CNetAddr, LocalServiceInfo>
mapLocalHost GUARDED_BY(cs_mapLocalHost);
// Command, total bytes
typedef std::map<std::string, uint64_t> mapMsgCmdSize;
/**
* POD that contains various stats about a node.
* Usually constructed from CConman::GetNodeStats. Stats are filled from the
* node using CNode::copyStats.
*/
struct CNodeStats {
NodeId nodeid;
ServiceFlags nServices;
bool fRelayTxes;
int64_t nLastSend;
int64_t nLastRecv;
int64_t nTimeConnected;
int64_t nTimeOffset;
std::string addrName;
int nVersion;
std::string cleanSubVer;
bool fInbound;
bool m_manual_connection;
int nStartingHeight;
uint64_t nSendBytes;
mapMsgCmdSize mapSendBytesPerMsgCmd;
uint64_t nRecvBytes;
mapMsgCmdSize mapRecvBytesPerMsgCmd;
bool fWhitelisted;
double dPingTime;
double dPingWait;
double dMinPing;
Amount minFeeFilter;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
};
class CNetMessage {
private:
mutable CHash256 hasher;
mutable uint256 data_hash;
public:
// Parsing header (false) or data (true)
bool in_data;
// Partially received header.
CDataStream hdrbuf;
// Complete header.
CMessageHeader hdr;
uint32_t nHdrPos;
// Received message data.
CDataStream vRecv;
uint32_t nDataPos;
// Time (in microseconds) of message receipt.
int64_t nTime;
CNetMessage(const CMessageHeader::MessageMagic &pchMessageStartIn,
int nTypeIn, int nVersionIn)
: hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn),
vRecv(nTypeIn, nVersionIn) {
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
nTime = 0;
}
bool complete() const {
if (!in_data) {
return false;
}
return (hdr.nMessageSize == nDataPos);
}
const uint256 &GetMessageHash() const;
void SetVersion(int nVersionIn) {
hdrbuf.SetVersion(nVersionIn);
vRecv.SetVersion(nVersionIn);
}
int readHeader(const Config &config, const char *pch, uint32_t nBytes);
int readData(const char *pch, uint32_t nBytes);
};
/** Information about a peer */
class CNode {
friend class CConnman;
public:
// socket
std::atomic<ServiceFlags> nServices{NODE_NONE};
SOCKET hSocket GUARDED_BY(cs_hSocket);
// Total size of all vSendMsg entries.
size_t nSendSize{0};
// Offset inside the first vSendMsg already sent.
size_t nSendOffset{0};
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
std::deque<std::vector<uint8_t>> vSendMsg GUARDED_BY(cs_vSend);
CCriticalSection cs_vSend;
CCriticalSection cs_hSocket;
CCriticalSection cs_vRecv;
CCriticalSection cs_vProcessMsg;
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
size_t nProcessQueueSize{0};
CCriticalSection cs_sendProcessing;
std::deque<CInv> vRecvGetData;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<int> nRecvVersion{INIT_PROTO_VERSION};
std::atomic<int64_t> nLastSend{0};
std::atomic<int64_t> nLastRecv{0};
const int64_t nTimeConnected;
std::atomic<int64_t> nTimeOffset{0};
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
std::atomic<int> nVersion{0};
// strSubVer is whatever byte array we read from the wire. However, this
// field is intended to be printed out, displayed to humans in various forms
// and so on. So we sanitize it and store the sanitized version in
// cleanSubVer. The original should be used when dealing with the network or
// wire types and the cleaned string used when displayed or logged.
std::string strSubVer GUARDED_BY(cs_SubVer), cleanSubVer
GUARDED_BY(cs_SubVer);
// Used for both cleanSubVer and strSubVer.
CCriticalSection cs_SubVer;
// This peer can bypass DoS banning.
bool fWhitelisted{false};
// If true this node is being used as a short lived feeler.
bool fFeeler{false};
bool fOneShot{false};
bool m_manual_connection{false};
// set by version message
bool fClient{false};
// after BIP159, set by version message
bool m_limited_node{false};
const bool fInbound;
std::atomic_bool fSuccessfullyConnected{false};
std::atomic_bool fDisconnect{false};
// We use fRelayTxes for two purposes -
// a) it allows us to not relay tx invs before receiving the peer's version
// message.
// b) the peer may tell us in its version message that we should not relay
// tx invs unless it loads a bloom filter.
bool fRelayTxes GUARDED_BY(cs_filter){false};
bool fSentAddr{false};
CSemaphoreGrant grantOutbound;
mutable CCriticalSection cs_filter;
std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter);
std::atomic<int> nRefCount{0};
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
protected:
mapMsgCmdSize mapSendBytesPerMsgCmd;
mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
public:
uint256 hashContinue;
std::atomic<int> nStartingHeight{-1};
// flood relay
std::vector<CAddress> vAddrToSend;
CRollingBloomFilter addrKnown;
bool fGetAddr{false};
std::set<uint256> setKnown;
int64_t nNextAddrSend GUARDED_BY(cs_sendProcessing){0};
int64_t nNextLocalAddrSend GUARDED_BY(cs_sendProcessing){0};
// Inventory based relay.
CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_inventory);
// Set of transaction ids we still have to announce. They are sorted by the
// mempool before relay, so the order is not important.
std::set<uint256> setInventoryTxToSend;
// List of block ids we still have announce. There is no final sorting
// before sending, as they are always sent immediately and in the order
// requested.
std::vector<uint256> vInventoryBlockToSend GUARDED_BY(cs_inventory);
CCriticalSection cs_inventory;
std::set<uint256> setAskFor;
std::multimap<int64_t, CInv> mapAskFor;
int64_t nNextInvSend{0};
// Used for headers announcements - unfiltered blocks to relay.
std::vector<uint256> vBlockHashesToAnnounce GUARDED_BY(cs_inventory);
// Used for BIP35 mempool sending.
bool fSendMempool GUARDED_BY(cs_inventory){false};
// Last time a "MEMPOOL" request was serviced.
std::atomic<int64_t> timeLastMempoolReq{0};
// Block and TXN accept times
std::atomic<int64_t> nLastBlockTime{0};
std::atomic<int64_t> nLastTXTime{0};
// Ping time measurement:
// The pong reply we're expecting, or 0 if no pong expected.
std::atomic<uint64_t> nPingNonceSent{0};
// Time (in usec) the last ping was sent, or 0 if no ping was ever sent.
std::atomic<int64_t> nPingUsecStart{0};
// Last measured round-trip time.
std::atomic<int64_t> nPingUsecTime{0};
// Best measured round-trip time.
std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
// Whether a ping is requested.
std::atomic<bool> fPingQueued{false};
// Minimum fee rate with which to filter inv's to this node
Amount minFeeFilter GUARDED_BY(cs_feeFilter){Amount::zero()};
CCriticalSection cs_feeFilter;
Amount lastSentFeeFilter{Amount::zero()};
int64_t nextSendTimeFeeFilter{0};
CNode(NodeId id, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn,
SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn,
uint64_t nLocalHostNonceIn, const CAddress &addrBindIn,
const std::string &addrNameIn = "", bool fInboundIn = false);
~CNode();
CNode(const CNode &) = delete;
CNode &operator=(const CNode &) = delete;
private:
const NodeId id;
const uint64_t nLocalHostNonce;
// Services offered to this peer
const ServiceFlags nLocalServices;
const int nMyStartingHeight;
int nSendVersion{0};
// Used only by SocketHandler thread.
std::list<CNetMessage> vRecvMsg;
mutable CCriticalSection cs_addrName;
std::string addrName GUARDED_BY(cs_addrName);
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(cs_addrLocal);
mutable CCriticalSection cs_addrLocal;
public:
NodeId GetId() const { return id; }
uint64_t GetLocalNonce() const { return nLocalHostNonce; }
int GetMyStartingHeight() const { return nMyStartingHeight; }
int GetRefCount() const {
assert(nRefCount >= 0);
return nRefCount;
}
bool ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes,
bool &complete);
void SetRecvVersion(int nVersionIn) { nRecvVersion = nVersionIn; }
int GetRecvVersion() const { return nRecvVersion; }
void SetSendVersion(int nVersionIn);
int GetSendVersion() const;
CService GetAddrLocal() const;
//! May not be called more than once
void SetAddrLocal(const CService &addrLocalIn);
CNode *AddRef() {
nRefCount++;
return this;
}
void Release() { nRefCount--; }
void AddAddressKnown(const CAddress &_addr) {
addrKnown.insert(_addr.GetKey());
}
void PushAddress(const CAddress &_addr, FastRandomContext &insecure_rand) {
// Known checking here is only to save space from duplicates.
// SendMessages will filter it again for knowns that were added
// after addresses were pushed.
if (_addr.IsValid() && !addrKnown.contains(_addr.GetKey())) {
if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] =
_addr;
} else {
vAddrToSend.push_back(_addr);
}
}
}
void AddInventoryKnown(const CInv &inv) {
LOCK(cs_inventory);
filterInventoryKnown.insert(inv.hash);
}
void PushInventory(const CInv &inv) {
LOCK(cs_inventory);
if (inv.type == MSG_TX) {
if (!filterInventoryKnown.contains(inv.hash)) {
setInventoryTxToSend.insert(inv.hash);
}
} else if (inv.type == MSG_BLOCK) {
vInventoryBlockToSend.push_back(inv.hash);
}
}
void PushBlockHash(const uint256 &hash) {
LOCK(cs_inventory);
vBlockHashesToAnnounce.push_back(hash);
}
void AskFor(const CInv &inv);
void CloseSocketDisconnect();
void copyStats(CNodeStats &stats);
ServiceFlags GetLocalServices() const { return nLocalServices; }
std::string GetAddrName() const;
//! Sets the addrName only if it was not previously set
void MaybeSetAddrName(const std::string &addrNameIn);
};
/**
* Return a timestamp in the future (in microseconds) for exponentially
* distributed events.
*/
int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds);
std::string getSubVersionEB(uint64_t MaxBlockSize);
std::string userAgent(const Config &config);
#endif // BITCOIN_NET_H
diff --git a/src/test/denialofservice_tests.cpp b/src/test/denialofservice_tests.cpp
index 7a2c90bb6..179b0ed77 100644
--- a/src/test/denialofservice_tests.cpp
+++ b/src/test/denialofservice_tests.cpp
@@ -1,471 +1,474 @@
// Copyright (c) 2011-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Unit tests for denial-of-service detection/prevention code
#include <chain.h>
#include <chainparams.h>
#include <config.h>
#include <keystore.h>
#include <net.h>
#include <net_processing.h>
#include <pow.h>
#include <script/sign.h>
#include <serialize.h>
#include <util/system.h>
#include <validation.h>
#include <test/test_bitcoin.h>
#include <boost/test/unit_test.hpp>
#include <cstdint>
struct CConnmanTest : public CConnman {
using CConnman::CConnman;
void AddNode(CNode &node) {
LOCK(cs_vNodes);
vNodes.push_back(&node);
}
void ClearNodes() {
LOCK(cs_vNodes);
for (CNode *node : vNodes) {
delete node;
}
vNodes.clear();
}
};
// Tests these internal-to-net_processing.cpp methods:
extern bool AddOrphanTx(const CTransactionRef &tx, NodeId peer);
extern void EraseOrphansFor(NodeId peer);
extern unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans);
struct COrphanTx {
CTransactionRef tx;
NodeId fromPeer;
int64_t nTimeExpire;
};
extern std::map<uint256, COrphanTx> mapOrphanTransactions;
static CService ip(uint32_t i) {
struct in_addr s;
s.s_addr = i;
return CService(CNetAddr(s), Params().GetDefaultPort());
}
static NodeId id = 0;
void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds);
BOOST_FIXTURE_TEST_SUITE(denialofservice_tests, TestingSetup)
// Test eviction of an outbound peer whose chain never advances
// Mock a node connection, and use mocktime to simulate a peer which never sends
// any headers messages. PeerLogic should decide to evict that outbound peer,
// after the appropriate timeouts.
// Note that we protect 4 outbound nodes from being subject to this logic; this
// test takes advantage of that protection only being applied to nodes which
// send headers with sufficient work.
BOOST_AUTO_TEST_CASE(outbound_slow_chain_eviction) {
const Config &config = GetConfig();
std::atomic<bool> interruptDummy(false);
auto connman = std::make_unique<CConnman>(config, 0x1337, 0x1337);
auto peerLogic = std::make_unique<PeerLogicValidation>(
connman.get(), nullptr, scheduler, false);
// Mock an outbound peer
CAddress addr1(ip(0xa0b0c001), NODE_NONE);
CNode dummyNode1(id++, ServiceFlags(NODE_NETWORK), 0, INVALID_SOCKET, addr1,
0, 0, CAddress(), "",
/*fInboundIn=*/false);
dummyNode1.SetSendVersion(PROTOCOL_VERSION);
peerLogic->InitializeNode(config, &dummyNode1);
dummyNode1.nVersion = 1;
dummyNode1.fSuccessfullyConnected = true;
// This test requires that we have a chain with non-zero work.
{
LOCK(cs_main);
BOOST_CHECK(chainActive.Tip() != nullptr);
BOOST_CHECK(chainActive.Tip()->nChainWork > 0);
}
// Test starts here
{
LOCK2(cs_main, dummyNode1.cs_sendProcessing);
// should result in getheaders
peerLogic->SendMessages(config, &dummyNode1, interruptDummy);
}
{
LOCK2(cs_main, dummyNode1.cs_vSend);
BOOST_CHECK(dummyNode1.vSendMsg.size() > 0);
dummyNode1.vSendMsg.clear();
}
int64_t nStartTime = GetTime();
// Wait 21 minutes
SetMockTime(nStartTime + 21 * 60);
{
LOCK2(cs_main, dummyNode1.cs_sendProcessing);
// should result in getheaders
peerLogic->SendMessages(config, &dummyNode1, interruptDummy);
}
{
LOCK2(cs_main, dummyNode1.cs_vSend);
BOOST_CHECK(dummyNode1.vSendMsg.size() > 0);
}
// Wait 3 more minutes
SetMockTime(nStartTime + 24 * 60);
{
LOCK2(cs_main, dummyNode1.cs_sendProcessing);
// should result in disconnect
peerLogic->SendMessages(config, &dummyNode1, interruptDummy);
}
BOOST_CHECK(dummyNode1.fDisconnect == true);
SetMockTime(0);
bool dummy;
peerLogic->FinalizeNode(config, dummyNode1.GetId(), dummy);
}
static void AddRandomOutboundPeer(const Config &config,
std::vector<CNode *> &vNodes,
PeerLogicValidation &peerLogic,
CConnmanTest *connman) {
CAddress addr(ip(g_insecure_rand_ctx.randbits(32)), NODE_NONE);
vNodes.emplace_back(new CNode(id++, ServiceFlags(NODE_NETWORK), 0,
INVALID_SOCKET, addr, 0, 0, CAddress(), "",
/*fInboundIn=*/false));
CNode &node = *vNodes.back();
node.SetSendVersion(PROTOCOL_VERSION);
peerLogic.InitializeNode(config, &node);
node.nVersion = 1;
node.fSuccessfullyConnected = true;
connman->AddNode(node);
}
BOOST_AUTO_TEST_CASE(stale_tip_peer_management) {
const Config &config = GetConfig();
auto connman = std::make_unique<CConnmanTest>(config, 0x1337, 0x1337);
auto peerLogic = std::make_unique<PeerLogicValidation>(
connman.get(), nullptr, scheduler, false);
const Consensus::Params &consensusParams =
config.GetChainParams().GetConsensus();
constexpr int nMaxOutbound = 8;
CConnman::Options options;
options.nMaxConnections = 125;
options.nMaxOutbound = nMaxOutbound;
options.nMaxFeeler = 1;
connman->Init(options);
std::vector<CNode *> vNodes;
// Mock some outbound peers
for (int i = 0; i < nMaxOutbound; ++i) {
AddRandomOutboundPeer(config, vNodes, *peerLogic, connman.get());
}
peerLogic->CheckForStaleTipAndEvictPeers(consensusParams);
// No nodes should be marked for disconnection while we have no extra peers
for (const CNode *node : vNodes) {
BOOST_CHECK(node->fDisconnect == false);
}
SetMockTime(GetTime() + 3 * consensusParams.nPowTargetSpacing + 1);
// Now tip should definitely be stale, and we should look for an extra
// outbound peer
peerLogic->CheckForStaleTipAndEvictPeers(consensusParams);
BOOST_CHECK(connman->GetTryNewOutboundPeer());
// Still no peers should be marked for disconnection
for (const CNode *node : vNodes) {
BOOST_CHECK(node->fDisconnect == false);
}
// If we add one more peer, something should get marked for eviction
// on the next check (since we're mocking the time to be in the future, the
// required time connected check should be satisfied).
AddRandomOutboundPeer(config, vNodes, *peerLogic, connman.get());
peerLogic->CheckForStaleTipAndEvictPeers(consensusParams);
for (int i = 0; i < nMaxOutbound; ++i) {
BOOST_CHECK(vNodes[i]->fDisconnect == false);
}
// Last added node should get marked for eviction
BOOST_CHECK(vNodes.back()->fDisconnect == true);
vNodes.back()->fDisconnect = false;
// Update the last announced block time for the last
// peer, and check that the next newest node gets evicted.
UpdateLastBlockAnnounceTime(vNodes.back()->GetId(), GetTime());
peerLogic->CheckForStaleTipAndEvictPeers(consensusParams);
for (int i = 0; i < nMaxOutbound - 1; ++i) {
BOOST_CHECK(vNodes[i]->fDisconnect == false);
}
BOOST_CHECK(vNodes[nMaxOutbound - 1]->fDisconnect == true);
BOOST_CHECK(vNodes.back()->fDisconnect == false);
bool dummy;
for (const CNode *node : vNodes) {
peerLogic->FinalizeNode(config, node->GetId(), dummy);
}
connman->ClearNodes();
}
BOOST_AUTO_TEST_CASE(DoS_banning) {
const Config &config = GetConfig();
std::atomic<bool> interruptDummy(false);
- auto banman = std::make_unique<BanMan>(config.GetChainParams(), nullptr);
+ auto banman = std::make_unique<BanMan>(GetDataDir() / "banlist.dat",
+ config.GetChainParams(), nullptr);
auto connman = std::make_unique<CConnman>(config, 0x1337, 0x1337);
auto peerLogic = std::make_unique<PeerLogicValidation>(
connman.get(), banman.get(), scheduler, false);
banman->ClearBanned();
CAddress addr1(ip(0xa0b0c001), NODE_NONE);
CNode dummyNode1(id++, NODE_NETWORK, 0, INVALID_SOCKET, addr1, 0, 0,
CAddress(), "", true);
dummyNode1.SetSendVersion(PROTOCOL_VERSION);
peerLogic->InitializeNode(config, &dummyNode1);
dummyNode1.nVersion = 1;
dummyNode1.fSuccessfullyConnected = true;
{
LOCK(cs_main);
// Should get banned.
Misbehaving(dummyNode1.GetId(), 100, "");
}
{
LOCK2(cs_main, dummyNode1.cs_sendProcessing);
peerLogic->SendMessages(config, &dummyNode1, interruptDummy);
}
BOOST_CHECK(banman->IsBanned(addr1));
// Different IP, not banned.
BOOST_CHECK(!banman->IsBanned(ip(0xa0b0c001 | 0x0000ff00)));
CAddress addr2(ip(0xa0b0c002), NODE_NONE);
CNode dummyNode2(id++, NODE_NETWORK, 0, INVALID_SOCKET, addr2, 1, 1,
CAddress(), "", true);
dummyNode2.SetSendVersion(PROTOCOL_VERSION);
peerLogic->InitializeNode(config, &dummyNode2);
dummyNode2.nVersion = 1;
dummyNode2.fSuccessfullyConnected = true;
{
LOCK(cs_main);
Misbehaving(dummyNode2.GetId(), 50, "");
}
{
LOCK2(cs_main, dummyNode2.cs_sendProcessing);
peerLogic->SendMessages(config, &dummyNode2, interruptDummy);
}
// 2 not banned yet...
BOOST_CHECK(!banman->IsBanned(addr2));
// ... but 1 still should be.
BOOST_CHECK(banman->IsBanned(addr1));
{
LOCK(cs_main);
Misbehaving(dummyNode2.GetId(), 50, "");
}
{
LOCK2(cs_main, dummyNode2.cs_sendProcessing);
peerLogic->SendMessages(config, &dummyNode2, interruptDummy);
}
BOOST_CHECK(banman->IsBanned(addr2));
bool dummy;
peerLogic->FinalizeNode(config, dummyNode1.GetId(), dummy);
peerLogic->FinalizeNode(config, dummyNode2.GetId(), dummy);
}
BOOST_AUTO_TEST_CASE(DoS_banscore) {
const Config &config = GetConfig();
std::atomic<bool> interruptDummy(false);
- auto banman = std::make_unique<BanMan>(config.GetChainParams(), nullptr);
+ auto banman = std::make_unique<BanMan>(GetDataDir() / "banlist.dat",
+ config.GetChainParams(), nullptr);
auto connman = std::make_unique<CConnman>(config, 0x1337, 0x1337);
auto peerLogic = std::make_unique<PeerLogicValidation>(
connman.get(), banman.get(), scheduler, false);
banman->ClearBanned();
// because 11 is my favorite number.
gArgs.ForceSetArg("-banscore", "111");
CAddress addr1(ip(0xa0b0c001), NODE_NONE);
CNode dummyNode1(id++, NODE_NETWORK, 0, INVALID_SOCKET, addr1, 3, 1,
CAddress(), "", true);
dummyNode1.SetSendVersion(PROTOCOL_VERSION);
peerLogic->InitializeNode(config, &dummyNode1);
dummyNode1.nVersion = 1;
dummyNode1.fSuccessfullyConnected = true;
{
LOCK(cs_main);
Misbehaving(dummyNode1.GetId(), 100, "");
}
{
LOCK2(cs_main, dummyNode1.cs_sendProcessing);
peerLogic->SendMessages(config, &dummyNode1, interruptDummy);
}
BOOST_CHECK(!banman->IsBanned(addr1));
{
LOCK(cs_main);
Misbehaving(dummyNode1.GetId(), 10, "");
}
{
LOCK2(cs_main, dummyNode1.cs_sendProcessing);
peerLogic->SendMessages(config, &dummyNode1, interruptDummy);
}
BOOST_CHECK(!banman->IsBanned(addr1));
{
LOCK(cs_main);
Misbehaving(dummyNode1.GetId(), 1, "");
}
{
LOCK2(cs_main, dummyNode1.cs_sendProcessing);
peerLogic->SendMessages(config, &dummyNode1, interruptDummy);
}
BOOST_CHECK(banman->IsBanned(addr1));
gArgs.ForceSetArg("-banscore", std::to_string(DEFAULT_BANSCORE_THRESHOLD));
bool dummy;
peerLogic->FinalizeNode(config, dummyNode1.GetId(), dummy);
}
BOOST_AUTO_TEST_CASE(DoS_bantime) {
const Config &config = GetConfig();
std::atomic<bool> interruptDummy(false);
- auto banman = std::make_unique<BanMan>(config.GetChainParams(), nullptr);
+ auto banman = std::make_unique<BanMan>(GetDataDir() / "banlist.dat",
+ config.GetChainParams(), nullptr);
auto connman = std::make_unique<CConnman>(config, 0x1337, 0x1337);
auto peerLogic = std::make_unique<PeerLogicValidation>(
connman.get(), banman.get(), scheduler, false);
banman->ClearBanned();
int64_t nStartTime = GetTime();
// Overrides future calls to GetTime()
SetMockTime(nStartTime);
CAddress addr(ip(0xa0b0c001), NODE_NONE);
CNode dummyNode(id++, NODE_NETWORK, 0, INVALID_SOCKET, addr, 4, 4,
CAddress(), "", true);
dummyNode.SetSendVersion(PROTOCOL_VERSION);
peerLogic->InitializeNode(config, &dummyNode);
dummyNode.nVersion = 1;
dummyNode.fSuccessfullyConnected = true;
{
LOCK(cs_main);
Misbehaving(dummyNode.GetId(), 100, "");
}
{
LOCK2(cs_main, dummyNode.cs_sendProcessing);
peerLogic->SendMessages(config, &dummyNode, interruptDummy);
}
BOOST_CHECK(banman->IsBanned(addr));
SetMockTime(nStartTime + 60 * 60);
BOOST_CHECK(banman->IsBanned(addr));
SetMockTime(nStartTime + 60 * 60 * 24 + 1);
BOOST_CHECK(!banman->IsBanned(addr));
bool dummy;
peerLogic->FinalizeNode(config, dummyNode.GetId(), dummy);
}
static CTransactionRef RandomOrphan() {
std::map<uint256, COrphanTx>::iterator it;
LOCK(cs_main);
it = mapOrphanTransactions.lower_bound(InsecureRand256());
if (it == mapOrphanTransactions.end()) {
it = mapOrphanTransactions.begin();
}
return it->second.tx;
}
BOOST_AUTO_TEST_CASE(DoS_mapOrphans) {
CKey key;
key.MakeNewKey(true);
CBasicKeyStore keystore;
keystore.AddKey(key);
// 50 orphan transactions:
for (int i = 0; i < 50; i++) {
CMutableTransaction tx;
tx.vin.resize(1);
tx.vin[0].prevout = COutPoint(TxId(InsecureRand256()), 0);
tx.vin[0].scriptSig << OP_1;
tx.vout.resize(1);
tx.vout[0].nValue = 1 * CENT;
tx.vout[0].scriptPubKey =
GetScriptForDestination(key.GetPubKey().GetID());
AddOrphanTx(MakeTransactionRef(tx), i);
}
// ... and 50 that depend on other orphans:
for (int i = 0; i < 50; i++) {
CTransactionRef txPrev = RandomOrphan();
CMutableTransaction tx;
tx.vin.resize(1);
tx.vin[0].prevout = COutPoint(txPrev->GetId(), 0);
tx.vout.resize(1);
tx.vout[0].nValue = 1 * CENT;
tx.vout[0].scriptPubKey =
GetScriptForDestination(key.GetPubKey().GetID());
SignSignature(keystore, *txPrev, tx, 0, SigHashType());
AddOrphanTx(MakeTransactionRef(tx), i);
}
// This really-big orphan should be ignored:
for (int i = 0; i < 10; i++) {
CTransactionRef txPrev = RandomOrphan();
CMutableTransaction tx;
tx.vout.resize(1);
tx.vout[0].nValue = 1 * CENT;
tx.vout[0].scriptPubKey =
GetScriptForDestination(key.GetPubKey().GetID());
tx.vin.resize(2777);
for (size_t j = 0; j < tx.vin.size(); j++) {
tx.vin[j].prevout = COutPoint(txPrev->GetId(), j);
}
SignSignature(keystore, *txPrev, tx, 0, SigHashType());
// Re-use same signature for other inputs
// (they don't have to be valid for this test)
for (unsigned int j = 1; j < tx.vin.size(); j++)
tx.vin[j].scriptSig = tx.vin[0].scriptSig;
BOOST_CHECK(!AddOrphanTx(MakeTransactionRef(tx), i));
}
LOCK(cs_main);
// Test EraseOrphansFor:
for (NodeId i = 0; i < 3; i++) {
size_t sizeBefore = mapOrphanTransactions.size();
EraseOrphansFor(i);
BOOST_CHECK(mapOrphanTransactions.size() < sizeBefore);
}
// Test LimitOrphanTxSize() function:
LimitOrphanTxSize(40);
BOOST_CHECK(mapOrphanTransactions.size() <= 40);
LimitOrphanTxSize(10);
BOOST_CHECK(mapOrphanTransactions.size() <= 10);
LimitOrphanTxSize(0);
BOOST_CHECK(mapOrphanTransactions.empty());
}
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/test/test_bitcoin.cpp b/src/test/test_bitcoin.cpp
index 286272763..3e747f513 100644
--- a/src/test/test_bitcoin.cpp
+++ b/src/test/test_bitcoin.cpp
@@ -1,211 +1,212 @@
// Copyright (c) 2011-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <test/test_bitcoin.h>
#include <chain.h>
#include <chainparams.h>
#include <config.h>
#include <consensus/consensus.h>
#include <consensus/validation.h>
#include <crypto/sha256.h>
#include <fs.h>
#include <key.h>
#include <logging.h>
#include <miner.h>
#include <net_processing.h>
#include <noui.h>
#include <pow.h>
#include <pubkey.h>
#include <random.h>
#include <rpc/register.h>
#include <rpc/server.h>
#include <script/scriptcache.h>
#include <script/sigcache.h>
#include <txdb.h>
#include <txmempool.h>
#include <ui_interface.h>
#include <validation.h>
#include <memory>
FastRandomContext g_insecure_rand_ctx;
std::ostream &operator<<(std::ostream &os, const uint256 &num) {
os << num.ToString();
return os;
}
BasicTestingSetup::BasicTestingSetup(const std::string &chainName)
: m_path_root(fs::temp_directory_path() / "test_bitcoin" /
strprintf("%lu_%i", static_cast<unsigned long>(GetTime()),
int(InsecureRandRange(1 << 30)))) {
SHA256AutoDetect();
RandomInit();
ECC_Start();
SetupEnvironment();
SetupNetworking();
InitSignatureCache();
InitScriptExecutionCache();
// Don't want to write to debug.log file.
GetLogger().m_print_to_file = false;
fCheckBlockIndex = true;
SelectParams(chainName);
noui_connect();
}
BasicTestingSetup::~BasicTestingSetup() {
fs::remove_all(m_path_root);
ECC_Stop();
}
fs::path BasicTestingSetup::SetDataDir(const std::string &name) {
fs::path ret = m_path_root / name;
fs::create_directories(ret);
gArgs.ForceSetArg("-datadir", ret.string());
return ret;
}
TestingSetup::TestingSetup(const std::string &chainName)
: BasicTestingSetup(chainName) {
SetDataDir("tempdir");
const Config &config = GetConfig();
const CChainParams &chainparams = config.GetChainParams();
// Ideally we'd move all the RPC tests to the functional testing framework
// instead of unit tests, but for now we need these here.
RPCServer rpcServer;
RegisterAllRPCCommands(config, rpcServer, tableRPC);
/**
* RPC does not come out of the warmup state on its own. Normally, this is
* handled in bitcoind's init path, but unit tests do not trigger this
* codepath, so we call it explicitly as part of setup.
*/
std::string rpcWarmupStatus;
if (RPCIsInWarmup(&rpcWarmupStatus)) {
SetRPCWarmupFinished();
}
ClearDatadirCache();
// We have to run a scheduler thread to prevent ActivateBestChain
// from blocking due to queue overrun.
threadGroup.create_thread(
boost::bind(&CScheduler::serviceQueue, &scheduler));
GetMainSignals().RegisterBackgroundSignalScheduler(scheduler);
g_mempool.setSanityCheck(1.0);
pblocktree.reset(new CBlockTreeDB(1 << 20, true));
pcoinsdbview.reset(new CCoinsViewDB(1 << 23, true));
pcoinsTip.reset(new CCoinsViewCache(pcoinsdbview.get()));
if (!LoadGenesisBlock(chainparams)) {
throw std::runtime_error("LoadGenesisBlock failed.");
}
{
CValidationState state;
if (!ActivateBestChain(config, state)) {
throw std::runtime_error(strprintf("ActivateBestChain failed. (%s)",
FormatStateMessage(state)));
}
}
nScriptCheckThreads = 3;
for (int i = 0; i < nScriptCheckThreads - 1; i++) {
threadGroup.create_thread(&ThreadScriptCheck);
}
- g_banman = std::make_unique<BanMan>(chainparams, nullptr);
+ g_banman = std::make_unique<BanMan>(GetDataDir() / "banlist.dat",
+ chainparams, nullptr);
// Deterministic randomness for tests.
g_connman = std::make_unique<CConnman>(config, 0x1337, 0x1337);
}
TestingSetup::~TestingSetup() {
threadGroup.interrupt_all();
threadGroup.join_all();
GetMainSignals().FlushBackgroundCallbacks();
GetMainSignals().UnregisterBackgroundSignalScheduler();
g_connman.reset();
g_banman.reset();
UnloadBlockIndex();
pcoinsTip.reset();
pcoinsdbview.reset();
pblocktree.reset();
}
TestChain100Setup::TestChain100Setup()
: TestingSetup(CBaseChainParams::REGTEST) {
// Generate a 100-block chain:
coinbaseKey.MakeNewKey(true);
CScript scriptPubKey = CScript() << ToByteVector(coinbaseKey.GetPubKey())
<< OP_CHECKSIG;
for (int i = 0; i < COINBASE_MATURITY; i++) {
std::vector<CMutableTransaction> noTxns;
CBlock b = CreateAndProcessBlock(noTxns, scriptPubKey);
m_coinbase_txns.push_back(b.vtx[0]);
}
}
//
// Create a new block with just given transactions, coinbase paying to
// scriptPubKey, and try to add it to the current chain.
//
CBlock TestChain100Setup::CreateAndProcessBlock(
const std::vector<CMutableTransaction> &txns, const CScript &scriptPubKey) {
const Config &config = GetConfig();
std::unique_ptr<CBlockTemplate> pblocktemplate =
BlockAssembler(config, g_mempool).CreateNewBlock(scriptPubKey);
CBlock &block = pblocktemplate->block;
// Replace mempool-selected txns with just coinbase plus passed-in txns:
block.vtx.resize(1);
for (const CMutableTransaction &tx : txns) {
block.vtx.push_back(MakeTransactionRef(tx));
}
// Order transactions by canonical order
std::sort(std::begin(block.vtx) + 1, std::end(block.vtx),
[](const std::shared_ptr<const CTransaction> &txa,
const std::shared_ptr<const CTransaction> &txb) -> bool {
return txa->GetId() < txb->GetId();
});
// IncrementExtraNonce creates a valid coinbase and merkleRoot
{
LOCK(cs_main);
unsigned int extraNonce = 0;
IncrementExtraNonce(config, &block, chainActive.Tip(), extraNonce);
}
const Consensus::Params ¶ms = config.GetChainParams().GetConsensus();
while (!CheckProofOfWork(block.GetHash(), block.nBits, params)) {
++block.nNonce;
}
std::shared_ptr<const CBlock> shared_pblock =
std::make_shared<const CBlock>(block);
ProcessNewBlock(config, shared_pblock, true, nullptr);
CBlock result = block;
return result;
}
TestChain100Setup::~TestChain100Setup() {}
CTxMemPoolEntry TestMemPoolEntryHelper::FromTx(const CMutableTransaction &tx,
CTxMemPool *pool) {
return FromTx(MakeTransactionRef(tx), pool);
}
CTxMemPoolEntry TestMemPoolEntryHelper::FromTx(const CTransactionRef &tx,
CTxMemPool *pool) {
// Hack to assume either it's completely dependent on other mempool txs or
// not at all.
Amount inChainValue =
pool && pool->HasNoInputsOf(*tx) ? tx->GetValueOut() : Amount::zero();
return CTxMemPoolEntry(tx, nFee, nTime, dPriority, nHeight, inChainValue,
spendsCoinbase, sigOpCost, lp);
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, May 13, 01:44 (1 d, 3 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5733870
Default Alt Text
(263 KB)
Attached To
rABC Bitcoin ABC
Event Timeline
Log In to Comment